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Abstract

Bayesian networks can be built based on knowledge, data, or both. Independent of the 
source of information used to build the model, inaccuracies might occur or the applica-
tion domain might change. Therefore, there is a need to continuously improve the model 
during its usage. As new data are collected, algorithms to continuously incorporate the 
updated knowledge can play an essential role in this process. In regard to the continu-
ous learning of the Bayesian network’s structure, the current solutions are based on its 
structural refinement or adaptation. Recent researchers aim to reduce complexity and 
memory usage, allowing to solve complex and large-scale practical problems. This study 
aims to identify and evaluate solutions for the continuous learning of the Bayesian net-
work’s structures, as well as to outline related future research directions. Our attention 
remains on the structures because the accurate parameters are completely useless if the 
structure is not representative.

Keywords: Bayesian network, structure learning, continuous learning, structural 
adaptation, structural refinement

1. Introduction

Bayesian networks (BNs) are probabilistic graphs used to deal with the uncertainties of 

a domain [1]. These graphs represent the random variables of this domain and their con-

ditional dependencies. The use of Bayesian networks, also known as Bayesian belief net-

works, has several points to highlight. Among them, stands out the explicit treatment of 
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uncertainty, the ease of estimating the state of certain variables given some evidence, as 

well as having support methods for decision analysis and quick responses by the user [2].

The application domains of Bayesian networks have been extensive [3]. A large number of 

applications are in the field of medicine [4, 5], being one of the most addressed. There are 

also applications in the field of forecasting [6], control [7], and modeling for human under-

standing [8]. In the context of software engineering, fields such as project planning [9], risk 

management [10], and quality management [11] are addressed. Motivated by the extensive 
application cited, methods to improve the construction of these graphic models have become 

a focus of research.

A Bayesian network is defined by a directed acyclic graph (DAG) and a set of parameters for 
this DAG (NPT). Therefore, in order to build a Bayesian network, the definition of both the 
graph and the NPT must be considered. Several researches are being carried out with the 
intention of assisting these definitions [12–14]. However, the solutions proposed are based, 

for the most part, on the batch process. This process is infeasible in some application domains. 

Companies, for example, are increasingly storing huge databases with knowledge about 
their business processes. New knowledge is acquired every time. It is virtually impossible 

to achieve a highly accurate description of the processes involved without new data being 

collected or a large amount of data being stored that cannot be analyzed at once. Therefore, 

the need arose for solutions that continuously incorporate the updated knowledge to prior 

knowledge.

Ref. [15] investigated the main continuous learning solutions proposed until the development 

of his study. A comparative analysis between incremental algorithms and an experiment to 
support this analysis were performed. However, extensions of these, as well as new studies, 
have since been developed. This chapter aims to describe and analyze existing solutions for 
continuous learning of Bayesian network structures. A systematic review of the literature is 

carried out, and the algorithms found are divided into two groups according to their concepts: 

refinement and structural adaptation. Some guidelines for future research are also described.

2. Learning Bayesian networks

In probability theory, a domain  D  and its uncertainties can be modeled by a set of random 

variables  D =  { X  
1
  , … ,  X  

n
  }  . Each random variable   X  

i
    has a set of possible values that combined 

make up the basis for the modeling of domain  D . The occurrence of each possible combina-

tion is measured using probabilities that are specified by joint probability distribution, a key 
concept of probability theory.

In many domains, there is a high number of variables  n , requiring the use of probabilistic 

graphical models for the definition of joint probability distribution. Bayesian networks (BNs) 
belong to the family of these models that are used to represent a domain and its uncertainties 

[1]. A BN is a directed acyclic graph (DAG) that encodes a joint probability distribution over a 
set of random variables  D  [16]. Formally, a network for  D  is defined by the pair  B =  {G, 𝜽}  .
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The first component,  G , is a DAG whose vertices correspond to the random variables   X  
1
  , … ,  X  

n
   , 

and the edges represent directed dependencies between variables. The vertices are represented 

by circles. The edges are represented by arrows indicating the direction of the causal connec-

tion between the variables; nevertheless, the information can propagate in any direction in the 

graph [17].

The chain rule of probability, Eq. (1), can be rewritten as Eq. (2) based on conditional inde-

pendence rule. Two sets of variables   D  
x
    and   D  

y
    are independent given   D  

z
    if  P ( D  

x
   |  D  

y
  ,  D  

z
  )  = P ( D  

x
   |  D  

z
  )   

whenever  P ( D  
y
  ,  D  

z
  )  > 0 .

  P ( X  
1
  , … ,  X  

n
  )  =  ∏ 

i=1

  
n

    P ( X  
i
   |  X  

1
  , … ,  X  

i−1
  )    (1)

  P ( X  
1
  , … ,  X  

n
  )  =  ∏ 

i=1

  
n

    P ( X  
i
   |  Pa  

i
  )   (2)

In Eq. (2),   Pa  
i
    denotes the set of parents of the variable   X  

i
   .

The second component,  𝜽 , represents the set of parameters that quantifies the network. This 
set contains a parameter    θ  

ijk
   = P ( X  

i
   =  x  

i
  k |   Pa  

i
   =  pa  

i
  j  )     for each possible state   x  

i
  k   of   X  

i
   , and for each 

configuration   pa  
i
  j   of   Pa  

i
   . An example of a Bayesian network is shown in Figure 1.

In this case, it is desired to calculate the likelihood of a person having lung cancer given the 

history of cancer in their family and if this person is a smoker. The node probability tables 

(NPTs) of the parent nodes represent a prior knowledge of these variables. The NPT of the 
child node represents the likelihood of a person having cancer given each possible combina-

tion of values of the parent nodes.

The goal of the learning process of a Bayesian network is to find a network (or only its struc-

ture) that best encodes the joint probability distribution of a domain. Bayesian network learn-

ing can be stated as [18]:

Figure 1. BN example.
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Definition 1 (Bayesian network learning): Given a data set, infer the topology for the belief net-

work that may have generated the data set together with the corresponding uncertainty distribution.

The learning problem of Bayesian networks can be decomposed into two subproblems: con-

struct the structure, that is, DAG, and define the NPT [19]. Although there are many stud-

ies related to the importance of learning NPTs, this study focuses on the first subproblem 
described. The accurate parameters are completely useless if the structure is not representa-

tive. In [20], the importance of the structure of a network in the independence and relevance 

relationships between the variables concerned is described. Also, in [20], an analysis about the 

influence of probabilistic networks in the difficulty of representing the uncertainties present 
in the domain is presented.

The structure can be constructed from data only using machine learning or search techniques, 

such as those presented in [12, 21–23]. To optimize the definition of structure, the data can 
be enhanced with expert knowledge. One approach is to consult experts about the posterior 
probabilities of the structure to reduce the search space, such as presented in [13, 24].

In [25, 26], solutions are presented to complement a Bayesian network with the knowledge of 

domain experts through the addition of new factors in the model. In this way, it is possible to 
predict rare events, often not represented in the available databases.

Finally, the structure can be defined only according to the knowledge of specialists, where 
it is assumed that there are no data available before the structure construction process. In 

this case, the structure can be defined according to the elicited knowledge of one or multiple 
experts, as presented in [27, 28].

Most of the solutions to previously reported problems, as well as all of the solutions cited 

so far, operate as a batch process. The batch process (or batch learning) can be summarized 

in the delivery of a block of knowledge to an algorithm so that it learns a structure. All 

the knowledge available to date is used during this process. However, it is inevitable that 

such information will be inaccurate during the modeling of the domain [29]. For example, 
if knowledge is acquired from domain experts, the lack of communication between this 
expert and the expert on graphical models may result in errors in the Bayesian network. 
Similarly, if the network is being built from a data set, the data set may be inappropriate 
or inaccurate.

On the other hand, it is neither efficient nor, in some cases, possible to always keep the 
stored data in search of more representative models using batch learning algorithms [30]. To 

improve the use of data in the learning problem of Bayesian network structures, it’s required 

solutions that present a continuous process of learning. In the following section, solutions for 

the continuous learning of the Bayesian network structures are presented.

3. Continuous learning of Bayesian networks’ structure

The incentive in the application of processes that realize the learning of Bayesian networks 

in stages was based, initially, on the observation of the human learning by some researchers. 

However, the paradigm shift that provided multiple domains generated and stored more and 
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more data also propelled its development. Continuous (or incremental) learning approaches 

have some widely accepted definitions found in the literature [31].

In [32], the following precise definition was stated.

Definition 2 (Incremental learner): A learner  L  is incremental if  L  inputs one training experience 

at a time, does not reprocess any previous experiences, and retains only one knowledge structure in 

memory.

In this definition, there are three constraints so that an algorithm can be classified as incre-

mental. In Ref. [32], another definition with a different way of knowledge maintenance was 
presented.

Definition 3 (Incremental procedure): A Bayesian network learning procedure is incremental if 

each iteration  l , it receives a new data instance   u  
l
    and then produces the next hypothesis   S  

l+1
   . This 

estimate is then used by to perform the required task on the next instance   u  
l+1

   , which in turn is used 

to update the network and so on. The procedure might generate a new model after some number of  k  

instances are collected.

This definition relaxes the constraints imposed by Definition 2. For Definition 3, an incre-

mental algorithm can be allowed to process at most  k  previous instances after encountering 

a new training instance or to keep  k  alternative knowledge bases in memory. In [34], another 

definition is based on Definition 2.

Definition 4 (Incremental algorithm): An incremental algorithm should meet the following con-

straints: (i) it must require small constant time per record; (ii) it must be able to build a model using 

at most one scan of the data; (iii) it must use only a fixed amount of main memory, irrespective of 
the total number of records it has seen; (iv) it must make a usable model available at any point in 

time, as opposed to only when it is done with processing the data; and (v) it should produce a model 

that is equivalent (or nearly identical) to the one that would be obtained by the corresponding batch 

algorithm.

Like previous definitions, this definition imposes constraints related to time, memory, and 
knowledge addressed. The Definition 4 increments the constraint related to the availability of 
a useful model imposed by Definition 3. Now, a lot due to its application in data streams [34], 

it is needed to make a usable model available at any point in time, as opposed to only when it 

is done with processing the data.

Based on the aforementioned definitions of an incremental learning algorithm and in [31], 

solutions were found that present different learning methodologies. Two groups separate 
these solutions. The main difference between them is in how they use the acquired knowl-
edge. In one of these groups, denoted by refinement solutions, the data are used according to 
the knowledge already possessed. This knowledge is maintained in the probabilistic graphic 

already developed, being only refined with the new data. On the other group, denoted by 
structural adaptation solutions, the solutions maintain one or more candidate structures and 

apply to these structures the observations received. This new data set is used to update the 

sufficient statistics needed to build that candidate structures.

The concepts and information about the type of solutions found in this research are mapped, 

in an outlined (due to space constraints) and schematic way, in Figure 2.

Continuous Learning of the Structure of Bayesian Networks: A Mapping Study
http://dx.doi.org/10.5772/intechopen.80064

59



3.1. Methodology

The continuous learning Bayesian networks structure is kept like an open problem in many 

application domains. In this study, a systematic literature review is used to identify and 

evaluate solutions for the continuous learning of the Bayesian networks’ structures, as well as 

to outline related future research directions. A combination of strings was used for title and 

keyword to identify articles related to continuous learning. Scopus is used as an electronic 
database.

In the initial search, 4150 items from Scopus were found, but only the first 400 results were 
checked. This stop was performed because, of these first 400 results, sorted by relevance, a 
sequence of 150 articles totally unrelated to the search was found. To verify this relationship, 

three reading steps were performed. Initially, articles were selected considering only the title 

and abstract. A superficial reading of the remaining articles was then performed. This step 
consisted of reading and interpreting section titles, figures, graphs, conclusions, and other 

Figure 2. Mind map about solutions.
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elements. In the remaining articles, a critical reading was carried out seeking to interpret and 

analyze the complete text. The following sections present a description of these efforts.

3.2. Buntine’s solution

In [35], a theory refinement-based approach has been proposed. The key task of theory refine-

ment is to update the initial partial theory, usually the expert’s prior domain knowledge, as 
far as new cases produce a posterior knowledge about the space of possible theories, being 

one of the fundamentals of continuous learning. Given a set of new data and total ordering 
of the domain variables, the solution updates both the knowledge about the structure and the 

parameters using different BNs.

For extending and modifying the structure, [35] proposed a batch algorithm that uses the 

score-and-search–based Bayesian approach. However, using some guidelines presented by 

the author, it is possible to convert the batch learning into continuous learning process.

The batch algorithm of [35] requires a set of ordered variables   X =  { X  
1
  , … ,  X  

n
  |   X  

i
   ≺  X  

i+1
  , … ,  X  

n
   }     

according to the prior domain knowledge, where, for the expert, the variables that come first 
have influence over the others. For each variable   X  

i
   , a set of reasonable alternative parent sets   

Π  
i
   =  { Pa  

i1
  , … ,  Pa  

im
  }   is kept according to some criteria of reasonableness. Each parent set   Pa  

ij
    is a 

subset of   {Y | Y ≺  X  
i
  }  .

A set of alternative parent sets   Π  
i
    for the variable   X  

i
    is denoted by the parent lattice for   X  

i
   . This 

parent lattice is a lattice structure where subset and superset parent sets are linked together 
in a web. To access all alternative parent sets   Pa  

j
   ∈  Π  

i
    efficiently, only those parent sets with 

significant posterior probabilities are stored in the parent lattice for   X  
i
   . The root node of the 

parent lattice for   X  
i
    is empty set, and the leaves are the sets   Pa  

j
    which have no supersets con-

tained in   Π  
i
   .

The batch algorithm also requires tree parameters  1 > C > D > E . These are used to vary the 

search. The algorithm uses these parameters as base to classify the parent sets as Alive, 

Asleep, or Dead. The parameter  C  is used to separate the parent sets that finally take part on 
the space of alternative networks. The parameter  D  is used to select the reasonable alterna-

tives to Alive parent sets. The alternatives of Alive parent sets are beams searched by the 

algorithm. The parameter  E  is used to select the reasonable alternatives to Dead parent sets. 
Dead parent sets are alternatives that have been explored and forever determined to be 
unreasonable alternatives and are not to be further explored. On the other hand, Asleep 
parent sets are similar but are only considered unreasonable for now and may be made alive 

later on.

Set the tree parameters  C ,  D , and  E  to 1 will make the algorithm to be reduce to the K2 algo-

rithm. For this, many researchers cite this algorithm as a generalization of the K2 algorithm 

[30, 31, 36]. At the end, a structure of alternative networks results from the set of parent sets 

and the network parameters, denoted by a combined Bayesian network. A pseudo-code for 

batch algorithm is described in [35].
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To convert this batch into continuous learning algorithm, [35] describes two situations that 

vary according to the time available for the update. In the case where there is a short amount 

of time for updating the BNs, the algorithm only updates the posterior probabilities of the 

parent lattices. To this, it is necessary to store posterior probabilities and the counters   N  
ijk

    for 

each alternative set of Alive parent sets.

On the other hand, both structure and posterior updates are updated according to new data. 

For each variable   X  
i
    of the combined Bayesian network, it is necessary to: (i) update the pos-

terior probabilities of all alive sets of the lattice, (ii) calculate the new best-posterior, and (iii) 
expand nodes from the open-list and continue with the search.

The generation of different networks needs to update the posterior probabilities of all alive 
sets of the lattice. This solution uses sufficient statistics of data that only contains counts of 
different entries in data instead of data entries, requiring constant time to update sufficient 
statistics only when new records arrive. Furthermore, [33, 35] performs an additional search 

over the space of alternative Bayesian networks.

3.3. Friedman and Goldschmidt’s solution

Like the previous solution, [34] also addressed the problem of sequential update of the prior 

domain knowledge. Through the use of sufficient statistics maintained in memory for each 
network structure at a defined frontier, the knowledge is continuously learned. In this way, 
this solution provides a method that trades off between accuracy, that is, quality of structure, 
and storage, that is amount of information about the past observations.

In Ref. [34], three different solutions to sequentially learn BNs have been proposed. Among 
them, there are two extremes. The naive approach, as it is called, stores all the previously 
seen data and repeatedly invokes a batch learning procedure after each new observation is 

recorded. However, despite using as much information as possible, thus increasing the qual-

ity of the structure generated, this approach has a high storage cost. In addition, reusing batch 

learning increases the amount of time and processing spent.

On the other hand, the maximum a posteriori (MAP) probability approach uses a model to 
store all the information that is considered useful for the next steps in the knowledge update. 
However, the use of a single model can strongly bias the continuous learning of the model 

and lose information.

Aware of the disadvantages of previous approaches, [34] presents a new approach, called 

incremental, which proposes a tradeoff between extremes. The incremental approach does 
not store all data, unlike the naive approach, and it does not use a single network to repre-

sent the prior knowledge, unlike the MAP probability approach. Moreover, it allows flexible 
choices in the tradeoff between space and quality of the induced networks.

The basic component of this procedure is a module that maintains a set  S  of sufficient statistics 
records. The set of sufficient statistics for G, denoted by  Suff (G)  , can be founded by  Suff (G)  =  

 { N  
 X  

i
  , Pa  

i
  
   : 1 ≤ i ≤ n}  . Similarly, given a set S of sufficient statistics records, the set of network struc-

tures, denoted by  Nets (S)  , can be evaluated using the records in  S  by  Nets (S)  =  {G : Suff (G)  ⊆ S}  .
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Two structures can easily keep track by maintaining a slightly larger set of statistics, for 

example, suppose on the deliberating choice between two structures  G  and   G   ′  . To evaluate  G , 

in order to use a scoring function, it is needed to maintain the set  Suff (G)  . On the other hand, to 

evaluate   G   ′  , it is needed to maintain the set  Suff ( G   ′ )  . Now, supposing that  G  and   G   ′   differ only by 
one arc from   X  

i
    to   X  

j
   , note a large overlap between  Suff (G)   and  Suff ( G   ′ )  . Namely,   (G) ∪   Suff ( G   ′ )  = Suff 

(G)  ∪  { N  
 X  
j
  , Pa  

j
  
  }  , where    Pa  

j
    is the parent set of  Y  in   G   ′  . That argument can be useful when one consid-

ers the use of the greedy hill climbing search procedure, for example. Note that it is possible 
to evaluate the set of neighbors of  S  by maintaining a bounded set of sufficient statistics.

Generalizing this discussion, the incremental approach can be applied to any search proce-

dure that can define a search frontier. This frontier, denoted by  F , consists of all the networks 

it compares in the next iteration. The choice of  F  determines which sufficient statistics are 
maintained in memory. After a new instance is received (or, in general, after some number 

of new instances are received), the procedure uses the sufficient statistics in  S  to evaluate and 

select the best scoring network in the frontier  F  or in  Nets (S)  . A pseudo-code for incremental 

approach is described in [34].

When this approach is instantiated with the greedy hill climbing procedure, the frontier  F  

consists of all the neighbors of   B  
n
   . With bean search, on the other hand, the frontier  F  consists 

of all  j  candidates.

Many scoring functions can be used to evaluate the “fitness” of networks with respect to the 
training data and then to search for the best network. However, the incremental approach 

collects different sufficient statistics in different moments of the learning process. Thus, they 
need to compare Bayesian networks with respect to different data sets. This problem happens 
because, unlike [35, 34] may consider those structures that, previously, were considered as 

non-promising (the ones that were out of the frontier).

The two main scoring functions commonly used to learn Bayesian networks, Bayesian scores 

[37] and minimal description length (MDL) [38], are inappropriate for this problem. In order 

to overcome this problem, [34] proposed an averaged MDL measure   S  
MDL

  ′   (G | D)  =  S  
MDL

   (G | D)  / N , 

where  N  is the number of instances of the data set. This score measures the average encoding 

length per instance.

Analyzing both [35, 34] like hill-climbing searchers, they perform, for each node, operations 

to increase the score of the resulting structure, without introducing a cycle into the network 

and based on the assumption that they start from an arc-less network, as can be observed in 

their pseudo-code. Both stop when performing a single operation cannot increase the net-

work’s score. The difference between [35, 34] is the neighborhood composition. While [35] 

uses only the addition operator to construct neighbors, [34] uses the addition, reversion, and 

deletion of an arc.

3.4. Roure’s solution

The conversions of the batch learning approaches present in [35, 34] in continuous learning 

approaches paved the way for popular batch algorithms like the B, K2 [37] and HCMC [39] 

algorithms to be turned into incremental ones [31].
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In Ref. [40], two heuristics to change a batch hill-climbing search (HCS) into an incremental 
hill-climbing search algorithm based on combining of sufficient statistics with reduced search 
space have been proposed. In the batch version of HCS algorithm, a search on the space called 
neighborhood is performed to examine all possible local changes that can be made in order to 
maximize the scoring function.

Similar to the frontier presented in [34], a neighborhood of a model  B  consists of all models 

that can be build using one or more operators of a set of operators  OP =  {     "  Add  Edge   " ,      "   Delete Edge   " ,       

"   Reverse Edge   " }   and argument pairs A. Taking that into account, the sequence of operators and 

argument pairs added to obtain the final model   B  
f
    can be denoted by search path. Let   B  

0
    be an 

initial model, a final model obtained by a hill-climbing search algorithm can be described by    B  
f
   =  

op  
n
   (…  ( op  

1
  ,  A  

1
  ) , …) ,  A  

n
   )    , where the search path   O  

op
   =  { ( op  

1
  ,  A  

1
  ) , … ,  ( op  

n
  ,  A  

n
  ) }   was used to build   B  

f
   .

The heuristics presented in [40] are based on two main problems: when and which part to update, 

and how to calculate and store sufficient statistics. The first heuristic is called by traversal opera-

tors in correct order (TOCO). TOCO verifies the already learned model and its search path for 
new data. If the new data alter the search path, then it is worth to update an already learned 

model. The second heuristic is called by reduced search space (RSS). RSS identified when the 
current structure needs to be revised. At each step of the search path, it stores top  k  models in 

a set  B  having the score close to the best one. The set  B  reduces the search space by avoiding to 

explore those parts of the space where low-quality models were found during former search 
steps. A pseudo-code for incremental hill-climbing search algorithm is described in [40].

3.5. Lam and Bacchus’s solution

In [41], another continuous learning solution based on an extension of batch solution is pre-

sented. The batch solution used as base is presented in [42]; however, it will not be presented 

here because the new solution is not coupled to their batch algorithm. The proposed extension 
aims to perform a review of the BN structure incrementally as new data about a subset of 

variables were available.

This revision is done using the structure of the BN as prior probability under the implicit 

assumption that the existent network is already a fairly accurate model of the database. This 
assumption is a way to incorporate domain knowledge into the problem; however, the new 

refined network structure should be similar to the existing one, skewing the process.

The solution of [41] also proved, like [35] and based on the MDL measure, that if partial 
network structure of the whole structure gets, by changing its topology, better score to scoring 
function, then the whole network structure be improved if no cycles are introduced. Based on 

this, [41] developed an algorithm to update the BN by improving parts of it. This algorithm 

produces a new partial network structure based on new data set and the existing network 
using an extension of MDL. It then locally modifies the old structure comparing and changing 

correspond part according to new partial network.

The source data to algorithm consists of two components: the new data and the existent net-
work structure. Considering the MDL principle states, finding a partial network   G  

p
    is a must 

that minimizes the sum of the of the length of the encoding of: (i) the partial network   G  
p
   , (ii) the 
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new data given the network   G  
p
   , and (iii) the existent network given the network   G  

p
   . To calculate 

the encoding length of the first two items, there are guidelines in [41]. To calculate the length of 

the encoding of the third item, it is needed to compute the description of the complete existent 
network  G  given the network   G  

p
   , that is, to describe the differences between  G  and   G  

p
   . These 

differences are described by: (i) a listing of reversed arcs, (ii) the additional arcs of  G , and (iii) 

the missing arcs of  G .

A simple way to encode an arc is to describe the source node and the destination node.  2 log n  

bits are required to describe an arc, since is required  log n  to identify one, provided that exists  
n   nodes. Let  r ,  a , and  m  be, respectively, the number of reversed, additional, and missing arcs 

in  G  with respect   G  
p
   , the description length  G  given the network   G  

p
    is   (r + a + m)  2 log n .

In order to learn the local structure, the batch algorithm proposed by [42] or other algorithm 

using the scoring function for each node of the partial structure is presented by Eq. (3).

  D  L  
i
   =   |  Pa  

i
   |   + log n +  ∑ 

 X  i  ∈ Pa  i  

     I ( X  
i
  ;  X  

j
  )  +  ( r  i   +  a  

i
   +  m  

i
  )  2 log n   (3)

With the third term of the equation, [41] avoided using the sufficient statistics of the old data.

After the new partial structure is learned, the review process continues with the attempt to 
obtain a refined structure of lower total description length with the aid of the existent struc-

ture  G  and the partial structure   G  
p
   . The review problem now is reduced to choosing appropri-

ate subgraphs, denoted by the marked subgraph [41], for which we should perform parent 

substitution in order to achieve a refined structure of lowest total description length.

In an attempt to avoid creating cycles during each subgraph substitution, [41] uses best-first 
search to find the set of subgraph units that yields the best reduction in description length 
without generating any cycles. In addition, a list  S =  { S  

1
  , … ,  S  

n
  }   containing a ranking of all sub-

graphs in ascending order of the benefit gained.

3.6. Shi and Tan’s solution

In [43], an efficient hybrid incremental learning algorithm is proposed. All solutions presented 
so far are score-and-search–based solutions. This solution consists of a polynomial-time 

constraint-based technique and a hill-climbing search procedure. In this way, this solution 

provides a hybrid algorithm that offers considerable computational complexity savings and 
slightly better model accuracy.

The first fragment that composes the solution is based on a constraint-based technique. The 
purpose of this technique is to select candidate parent set for each variable on data. For each 

variable   X  
i
   , a candidate parents set   S  

 X  
i
  
    is set up containing all the other variables at first. If 

variable   X  
j
    was independent from   X  

i
    conditioned on some variables set  C  in previous learning 

procedures, the algorithm reperforms the conditional independent test and remove   X  
j
    from   S  

 X  
i
  
    

if the independence still holds.

After this, a heuristic procedure called HeuristicIND is proposed to reduce   S  
 X  
i
  
    further. This 

procedure tries to find out a variable set to separate   X  
i
    and   X  

j
    conditionally. Using the current 
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network structure, a tree-shaped undirected skeleton is then built up using [44]. The pseudo-

codes for this procedure and for the polynomial-time constraint-based technique and a hill-

climbing search procedure are described in [43].

3.7. Others continuous learning solutions

In [45], an improvement in the refinement process of [34] is presented. In this study, an incre-

mental method for learning Bayesian networks based on evolutionary computing, denoted 

by IEMA, is developed.

The solutions presented so far assume that a stationary stochastic process produces all knowl-

edge, that is, the ordering of the database is inconsequential. However, in many application 

domains of BNs, such as financial problems [46], the processes vary according to the time, 

the data are non-stationary or piecewise stationary distributed, which would reduce the 

adequacy of the solutions already mentioned. In [47], the assumption on stationary data is 

relaxed and an incremental learning Bayesian network based on non-stationary data domains 
is developed.

In [48], the streaming data prediction is addressed. A parallel and incremental solution for 

learning of BNs from massive, distributed, and dynamically changing data by extending the 
classical scoring and search algorithm and using MapReduce is presented.

Ref. [37] also presents an algorithm for stream and online data, more precisely, data that 

are privately and horizontally shared among two or more parties. This algorithm is based 

on an efficient version of sufficient statistics to learning privacy-preserving Bayesian 

networks.

In [49], an active and dynamic method of diagnosis of crop diseases has been proposed based 

on Bayesian networks and incremental learning. To incremental learning, a new algorithm 

for dynamically updating the Bayesian network-based diagnosis model over time also is 

proposed.

Ref. [50] transformed the local structure identification part of Max-min Hill-climbing (MMHC) 
algorithm into an incremental fashion by using heuristics and applied incremental hill-climbing  

to learn a set of candidates-parent-children for a target variable.

In [51], an incremental algorithm for BN structure learning that can deal with high dimen-

sional domains has been proposed.

In [52], the concept of influence degree is used to describe the influence of new data on the 
existing BN. A scoring-based algorithm for revising a BN iteratively by hill-climbing search 
for reversing, adding, or deleting edges has been proposed.

In [53], an approach to incremental structure optimize is presented. Based on a specific 
method, this approach decomposes the initial network into several subnets created from a 

junction tree developed using information about the joint probability of the network. With 
some adaptations, it can be used as a continuous learning algorithm.
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It is also important to point out that studies are found that denominate their algorithm as 

incremental, but these algorithms result in incremental learning of variables or small parts 

of the network as they are available and do not necessarily generate a new model, as it is 

constrained in the definition.

3.8. Comments and future research

Some comments comparing some solutions have already been made during your descrip-

tions. However, to facilitate the understanding of the methodologies used, some techniques 

and characteristics were compared below. A summary table among some solutions is pre-

sented in Table 1.

Some features of the solutions were discussed in Table 1. These features are important for the 

differentiation of the proposal of each algorithm. It is noteworthy that, among the outstand-

ing solutions, none proposes to use the domain specialist as a source of posterior knowledge, 

only as a source of prior knowledge. This knowledge can be increased over time and can be 

used to improve the built network. In addition, changes that are not able to be identified only 
with the use of data, such as adding factors and incomprehensibility of the model, can be 

identified.

When checking the stochastic process, it is noted that only [47] adopts a non-stationary 

domain, even considering the increasing diversity of domain. The other quoted solutions kept 

their focus on stationary domains, more common at the time of their developments. Still con-

sidering the domain, the effectiveness of the algorithms is rarely validated in a real domain, 
even if it is done with experiments that use data coming from real domains.

The local search is a standard present among the search procedures used. Despite their high 
computational complexity, methods were developed so that this was not a constraint and 

Solution Domain expert Type of structure 
changes

Scoring 

function
Search 
procedure

CI Stochastic 
process

[36] Prior 
knowledge

Adding edges Any Any local 

search

— Stationary

[34] Prior 
knowledge

Adding, deleting, 

or reversing edges

Averaged MDL Any local 

search

— Stationary

[40] Prior 
knowledge

Adding, deleting, 

or reversing edges

Any Hill-climbing 

search

— Stationary

[41] Prior 
knowledge

Adding, deleting, 

or reversing edges

Extension of 
MDL

Best-first 
search

— Stationary

[43] Prior 
knowledge

Adding, deleting, 

or reversing edges

— Hill-climbing 

search

InfoChi Stationary

[47] Prior 
knowledge

Adding, deleting, 

or reversing edges

— Any local 

search

— Non-stationary

Table 1. Summary table among some solutions.
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they then continued to be used. Only one solution made use of conditional independence (CI) 

tests. Ref. [43] developed a new technique that is used as the basis for CI tests. Considering 

scoring functions, some solutions leave open the use of any function. However, an adaptation 

to their applications is necessary in sufficient statistics used in some, for example, in [34]. On 

the other hand, some solutions use the MDL measure, but already adapted, either to reduce 
computational complexity or to achieve better results in different data set data. Other features 
can be addressed in future reviews, such as computational complexity, procedure focus, and 
the type of application domain, among others.

4. Conclusions

This chapter presents a survey based on a systematic literature review of continuous learning 

solutions of Bayesian network structures. It searches articles with an algorithm or approach 

considered as incremental according to the definitions presented in the text.

The solutions found can be classified as structural adaptation or refinement. The first group, 
in short, uses the new data set to maintain sufficient statistics that are used to store the exist-
ing knowledge about the domain. The second group uses this new set of data to perform a 

refinement in the network, based on previous knowledge coupled in the old structure.

Finally, the presence of the posterior knowledge of the domain specialist during the incre-

mental learning process and experiments in real domains for the validation of some solutions 
findings are in the future works.
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