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Abstract

This chapter is concerned with the development of collaborative control schemes for
mobile ground robots for area coverage purposes. The simplest scheme assumes point
omnidirectional robots with heterogeneous circular sensing patterns. Using information
from their spatial neighbors, each robot (agent) computes its cell relying on the power
diagram partitioning. If there is uncertainty in inferring the locations of these robots, the
Additively Weighted Guaranteed Voronoi scheme is employed resulting in a rather con-
servative performance. The aforementioned schemes are enhanced by using a Voronoi-
free coverage scheme that relies on the knowledge of any arbitrary sensing pattern
employed by the agents. Experimental results are offered to highlight the efficiency of the
suggested control laws.

Keywords: area coverage, multiagent systems, mobile robot systems, distributed control,
cooperative control

1. Introduction

The problem of area coverage is one that has been widely studied in the past decade and

consists of the deployment of a sensor-equipped mobile robot team. It is usually categorized as

either blanket or sweep coverage. In blanket or static coverage the goal of the robot team is a

final static configuration at which an objective function is maximized [1–3]. In sweep or

dynamic coverage on the other hand the mobile agents are tasked with maximizing a con-

stantly changing objective, resulting in potentially continuous motion of the agents [4–6].

Several aspects of the area coverage problem have been studied over the years, including the

effect of robot dynamics [7–9], communication constraints among agents [10–12], complex
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non-convex regions [13–15] or guaranteeing collision avoidance among the mobile robots

[16, 17]. A wide variety of methods has also been employed for multirobot area coverage such

as geometric optimization [18], optimal control [19] or event-triggered control [20]. Due to the

widespread adoption of unmanned aerial vehicles (UAVs), they have become a popular

platform for area coverage [21–23] since they are usually equipped with visual sensors [24–26].

In this chapter we focus on the blanket coverage problem for a convex region of interest. The

techniques outlined are based on geometric optimization principles and result in distributed

control schemes. In a distributed control law, each agent uses only local information from its

neighboring agents in order to compute its own control input so that a common objective

function is maximized. Distributed control laws are highly desirable in multiagent systems

because they are easily scalable to large robot teams and because they significantly reduce the

computational burden and communication requirements on the agents. Moreover, they are

more robust to failures and can adapt to unexpected changes without the need to recompute a

new solution as is the case with most centralized control schemes.

The chapter is organized as follows. Section 2.1 contains some mathematical preliminaries

which will be relevant throughout the chapter. In Section 2.2 the problem of blanket area

coverage in a convex region by a heterogeneous team of agents with omnidirectional sensors

is examined. In Section 2.3 the results are extended by taking into account the uncertain

positioning of the mobile robots. Section 2.4 presents a tessellation-free method for area

coverage by agents with anisotropic sensing patterns. Section 2.5 contains some experimental

results and it is followed by concluding remarks.

2. Area coverage using mobile agents

2.1. Mathematical preliminaries

Throughout the chapter we assume a compact, convex region Ω⊂R
2 to be covered by the

mobile agents and a space density function ϕ : Ω ! Rþ. The space density function is used to

encode any a priori information regarding the importance of points in Ω, for example the

likelihood that an event may occur at a given point. The boundary of a set S is denoted ∂S

and its interior is denoted Int Sð Þ. The set 1;…; nf g is denoted In. The indicator function 1S qð Þ

for a set S and the 2� 2 rotation matrix R θð Þ are respectively

1S qð Þ ¼
1 if q∈ S

0 if q ∉ S
, R θð Þ ¼

cosθ � sinθ

sinθ cosθ

" #

,

(

while the 2� 2 identity matrix is denoted I2.

2.2. Heterogeneous agents with omnidirectional sensing

One of the simplest variants of the area coverage problem is the case of a team of homogeneous

agents with circular sensing footprints. This was one of the first variants to be studied and
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there is extensive work on the topic [27, 28]. One generalization of this problem arises by

allowing each agent to have a different sensing performance, resulting in a heterogeneous

team [29–31]. In this chapter we will focus in the coverage of a convex region by a team of

unicycle robots equipped with heterogeneous omnidirectional sensors.

2.2.1. Problem statement

A team of n mobile ground agents is deployed inside the region of interest Ω. Each agent i∈ In
is approximated by a point mass located at qi ∈Ω which is governed by the following kine-

matic model

_qi ¼ ui, q∈Ω, ui ∈R
2 (1)

where ui is the velocity control input of the agent.

Each agent has been equipped with an omnidirectional sensor with limited sensing radius Ri,

which is allowed to differ among agents, resulting in a circular sensing pattern

Si qi;Ri

� �

¼ q∈Ω : ∥q� qi∥ ≤ Ri

� �

: (2)

Since the goal of the mobile agent team is the maximization of the covered area using their

sensors, while also taking into account the space density function, we define the coverage

objective as

H ¼

ð

Ω

max
i∈ In

1Si qð Þ ϕ qð Þ dq: (3)

The control objective is the design of a distributed control law for the mobile agents in order to

guarantee monotonic increase of the coverage objectiveH over time.

2.2.2. Space partitioning

The first step in designing a distributed control law is finding a method to distribute the

computation of the coverage objective H . Due to the heterogeneous sensing performance of

the agents, the Voronoi diagram is inadequate for the task as it does not take this information

into account. To that extent the power diagram will be used in order to assign a region of

responsibility to each agent. In contrast to the Voronoi diagram whose generators are points,

the generators of the power diagram are disks.

Given a planar region Ω and a set of disks S ¼ S1;…; Snf g with centers Q ¼ q1;…; qn
� �

and

radii R ¼ R1;…;Rnf g, the power diagram assigns a convex cell Pi ⊆ Ω to each disk Si

Pi Ω; Sð Þ ¼ q∈Ω : ∥q� qi∥
2 � Ri

2
≤ ∥q� qj∥

2 � Rj
2
; ∀j∈ In∖i

n o

, i∈ In:

The power diagram is a complete tessellation of Ω, thus it holds that
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Ω ¼ ⋃
i∈ In

Pi, Int Pið Þ ∩ Int Pj

� �

¼ ;, ∀i 6¼ j:

A notable property of power diagrams is their duality with power-weighted Delaunay graphs.

It has been shown that in order to compute the power cell Pi of point qi, only the power-

weighted Delaunay neighbors Ni of point qi need to be considered. The power-weighted

Delaunay neighbors of agent i have the property that

Ni ¼ j∈ In∖i : Pi ∩Pj 6¼ ;
� �

, (4)

By using the previous definition, the power diagram can be formulated as

Pi Ω;Qð Þ ¼ q∈Ω : ∥q� qi∥
2 � Ri

2
≤ ∥q� qj∥

2 � Rj
2
; ∀j∈Ni

n o

, i∈ In: (5)

Since it holds that Ni ⊆ In, each agent i requires information only from its power-weighted

Delaunay neighbors in order to compute its own power cell Pi, thus rendering the computation

of the power diagram distributed.

Remark 2.1.When the agents’ sensing radii are equal, i.e., Ri ¼ Rj, ∀i, j, the power diagram converges

to the Voronoi diagram. In that case the computation of the cell of agent i requires information only from

the Delaunay neighbors of agent i. Thus the power diagram can be also utilized in the case of agents

with homogeneous sensing performance.

For any two agents i and j with Si ∩ Sj 6¼ ; it holds that Si∖Pi ∈Pj ∩ Sj and Sj∖Pj ∈Pi ∩Si due to

the properties of the power diagram. Thus if a part of some agent i ’s sensing pattern is inside

the cell of some other agent j, then that part is guaranteed to be sensed by j. Consequently, we

define the r-limited power cell of agent i as PR
i ¼ Pi ∩Si. Thus by utilizing the power diagram,

the coverage objectiveH can be computed as follows

H ¼
X

i∈ In

ð

PR
i

ϕ qð Þ dq: (6)

SinceH can be written as a sum of integrals over r-limited power cells and since an agent can

compute its own power cell using information just from its power-weighted Delaunay neigh-

bors, the computation ofH is distributed.

2.2.3. Control law formulation

Having found a partitioning scheme that allows distributed computation of the coverage

objectiveH , what is left is the derivation of a distributed control law for its maximization.

Theorem 2.1. For a team of mobile ground agents with kinematics (1), sensing performance (2) and

using the power diagram partitioning (5), the control law

ui ¼ αi

ð

∂PR
i ∩ ∂Si

ni ϕ qð Þ dq, (7)
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where αi is a positive constant and ni is the outward unit normal vector on ∂PR
i , leading the agents to

trajectories that result in monotonic increase of the coverage objective (6).

Proof. We start by evaluating the time derivative of the objective using the agent dynamics (1)

we get ∂H

∂t ¼
X

i∈ In

∂H

∂qi

∂qi
∂t ¼

X

i∈ In

∂H

∂qi
_qi ¼

X

i∈ In

∂H

∂qi
ui: By selecting the control law ui ¼ αi

∂H

∂qi
,αi > 0,

we can guarantee monotonic increase of the coverage objective.

The partial derivative ∂H

∂qi
is evaluated as follows

∂H

∂qi
¼

∂

∂qi

X

i∈ In

ð

PR
i

ϕ qð Þ dq ¼
∂

∂qi

ð

PR
i

ϕ qð Þ dq þ
X

j 6¼i

∂

∂qi

ð

PR
j

ϕ qð Þ dq:

Since only the cells of power-weighted Delaunay neighbors of agent i are affected by its

movement and
∂ϕ qð Þ
∂qi

¼ 0, by using the Leibniz integral rule [32], the previous equation becomes

∂H

∂qi
¼

ð

∂PR
i

υii ni ϕ qð Þ dq þ
X

j∈Ni

ð

∂PR
j

υij nj ϕ qð Þ dq

where υij is the Jacobian matrix υij ¼
∂q
∂qi

, q∈ ∂PR
j and ni is the outward unit normal vector on

∂PR
i . The boundary ∂PR

i can be decomposed into three disjoint sets ∂PR
i ¼ ∂PR

i ∩ ∂Si
� �

∪

∂PR
i ∩ ∂Ω

� �

∪ ∪
j∈Ni

∂PR
i ∩ ∂P

R
j

� �

� 	

, where ∂PR
i ∩ ∂Si denotes part of the r-limited cell’s boundary

that is also part of the boundary of the agent’s sensing disk, ∂PR
i ∩ ∂Ω denotes the common

boundary between the r-limited cell and the region, while ∂PR
i ∩ ∂P

R
j denotes the common

boundary with the r-limited cell of some neighboring agent j. This decomposition is presented

in Figure 1where ∂PR
i ∩ ∂Si, ∂P

R
i ∩ ∂Ω and ∂PR

i ∩P
R
j are shown in solid green, red, and blue lines,

respectively.

Figure 1. Decomposition of ∂PR
i into disjoint sets and corresponding normal vectors.
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Since the region Ω is assumed to be static, it holds that υii ¼ 0, ∀q∈ ∂PR
i ∩ ∂Ω. In addition, since

q∈ ∂PR
i ∩ ∂Si are points on a circle with center qi, it holds that υ

i
i ¼ I2, ∀q∈ ∂PR

i ∩ ∂Si. Finally, P
R
j

is only affected by the movement of agent i at the common boundary ∂PR
i ∩ ∂P

R
j , resulting in the

expression

∂H

∂qi
¼

ð

∂PR
i ∩ ∂Si

ni ϕ qð Þ dq þ
X
j∈Ni

ð

∂PR
i ∩ ∂PR

j

υii ni ϕ qð Þ dq þ
X
j∈Ni

ð

∂PR
i ∩ ∂PR

j

υij nj ϕ qð Þ dq:

Since υii ¼ υij and ni ¼ �nj on the common boundary ∂PR
i ∩ ∂P

R
j , as shown in Figure 1, the two

sums in the previous expression cancel out and by multiplying it with αi we get (7). □

2.2.4. Simulation study I

An indicative simulation is presented in this section. The region Ω is chosen as the convex

polygon defined by the vertices with x and y coordinates

Ωx ¼ 0:5; 0:5; 0:45; 0:4;�0:46;�0:5;�0:48;�0:34; 0:05½ �,

Ωy ¼ 0:43; 0:2;�0:3;�0:5;�0:44;�0:1; 0:37; 0:47; 0:5½ �

respectively. The space density function was ϕ qð Þ ¼ 1, ∀q∈Ω. A team of eight agents with

heterogeneous sensing radii is deployed inside the region.

The initial and final agent configurations are shown in Figure 2a and c respectively where the

agent positions are marked by black dots, the boundaries of their sensing disks are shown as

dashed black lines, the boundaries of their cells are marked by solid black lines while their

interiors are filled in color. The agent trajectories are shown in Figure 2b with the initial

positions marked by dots and the final positions by circles. It is observed that the agents are

successfully deployed inside the region, increasing the covered area in the process. In order to

provide a more objective measure of the agents’ performance, two different metrics are used.

The first, denotedH r, is the value of the coverage objectiveH as a percentage of the objective

over the whole region which in the case where ϕ qð Þ ¼ 1,∀q∈Ω it is equal to the area ofΩ. This

Figure 2. Simulation study I: (a) initial configuration, (b) agent trajectories, (c) final configuration and (d) evolution of the

coverage objective over time.
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metric indicates to what extent the agents cover the region Ω, with high values of H r

corresponding to high coverage over Ω. The second metric, denoted H a, is the value of the

coverage objectiveH as a percentage of the agents’ maximum possible covered area which is

only meaningful in the case where ϕ qð Þ ¼ 1, ∀q∈Ω. This metric indicates to what extent the

agents’ sensors are utilized, with high values of H a indicating that the agents’ sensors are

utilized close to their full capabilities. Low values of H a simultaneously with high values of

H
r indicate an overabundance of agents given the size of the current region Ω. The two

metrics are more formally defined as

H
r ¼ 100

H
ð

Ω

ϕ qð Þdq
, H

a ¼ 100
H

X

i∈ In

ð

Si

dq
: (8)

Figure 2d showsH a in solid blue andH r in dashed red with their final values being 90.0 and

88.9% respectively, indicating that the final agent configuration is an efficient one.

2.3. Heterogeneous agents with omnidirectional sensing under positioning uncertainty

The inherent uncertainty in all localization systems’ measurements can often create unexpected

problems in algorithms designed with precise localization in mind. Consequently algorithms

robust to positioning errors have been sought for the area coverage problem [33, 34]. This section

presents an extension to the control law presented in [35] which allows for teams of agents with

heterogeneous sensing performance.

2.3.1. Agent model

The agents’ kinematic model is described by (1) and their sensing performance by (2). Due to

the localization systems’ inherent inaccuracy, we assume that qi is the agent’s position as

reported by the localization system, while ri is a known upper bound on the localization error.

Thus we define the positioning uncertainty region Ui as follows

Ui qi; ri
� �

¼ q∈R2
: ∥q� qi∥ ≤ ri

� �

, (9)

which is a circular disk that contains all possible positions of agent i given its reported position

qi and positioning uncertainty upper bound ri.

In order to take into account the agents’ positioning uncertainty, we define for each agent the

guaranteed sensed region S
g
i as

S
g
i qi; ri;Ri

� �

¼ ⋂
∀q∈Ui

Si q;Rið Þ, (10)

which is the region that is guaranteed to be sensed by agent i given all of its possible positions

within its positioning uncertainty region. Given the fact that both Si andUi are disks, the above

expression can be simplified into

S
g
i qi; ri;Ri

� �

¼ q∈R2
: ∥q� qi∥ ≤ R

g
i ¼ Ri � ri

� �

: (11)
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2.3.2. Space partitioning and problem statement

In order to take into account the agents’ positioning uncertainty as well as their heterogeneous

sensing capabilities, the Additively Weighted Guaranteed Voronoi (AWGV) diagram is

employed. The AWGV is an extension of the Guaranteed Voronoi (GV) diagram [36] that

incorporates additive weights.

Given a planar region Ω, a set of uncertain regions U ¼ U1;…;Unf g and a set of weights

Rg ¼ R
g
1;…;Rg

n

� �

, the AWGV diagram assigns a convex cell Gi ⊆ Ω to each region-weight

pair Ui;R
g
i

� �

as follows

Gi Ω;U;Rgð Þ ¼ q∈Ω : max
q∈Ui

∥q� qi∥� R
g
i ≤ min

q∈Uj

∥q� qj∥� R
g
j ; ∀j∈ In∖i


 �

, i∈ In:

Contrary to the Voronoi diagram, the AWGV diagram is not a complete tessellation of the region

Ω since a part ofΩ is left unassigned. This part is called the neutral region O and it holds that

Ω ¼ O ∪ ⋃
i∈ In

Gi: (12)

A notable property of AWGV diagrams is their duality with additively weighted Delaunay

graphs. It has been shown that in order to compute the AWGV cell Gi of the region-weight pair

Ui;R
g
i

� �

, only the additively weighted Delaunay neighbors Ni of Ui;R
g
i

� �

need to be consid-

ered. By using the previous definition, the Voronoi diagram can be formulated as

Gi Ω;U;Rgð Þ ¼ q∈Ω : max
q∈Ui

∥q� qi∥� R
g
i ≤ min

q∈Uj

∥q� qj∥� R
g
j ; ∀j∈Ni∖i


 �

, i∈ In: (13)

Since it holds that Ni ⊆ In, each agent i requires information only from its additively weighted

Delaunay neighbors in order to compute its own AWGV cell Gi, thus rendering the computa-

tion of the AWGV diagram distributed.

The previous definition of the AWGV can be written as Gi ¼ ⋂
j∈Ni

Hij, i∈ In, where

Hij ¼ q∈Ω : ∥q� qj∥� ∥q� qi∥ ≥ þ ri þ rj � R
g
i þ R

g
j

n o

. Thus the boundary ∂Hij is one branch

of a hyperbola with foci located at qi and qi and semi-major axis aij ¼
riþrj�R

g

i
þR

g

j

2 . Since the

quantity aij may be either positive or negative, ∂Hij may correspond to the ‘East’ or ‘West’ branch

of the hyperbola, which results in the region Hij being convex or non-convex respectively.

We define the r-limited AWGV cell of agent i as GR
i ¼ Gi ∩ S

g
i . We now define the coverage

objective as

H ¼
X

i∈ In

ð

GR
i

ϕ qð Þ dq, (14)
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which is the area of the region that is guaranteed to be closest to and at the same time sensed

by each agent. SinceH is a sum of integrals over r-limited AWGV cells and since an agent can

compute its own AWGV cell using information just from the agents in Ni, the computation of

H is distributed.

2.3.3. Control law formulation

Since the computation of the coverage objective H is distributed due to the AWGV

partitioning, what is left is the derivation of a distributed control law for its maximization.

Theorem 2.2. For a team of mobile ground agents with kinematics (1), sensing performance (2),

positioning uncertainty (9) and using the AWGV partitioning (13), the control scheme

ui ¼ αi

ð

∂GR
i ∩ ∂S

g

i

ni ϕ qð Þ dq þ αi

X

j∈Ni

ð

∂GR
i ∩ ∂Hij

μi
i ni ϕ qð Þ dq þ

ð

∂GR
j ∩ ∂Hji

μi
j nj ϕ qð Þ dq

2

6

6

4

3

7

7

5

(15)

where αi is a positive constant, ni the outward unit normal vector on ∂GR
i , leads the agent to trajectories

that result in monotonic increase of the coverage objective (14).

Proof. We start by evaluating the time derivative of the objective using the agent dynamics (1)

as in the proof of Theorem 2.1 and by selecting the control law ui ¼ αi
∂H

∂qi
,αi > 0, we can

guarantee monotonic increase of the coverage objective.

The partial derivative ∂H

∂qi
is evaluated as follows

∂H

∂qi
¼

∂

∂qi

X

i∈ In

ð

GR
i

ϕ qð Þ dq ¼
∂

∂qi

ð

GR
i

ϕ qð Þ dq þ
X

j 6¼i

∂

∂qi

ð

GR
j

ϕ qð Þ dq:

Since only the cells of additively weighted Delaunay neighbors of agent i are affected by its

movement and
∂ϕ qð Þ
∂qi

¼ 0, the previous equation becomes

∂H

∂qi
¼

ð

∂GR
i

μi
i ni ϕ qð Þ dq þ

X

j∈Ni

ð

∂GR
j

μi
j nj ϕ qð Þ dq

where μi
j is the Jacobian matrix

μi
j ¼

∂q

∂qi
, q∈ ∂GR

j
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and ni is the outward unit normal vector on ∂GR
i . The boundary ∂GR

i can be decomposed into

three disjoint sets as follows

∂GR
i ¼ ∂GR

i ∩ ∂S
g
i

� �

∪ ∂GR
i ∩ ∂Ω

� �

∪ ⋃
j∈Ni

∂GR
i ∩ ∂Hij

� �

" #

, (16)

where ∂GR
i ∩ ∂S

g
i denotes part of the r-limited cell’s boundary that is also part of the boundary

of the agent’s sensing disk, ∂GR
i ∩ ∂Ω denotes the common boundary between the r-limited cell

and the region, while ∂GR
i ∩ ∂Hij denotes parts of the boundary that consist of hyperbolic arcs

induced by some neighboring agent j. This decomposition is presented in Figure 3 where

∂GR
i ∩ ∂S

g
i , ∂G

R
i ∩ ∂Ω, ∂GR

i ∩ ∂Hij and ∂GR
j ∩ ∂Hji are shown in solid green, red, blue and purple

lines respectively.

Since the region Ω is assumed to be static, it holds that μi
i ¼ 0, ∀q∈ ∂GR

i ∩ ∂Ω. In addition, since

q∈ ∂GR
i ∩ ∂S

g
i are points on a circle with center qi, it holds that μ

i
i ¼ I2, ∀q∈ ∂GR

i ∩ ∂S
g
i . Finally, G

R
j

is only affected by the movement of agent i at the induced hyperbolic arc ∂GR
j ∩ ∂Hji and by

grouping the hyperbolic arcs in pairs and multiplying by αi we get (15). □

2.3.4. Constraining agents inside the region

When the control law (15) is used, there can be cases where the positioning uncertainty regions

of some agent does not remain entirely insideΩ, i.e. it is possible thatUi ∩Ω 6¼ Ui for some agent

i. This has the implication that the control law (15) may lead some agent i outside the region Ω,

given the fact that an agent may reside anywhere within its positioning uncertainty region Ui.

In order to avoid such a situation, a subset Ωs
i ⊆ Ω is used instead, instead of the region Ω.

This subset Ωs
i is in the general case different among agents due to their differing measures of

positioning uncertainty ri. This subset ofΩ is computed as the Minkowski difference ofΩwith

the disk U0
i rið Þ ¼ q∈Ω : ∥q∥ ≤ rif g which is Ωs

i ¼ q∈Ω : qþU0
i ⊆ Ω

� �

, i∈ In.

Figure 3. Decomposition of ∂GR
i into disjoint sets and corresponding normal vectors.
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By using this subset Ωs
i , constraining agents inside Ω is simpler, since this is equivalent to

constraining each agent’s reported position qi inside its respective subset region Ω
s
i . This is

achieved by stopping an agent if its reported position qi is located on the boundary of Ωs
i and

simultaneously its current control input leads the agent toward the exterior of Ωs
i . Thus the

control law being implemented is

~ui ¼
0 if qi ∈ ∂Ω

s
i ∧ qi þ εui ∉ Ω

s
i

ui otherwise




(17)

where ε is an infinitesimally small positive constant.

2.3.5. Simulation study II

An indicative simulation is presented in this section. This simulation is identical to the one

presented in Section 2.2.4 with the only difference being the addition of positioning uncer-

tainty to the agents.

The initial and final agent configurations are shown in Figure 4a and c respectively where the

agent positioning uncertainty regions are shown as black circles, the boundaries of their sensing

disks are shown as dashed black lines, the boundaries of their cells are marked by solid black

lines while their interiors are filled in color. The agent trajectories are shown in Figure 4b with

the initial positions marked by dots and the final positions by circles. It is observed that the

agents successfully deploy inside the region, increasing the covered area in the process. In order

to provide a more objective measure of the agents’ performance, the two metrics described in

Section 2.2.4 are used which in the case of uncertainty positioning are more formally defined as

H
r ¼ 100

H
ð

Ω

ϕ qð Þdq
, H

a ¼ 100
H

X

i∈ In

ð

S
g

i

dq
:

Figure 4d showsH a in solid blue andH r in dashed red with their final values being 94.0 and

70.0% respectively. In this simulation we observe that althoughH a reaches a high value, this is

Figure 4. Simulation study II: (a) initial configuration, (b) agent trajectories, (c) final configuration and (d) evolution of the

coverage objective over time.
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not the case with H
r. The first reason for this result is the fact that the computation of H is

based on the agents’ guaranteed sensing patterns S
g
i , which by definition are lower in area than

their respective sensing patterns Si. Moreover, due to the definition of H being conservative,

only the area of the r-limited cells GR
i counts toward the value of H , thus parts of the neutral

region O that are covered by the agents do not contribute to H . Consequently, in the case of

the AWGV partitioning (13), coverage objective (14) and control law (15), it is expected for H r

to achieve a lower value.

2.4. Heterogeneous agents with anisotropic sensing

Although the omnidirectional sensors examined in the previous two sections can significantly

simplify the problem formulation and solution, they are usually inadequate for precise model-

ing of real-life sensors. For this reason there have been several differing approaches to area

coverage using agents with anisotropic sensing patterns [37–40]. In this section we will follow

the methodology presented in [41] which is a distributed optimization technique resulting in a

gradient-based control law.

2.4.1. Problem statement

A team of n mobile ground agents is deployed inside the region of interest Ω. Given the

anisotropic nature of the sensing patterns examined in this section, the mobile agents should

be able to change their orientation as well as move around inside the region of interest. A

realistic model for a mobile agent with the ability to rotate is that of the differential drive robot

whose kinematic model is

_q i ¼
cosθi

sinθi

" #

ri

2
Ω

R
i þΩ

L
i

� �

, qi ∈Ω,

_θ i ¼
ri

li
Ω

R
i �Ω

L
i

� �

, θi ∈ �π; π½ �,

where Ω
R
i , Ω

L
i are the rotational velocities of the right and left wheels, respectively, ri is the

wheel radius, and li is the length of the wheel axis. In this chapter however a simpler single

integrator kinematic model is used for the agents. Each agent i∈ In is approximated by a point

mass located at qi ∈Ωwith orientation θi which is governed by the kinematic model described by

_qi ¼ ui, q∈Ω, ui ∈R
2, (18)

_θi ¼ ωi, θ,ωi ∈R, (19)

where ωi is the rotational velocity control input of the agent. This single integrator model

simplifies the derivation of the control law, although the control law can be extended for

differential drive robots as well.

We define the base sensing pattern Sbi of agent i as the region sensed by the agent when

qi ¼ 0; 0½ �T and θi ¼ 0. The only requirements with regards to the base sensing pattern are
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that qi ∈ Int Sbi
� �

and that its boundary ∂Sbi can bedescribed bya set of parametric equations. Let the

radius Ri of a base sensing pattern be defined as Ri S
b
i

� �

¼ max
q∈ ∂Sbi

∥q∥. This is themaximumdistance

from the origin, which is also the base sensing pattern’s center of rotation, to its boundary.

The sensing pattern of agent i as a function of its position qi and orientation θi, can be

computed by rotating around the origin and translating its base sensing pattern as follows

Si qi;θi

� �

¼ qi þ R θið Þ Sbi : (20)

By allowing a different base sensing pattern for each agent, teams of heterogeneous agents can

be effectively utilized.

Since the goal of the mobile agent team is the maximization of the covered area using their

sensors, while also taking into account the space density function, we define the coverage

objective as in (3). The control objective is the design of a distributed control law for the mobile

agents in order to guarantee monotonic increase of the coverage objectiveH over time.

2.4.2. Space partitioning

The first step in designing a distributed control law is finding a method to distribute the

computation of the coverage objectiveH . Due to the agents’ anisotropic sensing patterns, the

partitioning scheme employed in this case is highly different from Voronoi-like partitioning

schemes. Instead of partitioning the whole region Ω based on the agents’ positions, only the

sensed region ∪
i∈ In

Si is partitioned based on the agents’ sensing patterns. Each agent is assigned

the part of Ω that only itself is able to sense, with parts being sensed by multiple or no agents

being left unassigned.

Given a planar regionΩ and a set of sensing patterns S ¼ S1;…; Snf g, each agent i is assigned a

cell W i as follows

W i Ω; Sð Þ ¼ Ω ∩Sið Þ∖ ⋃
j∈ In∖i

Sj, i∈ In:

The part of Ω sensed by multiple agents is left unassigned but still contributes toward the

coverage objectiveH . This part is called the common region and is computed as follows

Wc Ω; Sð Þ ¼ Ω ∩ ⋃
i∈ In

Si∖W ið Þ: (21)

Having defined the cells and the common region, it holds that ⋃
i∈ In

Si ¼ ⋃
i∈ In

W i ∪Wc ⊆ Ω .

We can define the neighbors of agent i as those agents that affect the computation of its cell.

Since the computation of the cells relies entirely on the agents’ sensing patterns, the neighbors

can be defined as

Ni ¼ j∈ In∖i : Si ∩ Sj 6¼ ;
� �

: (22)
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Moreover, if the maximum base sensing radius Rmax ¼ max
i∈ In

Ri is known by all agents, and if

each agent is able to communicate with all others within a radius

Ci ¼ Ri þ Rmax, (23)

then it is guaranteed it will be able to communicate with all of its neighbors Ni. By using the

neighbor definition, the proposed partitioning scheme can be computed in a distributed

manner as follows

W i Ω; Sð Þ ¼ Ω ∩ Sið Þ∖ ⋃
j∈Ni∖i

Sj, i∈ In: (24)

Remark 2.2. The partitioning scheme (24) may result in the cell of some agent being empty or

consisting of multiple disjoint regions. It should be noted however that such cases are handled success-

fully by the control law presented in Section 2.4.3.

Thus by utilizing the aforementioned partitioning scheme, the coverage objective H can be

computed as follows

ℋ ¼
X

i∈ In

ð

W i

ϕ qð Þ dqþ

ð

Wc

ϕ qð Þ dq: (25)

Since H can be written as a sum of integrals over the assigned cells and since an agent can

compute its own cell using information just from its neighbors, the computation of H is

distributed.

2.4.3. Control law formulation

Having found a partitioning scheme that allows distributed computation of the coverage

objectiveH , what is left is the derivation of a distributed control law for its maximization.

Theorem 2.3. For a team of mobile ground agents with kinematics (18, 19), sensing performance (20)

and using the partitioning (24), the control scheme

ui ¼ αi,u

ð

∂W i ∩ ∂Si

ni ϕ qð Þ dq, (26)

ωi ¼ αi,ω

ð

∂W i ∩ ∂Si

ni R
π

2

� �

q� qi
� �

ϕ qð Þ dq, (27)

where αi,u,αi,ω are positive constants and ni is the outward unit normal vector on ∂W i, leading the

agent to trajectories that result in monotonic increase of the coverage objective (25).

Proof. We start by evaluating the time derivative of the objective using the chain rule and the

agent dynamics (18, 19)
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∂H

∂t
¼

X
i∈ In

∂H

∂qi

∂qi
∂t

þ
∂H

∂θi

∂θi

∂t
¼

X
i∈ In

∂H

∂qi
_q i þ

∂H

∂θi

_θi ¼
X
i∈ In

∂H

∂qi
ui þ

∂H

∂θi
ωi:

By selecting the control law

ui ¼ αi,u
∂H

∂qi
, ωi ¼ αi,ω

∂H

∂θi
, αi,u,αi,ω > 0,

we can guarantee monotonic increase of the coverage objective.

The partial derivative ∂H

∂qi
is evaluated as follows

∂H

∂qi
¼

∂

∂qi

ð

W i

ϕ qð Þ dq þ
X
j 6¼i

∂

∂qi

ð

W j

ϕ qð Þ dq þ
∂

∂qi

ð

Wc

ϕ qð Þ dq:

Due to the partitioning scheme (24) only the common region Wc is affected by the movement

of agent i and since
∂ϕ qð Þ
∂qi

¼ 0, by using the Leibniz integral rule [32], the previous equation

becomes

∂H

∂qi
¼

ð

∂W i

υii ni ϕ qð Þ dq þ

ð

∂Wc

υic ncϕ qð Þ dq

where υij is the Jacobian matrix

υij ¼
∂q

∂qi
, q∈ ∂W j

and ni is the outward unit normal vector on ∂W i. The boundary ∂W i can be decomposed into

three disjoint sets as follows

∂W i ¼ ∂W i ∩ ∂Sið Þ ∪ ∂W i ∩ ∂Ωð Þ ∪ ∂W i ∩ ∂Wcð Þ, (28)

where ∂W i ∩ ∂Si denotes part of the cell’s boundary that is also part of the boundary of the

agent’s sensing disk, ∂W i ∩ ∂Ω denotes the common boundary between the cell and the region,

while ∂W i ∩ ∂Wc denotes the common boundary of the cell and the common region. This

decomposition is presented in Figure 5 where ∂W i ∩ ∂Si, ∂W i ∩ ∂Ω and ∂W i ∩ ∂Wc are shown

in solid green, red and blue lines respectively.

Since the region Ω is assumed to be static, it holds that υii ¼ 0, ∀q∈ ∂W i ∩ ∂Ω. In addition, from

Eq. (20) we get that υii ¼ I2, ∀q∈ ∂W i ∩ ∂Si. Finally, on all the common boundaries

∂W j ∩ ∂Wc, j∈ In it holds that υ
j
i ¼ υci and nj ¼ �nc, as shown in Figure 5, leaving only an

integral over ∂W i ∩ ∂Si. By multiplying with αi,u we get (26). The same procedure is used for

the derivation of the rotational part of the control law (27). □
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2.4.4. Simulation study III

An indicative simulation is presented in this section. The regionΩ, the space density function ϕ qð Þ

and the agent initial positions are the same as in the simulation presented in Section 2.2.4. In this

simulation however the agents are equipped with heterogeneous sensors with elliptical sensing

patterns.

The initial and final agent configurations are shown in Figure 6a and c respectively where the

agent positions are marked by black dots, the agent orientations are marked by black arrows, the

boundaries of their sensing disks are shown as dashed black lines, the boundaries of their cells

are marked by solid black lines while their interiors are filled in color. The agent trajectories are

shown in Figure 6bwith the initial positions marked by dots and the final positions by circles. It

is observed that the agents successfully deploy inside the region, increasing the covered area in

the process. In order to provide a more objective measure of the agents’ performance, the two

metrics defined in Eq. (8) are used. Figure 6d showsH a in solid blue andH r in dashed red with

their final values being 91.3 and 93.5% respectively. This indicates that the final configuration

results in both high coverage ofΩ and efficient use of the agents sensors.

2.4.5. Simulation study IV

This simulation study serves to highlight the need for taking into account the agents’ aniso-

tropic sensing patterns instead of approximating them with circular ones. To that end,

Figure 5. Decomposition of ∂W i into disjoint sets and corresponding normal vectors.

Figure 6. Simulation study III: (a) initial configuration, (b) agent trajectories, (c) final configuration and (d) evolution of

the coverage objective over time.
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Simulation Study III was repeated by approximating the agents’ elliptical sensing patterns

with their maximal inscribed circles. The initial agent configuration, agent trajectories and final

agent configuration are shown in Figure 7a, b and c respectively. It is observed that the agent’s

performance is decreased significantly when using this underapproximation of their sensing

patterns. In order to provide a more objective measure of the agents’ performance, the two

metrics defined in Eq. (8) are used. Figure 7d shows H a in solid blue and H r in dashed red

with their final values being 100% and 35.2% respectively, indicating a 62.4% decrease in the

coverage of Ω compared to Simulation Study III.

2.5. Experimental implementation

An experimental implementation of a simplified version of one of the previously examined

control schemes is briefly presented in this section. This experimental study first appeared and

is presented in greater detail in [42]. The experiment consisted of three differential-drive

robots, a visual pose tracking system using fiducial markers and a computer communicating

with the robots and pose tracking system via a WiFi router. The methodology presented in

Section 2.3 was used in order to take into account the positioning uncertainty of the pose

tracking system. The experimental results are compared with a simulation using the same

initial conditions.

2.5.1. Experimental setup

The robots used in the experiment were the differential-drive AmigoBots by Omron Adept

MobileRobots. The robots are 33 cm� 28 cm� 15 cm in size, weigh 3:6 kg and are able to carry a

payload of up to 1 kg. Their maximum linear and rotational velocities are vmax
¼ 1 m=s and

ω
max

¼ 100o=s. Although these robots are equipped with encoders measuring 39; 000 ticks=

revolution which can be used for estimating their pose, an external pose tracking system was

used instead due to the encoders’ drifting error. Since the AmigoBots lack any omnidirectional

sensors, for the sake of the control law it was assumed that they were equipped with sensors

with a common sensing radius of R ¼ 0:3 m.

The external pose tracking system consists of a USB camera and an ODROID-XU4 computer.

Pose tracking is achieved by attaching a fiducial marker on top of each robot and using the

Figure 7. Simulation study IV: (a) initial configuration, (b) agent trajectories, (c) final configuration and (d) evolution of

the coverage objective over time.
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ArUco [43] library to estimate the pose of these markers. As is the case with all positioning

systems, ArUco has a certain degree of uncertainty in its pose estimations. In order to get an

estimate of this uncertainty, a fiducial marked was placed on the vertices and the centroid of

the region Ω resulting in a maximum error of 0:032 m, which was used as the measure of

positioning uncertainty r for all robots.

The control scheme was implemented as a loop in the main computer with an iteration period

of Ts ¼ 0:1 seconds. At each iteration, a simplified version of the control law (15) is computed

for each agent, and from that, a target point qti is derived for each agent. Then a feedback

controller is used in order to lead each robot to each respective target point. Once all robots are

within a predefined distance dt ¼ 0:02 m of their respective target points, new target points are

computed from the robots’ current positions. The feedback control law used for each robot was

vi ¼ min
∥qti � qi∥

Ts
; vmax

� 

cos dθið Þ, ωi ¼ min
∣dθi∣

Ts
;ω

max

� 

sin dθið Þ,

where qi and θi are the robot’s current position and orientation, vi and ωi the robots linear and

rotational velocity control inputs respectively and dθi ¼ ∡ qti � qi
� �

� θi.

2.5.2. Experimental results

The robots’ initial configuration, which is common between the experiment and simulation is

shown in Figure 8a. The final configurations of the experiment and the simulation are shown

in Figure 8c and d, respectively. The boundaries of the agents’ positioning uncertainty regions

are shown as black circles, the boundaries of their sensing disks are shown in dashed black line

and the boundaries of their cells are marked by solid black lines while their interiors are filled

in color. Some photographs of the robots’ initial and final configurations are presented in

Figure 9a and b respectively where the ArUco fiducial markers can be seen. In both the

experiment and the simulation it is observed from the robots’ final configurations that their

guaranteed sensed regions are completely contained within their respective AWGV cells, i.e.

S
g
i ⊂Gi, ∀i∈ In, which is a globally optimal configuration. The robots’ trajectories are depicted

in Figure 8b in blue for the experiment and in red for the simulation, with the initial and final

positions marked by dots and circles respectively. The simulation trajectories are smooth but

Figure 8. Experiment: (a) initial configuration, (b) experimental (blue) and simulated (red) robot trajectories, (c) experi-

ment final configuration and (d) simulation final configuration.
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the experimental trajectories have many turns due to the robots moving to target points. The

robots’ final positions have an error of 9:27% the diameter of Ω between the experiment and

the simulation. This large error is attributed to the difference between the implemented control

laws as well as the existence of multiple global optima for this particular coverage setup.

Figure shows the evolution of the metric H a over time for the experiment in blue and the

simulation in red where it is seen that it increased from 83:70 to 98:95% in the experiment.

Although in the case of the experiment its increase was not monotonic, this is to be expected as

the implemented control law differed from the theoretical one. The lower convergence speed is

also attributed to this difference as well as the constraints on the robots’ translational and

rotational velocities.

3. Conclusions and future work

This chapter presented an overview of past and current work on area coverage problems. A

strong theoretical background has been provided, along with indicative simulations results

and an experimental implementation of one of the presented control schemes. The problem of

multiagent area coverage still offers possibilities for original research. One possible extension

would be the usage of more realistic sensor models, such as visual sensors. The usage of visual

sensors can result in the incorporation of coverage quality metrics in the objective or in variable

sensing patterns in the case of pan-tilt-zoom cameras. Another aspect of multirobot area

coverage problem that has not been studied thoroughly yet is the development of communi-

cation systems and algorithms that allow the agents to exchange information in a distributed

manner. Finally, implementations in actual robotic systems in order to solve practical problems

are not yet common.
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