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Abstract

A new scheme based on perturbation method is presented to solve the problem of solar/
infrared radiative transfer (SRT/IRT) in a scattering medium, in which the inherent optical
properties (IOPs) are vertically inhomogeneous. The Eddington approximation for SRT and
the two-stream approximation for IRT are used as the zeroth-order solution, and multiple-
scattering effect of inhomogeneous IOPs is included in the first-order solution. Observations
show that the stratocumulus clouds are vertically inhomogeneous, and the accuracy of SRT/
IRT for stratocumulus clouds by different solutions is evaluated. In the spectral band of
0.25–0.69 μm, the relative error in absorption with inhomogeneous SRT solution is 1.4% at
most, but with the homogeneous SRT solution, it can be up to 7.4%. In the spectral band of
5–8 μm, the maximum relative error of downward emissivity can reach �11% for the
homogeneous IRT solution but only �2% for the inhomogeneous IRT solution.

Keywords: perturbation method, radiative transfer, vertical inhomogeneity

1. Introduction

Solving the radiative transfer equation (RTE) is a key issue in radiation scheme for climate

model and remote sensing. In most numerical radiative transfer algorithms, the atmosphere is

divided into many homogeneous layers. The inherent optical properties (IOPs) are then fixed

within each layer and the variations of IOPs inside each layer are ignored, effectively regarding

each layer as internally homogeneous. The standard solar/infrared radiative transfer (SRT/IRT)
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Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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solutions are based on this assumption of internal homogeneity [1–4], which cannot resolve

within-layer vertical inhomogeneity.

It has been well established by observation that cumulus and stratocumulus clouds (hereinaf-

ter, collectively referred to as cumulus clouds) are inhomogeneous, both horizontally and

vertically [5–9]. Inside a cumulus cloud, the liquid water content (LWC) and the cloud droplet

size distribution vary with height, and so the IOPs of cloud droplets depend on vertical height.

How to deal with vertical internal inhomogeneity in SRT/IRTmodels is an interesting topic for

researchers. Li developed a Monte Carlo cloud model that can be used to investigate photon

transport in inhomogeneous clouds by considering an internal variation of the optical proper-

ties [10]. Their model showed that when overcast clouds become broken clouds, the difference

in reflectance at large solar zenith angles between vertically inhomogeneous clouds and their

plane-parallel counterparts can be as much as 10%.

However, the Monte Carlo method is very expensive in computing and not applicable to

climate models or remote sensing [11]. The albedo of inhomogeneous mixed-phase clouds at

visible wavelengths could be obtained by using a Monte Carlo method to compare such clouds

with plane-parallel homogeneous clouds [12].

In principle, the vertical inhomogeneity problem of the SRT/IRT process can be solved by

increasing the number of layers of the climate model. However, it is time-consuming to

increase the vertical resolution of a climate model. Typically, there are only 30–100 layers in a

climate model [13], which is not high enough to resolve the cloud vertical inhomogeneity. To

completely address the problem of vertical inhomogeneity by using a limited number of layers

in a climate model, the standard SRT method must be extended to deal with the vertical

inhomogeneity inside each model layer. The primary purpose of this study is to introduce a

new inhomogeneous SRT/IRT solution presented by Zhang and Shi. This solution follows a

perturbation method: the zeroth-order solution is the standard Eddington approximation for

SRT and two-stream approximation for IRT, with a first-order perturbation to account for the

inhomogeneity effect. In Section 2, the basic theory of SRT/IRT is introduced, and the new

inhomogeneous SRT/IRT solution is presented. In Section 3, the inhomogeneous SRT/IRT

solution is applied to cloud as realistic examples to demonstrate the practicality of this new

method. A summary is given in Section 4.

2. SRT/IRT solution for an inhomogeneous layer

2.1. SRT solution

The azimuthally averaged solar radiative transfer equation [1–4, 10–12] is

μ
dIS τ;μ

� �

dτ
¼ IS τ;μ

� �

�
ω τð Þ

2

ð1

�1

IS τ;μ
� �

P τ;μ;μ
0

� �

dμ
0 �

ω τð Þ

4π
F0P τ;μ;�μ0

� �

e
� τ

μ0 (1)

where μ is the cosine of the zenith angle (μ > 0 and μ < 0 refer to upward and downward

radiation, respectively), P τ;μ;μ0
� �

is the scattering phase function, τ is the optical depth

Perturbation Methods with Applications in Science and Engineering142



(τ ¼ 0 and τ ¼ τ0 refer to the top and bottom of the medium, respectively), ω τð Þ is the

single-scattering albedo, and F0 is the incoming solar flux. For the Eddington approxima-

tion, P τ;μ;μ0
� �

¼ 1þ 3g τð Þμμ0 (�1 < μ <1) and g τð Þ are the asymmetry factors. For the

scattering atmosphere, the irradiance fluxes in the upward and downward directions can

be written as

F�S τð Þ ¼ 2π

ð�1

0

IS τ;μ
� �

μdμ (2)

To simulate a realistic medium such as cloud or snow, we consider ω τð Þ and g τð Þ to vary with

τ, and we use exponential expressions here to simplify the process. The single-scattering

albedo and asymmetry factor are written as

ω τð Þ ¼ bω þ εω e�a1τ � e�a1τ0=2
� �

(3a)

g τð Þ ¼ bg þ εg e�a2τ � e�a2τ0=2
� �

(3b)

where τ0 is the optical depth of the layer, bω is the single-scattering albedo at τ0=2, and bg is the

asymmetry factor at the same place. Both εg and εω are small parameters that are far less than bg
and bω, respectively, in a realistic medium.

According to the Eddington approximation, the radiative intensity IS τ;μ
� �

can be written as

IS τ;μ
� �

¼ IS0 τð Þ þ IS1 τð Þμ (4)

Using Eqs. (1), (2), and (4), we obtain

dFþS τð Þ

dτ
¼ γ1 τð ÞFþS τð Þ � γ2 τð ÞF�S τð Þ � γ3 τð Þω τð ÞF0e

� τ

μ0 (5a)

dF�S τð Þ

dτ
¼ γ2 τð ÞFþS τð Þ � γ1 τð ÞF�S τð Þ þ 1� γ3 τð Þ

� �
ω τð ÞF0e

� τ

μ0 (5b)

F�S 0ð Þ ¼ 0, FþS τ0ð Þ ¼ RdifF
�
S τ0ð Þ þ Rdirμ0F0e

�
τ0
μ0 (5c)

where γ1 τð Þ ¼ 1
4 7� 4þ 3g τð Þ½ �ω τð Þf g, γ2 τð Þ ¼ �1

4 1� 4� 3g τð Þ½ �ω τð Þf g, and γ3 τð Þ ¼ 1
4 2� 3g τð Þμ0

� �
;

τ0 is the optical depth of the single layer; and Rdif (Rdir) is the diffuse (resp., direct) reflection from

the layer below or the diffuse (direct) surface albedo. Substituting γ1 τð Þ, γ2 τð Þ, and γ3 τð Þ into

Eq. (3) and ignoring the small second-order parameters εω
2, εg

2, and εωεg, we get

γ1 τð Þ ¼ γ
0
1 þ γ

1
1εω e�a1τ � e�a1τ0=2

� �
þ γ

2
1εg e�a2τ � e�a2τ0=2

� �
(6a)

γ2 τð Þ ¼ γ
0
2 þ γ

1
2εω e�a1τ � e�a1τ0=2

� �
þ γ

2
2εg e�a2τ � e�a2τ0=2

� �
(6b)

γ3 τð Þ ¼ γ
0
3 þ γ

2
3εg e�a2τ � e�a2τ0=2

� �
(6c)
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where γ0
1 ¼

1
4 7� 4þ 3bgð Þbω½ �, γ0

2 ¼
�1
4 1� 4� 3bgð Þbω½ �, γ0

3 ¼
1
4 2� 3bgμ0

� �
, γ1

1 ¼
�1
4 4þ 3bgð Þ,

γ2
1 ¼ � 3

4
bω, γ1

2 ¼
1
4 4� 3bgð Þ, γ2

2 ¼ � 3
4
bω, and γ2

3 ¼ � 3
4μ0.

By perturbation theory [14], the corresponding flux can also be expanded by using the pertur-

bation coefficients εω and εg:

FþS ¼ FþS0 þ εωF
þ
S1 þ εgF

þ
S2 (7a)

F�S ¼ F�S0 þ εωF
�
S1 þ εgF

�
S2 (7b)

Substituting Eqs. (6) and (7) into Eq. (5) yields

dFþS
dτ

¼ γ
0
1 þ γ

1
1εω e�a1τ � e�a1τ0=2

� �
þ γ

2
1εg e�a2τ � e�a2τ0=2

� �h i
FþS0 þ εωF

þ
S1 þ εgF

þ
S2

� �

� γ0
2 þ γ1

2εω e�a1τ � e�a1τ0=2
� �

þ γ2
2εg e�a2τ � e�a2τ0=2

� �� �
F�S0 þ εωF

�
S1 þ εgF

�
S2

� �

� bωγ0
3 þ γ0

3εω e�a1τ � e�a1τ0=2
� �

þ bωγ2
3εg e�a2τ � e�a2τ0=2

� �� �
F0e

� τ

μ0

(8a)

dF�S
dτ

¼ γ
0
2 þ γ

1
2εω e�a1τ � e�a1τ0=2

� �
þ γ

2
2εg e�a2τ � e�a2τ0=2

� �h i
FþS0 þ εωF

þ
S1 þ εgF

þ
S2

� �

� γ0
1 þ γ1

1εω e�a1τ � e�a1τ0=2
� �

þ γ2
1εg e�a2τ � e�a2τ0=2

� �� �
F�S0 þ εωF

�
S1 þ εgF

�
S2

� �

þ bωγ0
4 þ γ0

4εω e�a1τ � e�a1τ0=2
� �

� bωγ2
3εg e�a2τ � e�a2τ0=2

� �� �
F0e

� τ

μ0

(8b)

where γ0
4 ¼ 1� γ0

3. And, Eq. (8) can be rewritten as separate equations for F�S0, F
�
S1, and F�S2. We

obtain the following equations for the scattered flux F�S0:

dFþS0
dτ

¼ γ
0
1F

þ
S0 � γ

0
2F

�
S0 � γ

0
3bωF0e

� τ

μ0 (9a)

dF�S0
dτ

¼ γ
0
2F

þ
S0 � γ

0
1F

�
S0 þ γ

0
4bωF0e

� τ

μ0 (9b)

F�S0 0ð Þ ¼ 0, FþS0 τ0ð Þ ¼ RdifF
�
S0 τ0ð Þ þ Rdirμ0F0e

�
τ0
μ0 (9c)

Eq. (9) is the standard SRT equation for a homogeneous layer [15] and has the following

solution:

FþS0 ¼ K1e
kτ þ ΓK2e

�kτ þ G1e
� τ

μ0 (10a)

F�S0 ¼ ΓK1e
kτ þ K2e

�kτ þ G2e
� τ

μ0 (10b)

where K1 ¼
Γ�Rdifð ÞΓG2e

�kτ0� G1�RdirG2�Rdirμ0F0ð Þe�
τ0
μ0

1�Rdif Γð Þekτ0� Γ�Rdifð ÞΓe�kτ0
, K2 ¼ �ΓK1 � G2, G1 ¼ γ0

3
1
μ0
� γ0

1

� �
� γ0

2γ
0
4

h i

μ0
2bωF0

1�μ0
2k2
, G2 ¼ � γ0

4
1
μ0
þ γ0

1

� �
þ γ0

2γ
0
3

h i
μ0

2bωF0

1�μ0
2k2
, Γ ¼ 1� 2k

γ0
1
þγ0

2
þk
, and k2 ¼ γ0

1 þ γ0
2

� �
γ0
1 � γ0

2

� �
. And,

the equations for the perturbation terms F�Si (i = 1, 2) are
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dFþSi
dτ

¼ γ0
1F

þ
Si � γ0

2F
�
Si þ e�aiτ � e�aiτ0=2

� �
γi
1F

þ
S0 � γi

2F
�
S0

� �
� γi�1

3 F0 e�aiτ � e�aiτ0=2
� �

e
� τ

μ0 (11a)

dF�Si
dτ

¼ γ0
2F

þ
Si � γ0

1F
�
Si þ e�aiτ � e�aiτ0=2

� �
γi
2F

þ
S0 � γi

1F
�
S0

� �
� γi�1

4 F0 e�aiτ � e�aiτ0=2
� �

e
� τ

μ0 (11b)

F�Si 0ð Þ ¼ 0, FþSi τ0ð Þ ¼ Rdif F
�
Si τ0ð Þ (11c)

where γ1
3 ¼ �γ1

4 ¼ bωγ2
3. Letting Mi ¼ FþSi þ F�Si and Ni ¼ FþSi � F�Si, Eq. (11a) and (11b) yields

dMi

dτ
¼ γ0

1 þ γ0
2

� �
Ni þ ψþ

i þ ψ�
i

� �
e� kþaið Þτ þ ζþi þ ζ�i

� �
e k�aið Þτ þ χþ

i þ χ�
i

� �
e
� aiþ

1
μ0

� �
τ

�e�aiτ0=2 ψþ
i þ ψ�

i

� �
e�kτ þ ζþi þ ζ�i

� �
ekτ þ χþ

i þ χ�
i

� �
e
� τ

μ0

h i (12a)

dNi

dτ
¼ γ0

1 � γ0
2

� �
Mi þ ψþ

i � ψ�
i

� �
e� kþaið Þτ þ ζþi � ζ�i

� �
e k�aið Þτ þ χþ

i � χ�
i

� �
e
� aiþ

1
μ0

� �
τ

�e�aiτ0=2 ψþ
i � ψ�

i

� �
e�kτ þ ζþi � ζ�i

� �
ekτ þ χþ

i � χ�
i

� �
e
� τ

μ0

h i (12b)

where Ψ
þ
i ¼ K2 γi

1Γ� γi
2

� �
, Ψ

�
i ¼ K2 γi

2Γ� γi
1

� �
, ζþi ¼ K1 γi

1 � γi
2Γ

� �
, ζ�i ¼ K1 γi

2 � γi
1Γ

� �
,

χþ
i ¼ γi

1G1 � γi
2G2 � γi�1

3 F0, and χ�
i ¼ γi

2G1 � γi
1G2 þ γi�1

4 F0.

From Eq. (12), we obtain

d2Mi

dτ2
¼ k2Mi þ ηþ1ie

� kþaið Þτ þ ηþ2ie
k�aið Þτ þ ηþ3ie

� aiþ
1
μ0

� �
τ
þ ηþ4ie

�kτ þ ηþ5ie
kτ þ ηþ6ie

� τ
μ0 (13a)

d2Ni

dτ2
¼ k2Ni þ η�1ie

� kþaið Þτ þ η�2ie
k�aið Þτ þ η�3ie

� aiþ
1
μ0

� �
τ
þ η�4ie

�kτ þ η�5ie
kτ þ η�6ie

� τ
μ0 (13b)

where η�1i ¼ γ0
1 � γ0

2

� �
ψþ
i ∓ψ�

i

� �
� kþ aið Þ ψþ

i � ψ�
i

� �
, η�2i ¼ k� aið Þ ζþi � ζ�i

� �
þ γ0

1 � γ0
2

� �

ζþi ∓ ζ�i
� �

, η�3i ¼ χþ
i ∓χ�

i

� �
γ0
1 � γ0

2

� �
� ai þ

1
μ0

� �
χþ
i ∓χ�

i

� �
, η�4i ¼ �e�aiτ0=2 γ0

1 � γ0
2

� �
ψþ
i ∓ψ�

i

� �
�

�

k ψþ
i � ψ�

i

� �
�, η�5i ¼ �e�aiτ0=2 k ζþi � ζ�i

� �
þ γ0

1 � γ0
2

� �
ζþi ∓ ζ�i
� �� �

, and η�6i ¼ �e�aiτ0=2 χþ
i ∓χ�

i

� ��

γ0
1 � γ0

2

� �
� 1

μ0
χþ
i ∓χ�

i

� �
�.

The solutions of Eq. (13) are

Mi ¼ Aþ
i e

�kτ þ Bþ
i e

kτ þ Pþ
i e

� kþaið Þτ þQþ
i e

k�aið Þτ þ Rþ
i e

� aiþ
1
μ0

� �
τ
�
ηþ4i
2k

e�kτ þ
ηþ5i
2k

ekτ þ
ηþ6iμ

2
0

1� μ2
0k

2
e
� τ

μ0

(14a)

Ni ¼ A�
i e

�kτ þ B�
i e

kτ þ P�
i e

� kþaið Þτ þQ�
i e

k�aið Þτ þ R�
i e

� aiþ
1
μ0

� �
τ
�
η�4i
2k

e�kτ þ
η�5i
2k

ekτ þ
η�6iμ

2
0

1� μ2
0k

2
e
� τ

μ0

(14b)
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where P�
i ¼

η�
1i

kþaið Þ2�k2
, Q�

i ¼
η�
2i

k�aið Þ2�k2
, and R�

i ¼
η�
3i

aiþ
1
μ0

� �2

�k2
e
� τ

μ0 . Finally, we can obtain F�Si and FþSi

as

FþSi ¼ Dþ
1ie

�kτ þDþ
2ie

kτ þ φþ
1ie

� kþaið Þτ þ φþ
2ie

k�aið Þτ þ φþ
3ie

� aiþ
1
μ0

� �

τ
þ φþ

4iτe
�k1τ þ φþ

5iτe
kτ þ φþ

6ie
� τ

μ0

(15a)

F�Si ¼ D�
1ie

�kτ þD�
2ie

kτ þ φ�
1ie

� kþaið Þτ þ φ�
2ie

k�aið Þτ þ φ�
3ie

� aiþ
1
μ0

� �

τ
þ φ�

4iτe
�k1τ þ φ�

5iτe
kτ þ φ�

6ie
� τ

μ0

(15b)

where D�
1i ¼ Aþ

i α
∓ � Xi, D

�
2i ¼ Bþ

i α
� � Y, α� ¼ 1

2 1� k
γ0
1
þγ0

2

� �

, Xi ¼
e
�aiτ0=2 ψþ

i
þψ�

ið Þ
2 γ0

1
þγ0

2ð Þ
�

ηþ
4i

4k γ0
1
þγ0

2ð Þ
,

Yi ¼
e
�aiτ0=2 ζþ

i
þζ�

ið Þ
2 γ0

1
þγ0

2ð Þ
þ

ηþ
5i

4k γ0
1
þγ0

2ð Þ
, ϕ�

1i ¼
1
2 Pþ

i � P�
i

� �

, ϕ�
2i ¼

1
2 Qþ

i �Q�
i

� �

, ϕ�
3i ¼

1
2 Rþ

i � R�
i

� �

,

ϕ�
4i ¼ �

ηþ
4i
�η�

4i

4k , ϕ�
5i ¼

ηþ
5i
�η�

5i

4k , and ϕ�
6i ¼

ηþ
6i
�η�

6ið Þμ2
0

1�μ2
0
k2

. Bi and Ai are determined by the boundary

conditions as

Bþ
i

¼ �
ϕ�
1i þ ϕ�

2i þ ϕ�
3i þ ϕ�

6iÞ α� � Rdifα
þ

� �

e�kτ0 þ αþ ϕþ
1i � Rdifϕ

�
1i

� �

e� kþaið Þτ0 þ ϕþ
2i � Rdifϕ

�
2i

� �

e k�aið Þτ0
� �

α� α� � Rdifαþ
� �

e�kτ0 � αþ αþ � Rdifα�
� �

ekτ0

þ
αþ ϕþ

3i � Rdifϕ
�
3i

� �

e
� aiþ

1
μ0

� �

τ0
þ ϕþ

4i � Rdifϕ
�
4iÞτ0e

�kτ0 þ ϕþ
5i � Rdifϕ

�
5i

� �

τ0e
kτ0 þ ϕþ

6i � Rdifϕ
�
6i

� �

e
�

τ0
μ0 �

α� α� � Rdifαþ
� �

e�kτ0 � αþ αþ � Rdifα�
� �

ekτ0

þ
Xi þ Yið Þ α� � Rdifα

þ
� �

e�kτ0 þ Xi þ RdifXi

� �

αþe�kτ0 þ Yi þ RdifYi

� �

αþekτ0

α� α� � Rdifαþ
� �

e�kτ0 � αþ αþ � Rdifα�
� �

ekτ0

(16a)

Aþ
i ¼

1

αþ
Xi þ Yi � Biα

� � ϕ�
1i � ϕ�

2i � ϕ�
3i � ϕ�

6i

� �

(16b)

All detailed calculation about solar radiation can be found at [16].

2.2. IRT solution

The azimuthally averaged infrared radiative transfer equation for intensity II τ;μ
� �

is [1–4, 10–12]

μ
dII τ;μ

� �

dτ
¼ II τ;μ

� �

�
ω τð Þ

2

ð1

�1

II τ;μ
� �

P τ;μ;μ
0

� �

dμ
0

� 1� ω τð Þ½ �B Tð Þ (17)

where μ, τ, P τ;μ;μ
0� �

, and ω τð Þ are same as in Eq. (1). B Tð Þ is the Planck function at temper-

ature T, which represents the internal infrared emission of the medium.
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The Planck function is approximated lineally as a function of optical depth [2] as

B T τð Þ½ � ¼ B0 þ βτ (18)

where β ¼ B1 � B0ð Þ=τ0 and τ0 are the total optical depth of the medium. The Planck functions

B0 and B1 are evaluated by using the temperature of the top (τ ¼ 0) and the bottom (τ ¼ τ0) of

the medium.

According to the two-stream approximation, the intensities can be written as II τ;μ1

� �
¼ IþI τð Þ

and II τ;μ�1

� �
¼ I�I τð Þ, respectively, where μ1 ¼ �μ�1 ¼ 1=1:66 is a diffuse factor that converts

radiative intensity to flux [17].
Ð 1
�1 II τ;μ

� �
P τ;μ;μ0
� �

dμ0 can be written as

ð1

�1

II τ;μ
� �

P τ;μ;μ0
� �

dμ0 ¼ 1þ 3g τð Þμμ1

� �
IþI τð Þ þ 1þ 3g τð Þμμ�1

� �
I�I τð Þ (19)

where g τð Þ is the asymmetry factor.

Using Eqs. (17) and (19), we can obtain

dIþI τð Þ

dτ
¼ γ1 τð ÞIþI τð Þ � γ2 τð ÞI�I τð Þ � γ3 τð ÞB τð Þ (20a)

dIþI τð Þ

dτ
¼ γ2 τð ÞIþI τð Þ � γ1 τð ÞI�I τð Þ þ γ3 τð ÞB τð Þ (20b)

where γ1 τð Þ ¼ 1-ω τð Þ 1þg τð Þð Þ=2
μ1

, γ2 τð Þ ¼ ω τð Þ 1�g τð Þ½ �
2μ1

, and γ3 τð Þ ¼ 1�ω τð Þ
μ1

.

For IRT, we also use Eq. (3) to represent an inhomogeneous medium such as cloud or snow, in

which ω τð Þ and g τð Þ vary with τ. By substituting Eq. (3) into γ1 τð Þ, γ2 τð Þ, and γ3 τð Þ and by

ignoring the second order of the small parameters of ε2ω, ε
2
g, and εωεg, we can obtain

γ1 τð Þ ¼ γ0
1 þ γ1

1εω e�a1τ � e�a1τ0=2
� �

þ γ2
1εg e�a2τ � e�a2τ0=2

� �
(21a)

γ2 τð Þ ¼ γ0
2 þ γ1

2εω e�a1τ � e�a1τ0=2
� �

þ γ2
2εg e�a2τ � e�a2τ0=2

� �
(21b)

γ3 τð Þ ¼ γ0
3 þ γ1

3εω e�a1τ � e�a1τ0=2
� �

(21c)

In the above formula, γ0
i , γ

1
i , and γ2

i (i = 1, 2, 3) are the known factors of bω and bg. These known

factors are introduced for simplifying original expressions, in which γ0
1 ¼

1�bω 1þbg
� �

=2

μ1
,

γ0
2 ¼

bω 1�bg
� �

2μ1
, γ0

3 ¼
1�bω
μ1

, γ1
1 ¼ � 1þbg

2μ1
, γ1

2 ¼
1�bg
2μ1

, γ1
3 ¼ � 1

μ1
, γ2

1 ¼ γ2
2 ¼ � bω

2μ1
, and γ2

3 ¼ 0.

Same as in Eq. (7), the upward and downward intensity can be written as

IþI ¼ IþI0 þ εωI
þ
I1 þ εgI

þ
I1 (22a)

I�I ¼ I�I0 þ εωI
�
I1 þ εgI

�
I1 (22b)
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By substituting Eqs. (21)–(22) into Eq. (20), we obtain

dIþI
dτ

¼ γ0
1 þ γ1

1εω e�a1τ � e�a1τ0=2
� �

þ γ2
1εg e�a2τ � e�a2τ0=2

� �h i

IþI0 þ εωI
þ
I1 þ εgI

þ
I2

� �

� γ0
2 þ γ1

2εω e�a1τ � e�a1τ0=2
� �

þ γ2
2εg e�a2τ � e�a2τ0=2

� �� �

I�I0 þ εωI
�
I1 þ εgI

�
I2

� �

� γ0
3 þ γ1

3εω e�a1τ � e�a1τ0=2
� �� �

B τð Þ

(23a)

dI�I
dτ

¼ γ0
2 þ γ1

2εω e�a1τ � e�a1τ0=2
� �

þ γ2
2εg e�a2τ � e�a2τ0=2

� �h i

IþI0 þ εωI
þ
I1 þ εgI

þ
I2

� �

� γ0
1 þ γ1

1εω e�a1τ � e�a1τ0=2
� �

þ γ2
1εg e�a2τ � e�a2τ0=2

� �� �

I�I0 þ εωI
�
I1 þ εgI

�
I2

� �

þ γ0
3 þ γ1

3εω e�a1τ � e�a1τ0=2
� �� �

B τð Þ

(23b)

By removing the second-order and higher-order perturbation terms, we can also separate

Eq. (23) into three equations of I�Ii (i = 0, 1, 2). The equations of I�I0 can be written as

dIþI0
dτ

¼ γ0
1dI

þ
I0 � γ0

2dI
�
I0 � γ0

3B τð Þ (24a)

dI�I0
dτ

¼ γ0
2I

þ
I0 � γ0

1I
�
I0 þ γ0

3B τð Þ (24b)

I�I0 0ð Þ ¼ 0, IþI0 τ0ð Þ ¼ 1� εsð ÞI�I0 τ0ð Þ þ εsB Tsð Þ (24c)

where Ts and εs are surface temperature and surface emissivity, respectively. Eq. (24) is

the standard homogeneous two-stream infrared radiative transfer equation [3, 15] with

solutions

IþI0 ¼ αþK0e
�k τ0�τð Þ þ α�H0e

�kτ þ G1τþ Gþ
2 (25a)

I�I0 ¼ α�K0e
�k τ0�τð Þ þ αþH0e

�kτ þ G1τþ G�
2 (25b)

where k2 ¼ γ0
1 þ γ0

2

� �

γ0
1 � γ0

2

� �

, α� ¼ 1
2 1� k

γ0
1
þγ0

2

� �

, G1 ¼
γ0
3

γ0
1
�γ0

2

β, G�
2 ¼

γ0
3

γ0
1
�γ0

2

B0 �
βγ0

3

k2
,

H0 ¼
α�e�kτ0 Gþ

2 �RG�
2ð Þþ 1�Rð ÞG1τ0� 1�Rð ÞB Tsð Þ½ �� αþ�Rα�ð ÞG�

2

αþ αþ�Rα�ð Þ�α� α��Rdif αþð Þe�2kτ0
, K0 ¼ �

αþH0þG�
2

α�e�kτ0
, and R ¼ 1� εs.

The equations for I�Ii (i = 1, 2) are

dIþIi
dτ

¼ γ0
1I

þ
Ii � γ0

2I
�
Ii þ e�aiτ � e�aiτ0=2

� �

γi
1I

þ
I0 � γi

2I
�
I0 � γi

3B τð Þ
� �

(26a)

dI�Ii
dτ

¼ γ0
2I

þ
Ii � γ0

1I
�
Ii þ e�aiτ � e�aiτ0=2

� �

γi
2I

þ
I0 � γi

1I
�
I0 þ γi

3B τð Þ
� �

(26b)

I�Ii 0ð Þ ¼ 0, IþIi τ0ð Þ ¼ 1� εsð ÞI�Ii τ0ð Þ (26c)

Let Mi ¼ IþIi þ I�Ii and Ni ¼ IþIi � I�Ii . Eq. (26a) and (26b) yields
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dMi

dτ
¼ γ0

1 þ γ0
2

� �

Ni þ χþ
1ie

�kτ0þ k�aið Þτ þ χþ
2ie

� kþaið Þτ þ χþ
3ie

�k τ0�τð Þ þ χþ
4ie

�kτ þ χþ
5i þ χþ

6ie
�aiτ (27a)

dNi

dτ
¼ γ0

1 � γ0
2

� �

Mi þ χ�
1ie

�kτ0þ k�aið Þτ þ χ�
2ie

� kþaið Þτ þ χ�
3ie

�k τ0�τð Þ þ χ�
4ie

�kτ þ χ�
5i þ χ�

6ie
�aiτ

þχ�
7iτþ χ�

8iτe
�aiτ

(27b)

where χ�
1i ¼ K0 αþ

∓α�ð Þ γi

1 � γi

2

� �

, χ�
2i ¼ ∓H0 αþ

∓α�ð Þ γi

1 � γi

2

� �

, χ�
3i ¼ �K0 αþ

∓α�ð Þ γi

1�
�

γi

2Þe
�aiτ0=2, χ�

4i ¼ �H0 αþ
∓α�ð Þ γi

1 � γi

2

� �

e�aiτ0=2, χþ
5i ¼ � G

þ
2 � G

�
2

� �

γi

1 þ γi

2

� �

e�aiτ0=2, χ�
5i ¼ �

G
þ
2 þ G

�
2

� �

γi

1 � γi

2

� �

e�aiτ0=2 þ 2B0γ
i

3e
�aiτ0=2, χþ

6i ¼ G
þ
2 � G

�
2

� �

γi

1 þ γi

2

� �

, χ�
6i ¼ G

þ
2 þ G

�
2

� �

γi

1�
�

γi

2Þ � 2B0γ
i

3, χ
�
7i ¼ �2G1 γi

1 � γi

2

� �

þ 2βγi

3

� �

e�aiτ0=2, and χ�
8i ¼ 2G1 γi

1 � γi

2

� �

� 2βγi

3.

From Eq. (27), we can obtain

d
2
Mi

dτ2
¼ k

2
Mi þ ϕþ

1ie
�kτ0þ k�aið Þτ þ ϕþ

2ie
� kþaið Þτ þ ϕþ

3ie
�k τ0�τð Þ þ ϕþ

4ie
�kτ þ ϕþ

5i þ ϕþ
6ie

�aiτ

þϕþ
7iτþ ϕþ

8iτe
�aiτ

(28a)

d
2
Ni

dτ2
¼ k

2
Ni þ ϕ�

1ie
�kτ0þ k�aið Þτ þ ϕ�

2ie
� kþaið Þτ þ ϕ�

3ie
�k τ0�τð Þ þ ϕ�

4ie
�kτ þ ϕ�

5i þ ϕ�
6ie

�aiτ

þϕ�
8iτe

�aiτ

(28b)

where ϕ�
1i ¼ γ0

1 � γ0
2

� �

χ∓

1i þ k� aið Þχ�
1i, ϕ�

2i ¼ γ0
1 � γ0

2

� �

χ∓

2i � kþ aið Þχ�
2i, ϕ�

3i ¼ γ0
1 � γ0

2

� �

χ∓

3i þ

kχ�
3i, ϕ�

4i ¼ γ0
1 � γ0

2

� �

χ∓

4i � kχ�
4i, ϕþ

5i ¼ γ0
1 þ γ0

2

� �

χ�
5i, ϕ�

5i ¼ γ0
1 � γ0

2

� �

χþ
5i þ χ�

7i, ϕþ
6i ¼ γ0

1 þ γ0
2

� �

χ�
6i � aiχ

þ
6i, ϕ�

6i ¼ γ0
1 � γ0

2

� �

χþ
6i � aiχ

�
6i þ χ�

8i, ϕþ
7i ¼ γ0

1 þ γ0
2

� �

χ�
7i, ϕþ

8i ¼ γ0
1 þ γ0

2

� �

χ�
8i, and ϕ�

8i ¼

�aiχ
�
8i. Thus, the solutions are

Mi ¼ K1ie
�k τ0�τð Þ þH1ie

�kτ þ P
þ
1ie

�kτ0þ k�aið Þτ þ P
þ
2ie

� kþaið Þτ þ P
þ
3iτe

�k τ0�τð Þ þ P
þ
4iτe

�kτ

þP
þ
5i þ P

þ
6ie

�aiτ þ P
þ
7iτþ P

þ
8iτe

�aiτ
(29a)

Ni ¼ K2ie
�k τ0�τð Þ þH2ie

�kτ þ P
�
1ie

�kτ0þ k�aið Þτ þ P
�
2ie

� kþaið Þτ þ P
�
3iτe

�k τ0�τð Þ þ P
�
4iτe

�kτ

þP
�
5i þ P

�
6ie

�aiτ þ P
�
8iτe

�aiτ
(29b)

where P
�
1i ¼

ϕ�
1i

k�aið Þ2�k
2, P

�
2i ¼

ϕ�
2i

kþaið Þ2�k
2, P

�
3i ¼

ϕ�
3i

2k , P
�
4i ¼ �

ϕ�
4i

2k , P
�
5i ¼ �

ϕ�
5i

k
2 , P

�
6i ¼

ϕ�
6i a2

i
�k

2ð Þþ2aiϕ
�
8i

a2
i
�k

2ð Þ
2 ,

P
þ
7i ¼ �

ϕþ
7i

k
2 , and P

þ
8i ¼

ϕþ
8i

a2
i
�k

2.

The expressions of I�Ii are

I
þ
Ii ¼ D

þ
1ie

�k τ0�τð Þ þD
þ
2ie

�kτ þ σþ1ie
�kτ0þ k�aið Þτ þ σþ2ie

� kþaið Þτ þ σþ3iτe
�k τ0�τð Þ þ σþ4iτe

�kτ

þσþ5i þ σþ6ie
�aiτ þ σ7iτþ σþ8iτe

�aiτ
(30a)

I
�
Ii ¼ D

�
1ie

�k τ0�τð Þ þD
�
2ie

�kτ þ σ�1ie
�kτ0þ k�aið Þτ þ σ�2ie

� kþaið Þτ þ σ�3iτe
�k τ0�τð Þ þ σ�4iτe

�kτ

þσ�5i þ σ�6ie
�aiτ þ σ7iτþ σ�8iτe

�aiτ
(30b)
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where D�
1i ¼ K1iα

� � Xi, D
�
2i ¼ H1iα

∓ � Yi, Xi ¼
Pþ
3i
�χ

þ
3i

2 γ0
1
þγ0

2ð Þ
, Yi ¼

Pþ
4i
�χ

þ
4i

2 γ0
1
þγ0

2ð Þ
, σ�ji ¼

1
2 Pþ

ji � P�
ji

� �

. (j = 1,

2, 3, 4, 5, 6, 8), σ7i ¼
1
2P

þ
7i, and K1i and H1i are determined by boundary conditions. By

substituting Eq. (30) into the boundary conditions of Eq. (26c), we can obtain

H1i ¼
αþ � Rα�ð Þ Xie

�kτ0 þ Yi � σ�1ie
�kτ0 � σ�2i � σ�5i � σ�6i

� �

þ α�e�kτ0 Rþ 1ð ÞXi þ Rþ 1ð ÞYie
�kτ0

� �

αþ αþ � Rdifα
�

� �

� α� α� � Rdifα
�

� �

e�2kτ0

�
α�e�kτ0 Rσ�1i � σ

þ
1i

� �

e�aiτ0 þ Rσ�2i � σ
þ
2i

� �

e� kþaið Þτ0 þ Rσ�3i � σ
þ
3i

� �

τ0 þ Rσ�4i � σ
þ
4i

� �

τ0e
�kτ0

� �

αþ αþ � Rdifα
�

� �

� α� α� � Rdifα
�

� �

e�2kτ0

�
α�e�kτ0 Rσ�5i � σ

þ
5i

� �

þ Rσ�6i � σ
þ
6i

� �

e�aiτ0 þ R� 1ð Þσ7iτ0 þ Rσ�8i � σ
þ
8i

� �

τ0e
�aiτ0

� �

αþ αþ � Rdifα
�

� �

� α� α� � Rdifα
�

� �

e�2kτ0

(31a)

K1i ¼
1

α�e�kτ0
Xie

�kτ0 þ Yi � α
þH1i � σ

�
1ie

�kτ0 � σ
�
2i � σ

�
5i � σ

�
6i

� �

(31b)

Finally, the upward and downward fluxes are obtained by

FþI 0ð Þ ¼ πIþI 0ð Þ (32a)

F�I τ0ð Þ ¼ πI�I τ0ð Þ (32b)

All detailed calculation about solar radiation can be found at [18].

3. Results and discussion

We apply the two schemes to idealized medium to investigate its accuracy, and the result has

been shown on [16] and [18].

For true cloud medium, because ice clouds’ optical properties strongly depend on the complex

particle habits [19–21]. Therefore, we limit our discussion here to water cloud only. According to

the observation, the internal LWC (g m�3) and droplet radius of the cloud tend to increase with

height [22]. To take this feature into account, LWC and droplet cross-sectional area (DCA; cm�2,

m�3) should increase linearly from the cloud base to the position near the top of the cloud:

LWC ¼ 0:22þ 0:00008z (33a)

DCA ¼ 100þ z (33b)

where 0 < z < z0. The terms z and z0 denote the height from the cloud base and the height of the

cloud top, respectively. From Eq. (33a) to (33b), the cloud effective radius (re; μm) and liquid

water path (LWP; g m�2) can be obtained:

re zð Þ ¼
3

4r

LWC

DCA
1010 (34a)

LWP ¼

ðz0

0

LWCdz (34b)
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where r (g m�3) is the liquid water density. In this case, LWC varies from 0.22 to 0.30 g m�3,

and re varies from 2.06 to 16.50 μm, in which both ranges are consistent with observation [23].

According to [24], we choose LWP = 260 (g m�2) to represent low cloud. In the benchmark

calculations, z0 is divided into 100 internal homogeneous sub-layers, although other numbers

can be chosen (e.g., 200). In principle, more internal sub-layers should result in more accurate

results. We use 100 internal sub-layers throughout this study because having any more makes

little difference to the calculated results. Using 100 sub-layers are sufficiently accurate to

resolve the vertical internal inhomogeneity of the medium. We use the optical properties of a

Figure 1. For the band of 0.25–0.69 μm, (a-b) show cloud asymmetry factor/single-scattering albedo versus cloud optical

depth (a for asymmetry factor; b for single-scattering albedo), (c-d) show the reflectance/absorptance versus solar zenith

angle (c for reflectance; d for absorptance) and (e-f) show the relative errors of the homogeneous and inhomogeneous

solutions (e for reflectance error, f for absorptance error).
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water cloud in the solar spectral band of 0.25–0.69 μm and at 0.94 μm and in the infrared

spectral band of 5–8 μm and 11 μm.

In Figure 1a and b, the benchmark values of the inhomogeneous IOPs and the parameterized

results for the spectral band of 0.25–0.69 μm are shown. The parameterized inhomogeneous

IOPs are

1� ω τð Þ ¼ 3:979� 10�7 � 1:897� 10�6
e
�0:1539τ � e

�0:1539τ0=2
� �

(35a)

g τð Þ ¼ 0:8359þ 0:0289 e
�0:1539τ � e

�0:1539τ0=2
� �

(35b)

Figure 2. Same as Figure 1 but for the wavelength 0.94 μm.
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where τ0 ¼ 110:84. The corresponding results for reflection and absorption are shown in

Figure 1c–f. For reflection, the relative error with the homogeneous solution increases from

0.25 to 0.71% as μ0 increases from 0.01 to 1, whereas the relative error with the inhomogeneous

solution increases from 0.05 to 0.14%. For absorption, the relative error is not sensitive to μ0; it

is around 7.4% with the homogeneous solution but around only 1.4% with the inhomogeneous

solution.

In Figure 2a and b, the benchmark values of the inhomogeneous IOPs and the parame-

terized results for the wavelength 0.94 μm are shown. The parameterized inhomogeneous

IOPs are

1� ω τð Þ ¼ 1:936� 10�4 � 5:263� 10�4 e�0:0357τ � e�0:0357τ0=2
� �

(36a)

g τð Þ ¼ 0:8321� 0:0403 e0:0218τ � e0:0218τ0=2
� �

(36b)

where τ0 ¼ 54:46. Figure 2c–f shows the corresponding results for reflection and absorp-

tion. For reflection, the relative error with the homogeneous solution increases from 1.1 to

3.0% as μ0 increases from 0.01 to 1, whereas the relative error with the inhomogeneous

solution increases from 0.7 to 2.0%. For absorption, the relative error is not sensitive to μ0;

it is around 10% with the homogeneous solution but around only 5.7% with the inhomo-

geneous solution.

The benchmark values of IOPs and parameterized results for the band of 5–8 μm are shown in

Figure 3a and b. Here, we assume

ω τð Þ ¼ 0:6757� 0:3697 e�0:0142τ � e�0:0142τ0=2
� �

(37a)

g τð Þ ¼ 0:8644þ 0:1023 e�0:0155τ � e0:0155τ0=2
� �

(37b)

where τ0 ¼ 55:85. For upward emissivity (Figure 3c and d), the relative errors of both solutions

are not sensitive to FþI τ0ð Þ; the errors are around �3% for homogeneous solution and around

1% for inhomogeneous solution. For downward emissivity (Figure 3e and f), the relative error

of homogeneous solution is 4% when FþI τ0ð Þ ¼ 0, while the error of inhomogeneous solution is

only 1%. With FþI τ0ð Þ increasing from 0 to 5πB Tð Þ, the error of homogeneous solution

decreases to 0 firstly but then negatively increases to around �10%. The error of inhomoge-

neous solution shows a similar decreasing-increasing pattern, but the negative increase only

reaches about �2%.

The benchmark values of IOPs and parameterized results for the band of 11 μm are shown in

Figure 4a and b. In this case, we assume

ω τð Þ ¼ 0:4623� 0:2155 e�0:1018τ � e�0:1018τ0=2
� �

(38a)

g τð Þ ¼ 0:9118� 0:0083 e0:1087τ � e0:1087τ0=2
� �

(38b)
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where τ0 ¼ 28:23. For upward emissivity (Figure 4c and d), the relative error of homogeneous

solution is �1.2%, while the error of inhomogeneous solution is less than 0.5%. For downward

emissivity (Figure 4e and f), with F
þ
I τ0ð Þ increasing from 0 to 5πB Tð Þ, the error of homoge-

neous (inhomogeneous) solution varies from 3 to �11% (from 0 to �1%).

Figure 3. For the band of 5-8 μm, (a-b) show the cloud single-scattering albedo and asymmetry factor versus cloud

optical depth, black dots represent the exact values and the blue lines is the fitting results (a for single-scattering albedo; b

for asymmetry factor); (c-d) show the upward/downward emissivity versus the ratio of the radiation incident from the

bottom to the internal infrared emission of the medium (c for upward emissivity; d for downward emissivity) and (e-f)

show the relative errors of the homogeneous and inhomogeneous solutions (e for upward emissivity; f for downward

emissivity).
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4. Summary and conclusions

In the above, we have considered the vertically inhomogeneous structures of only cloud and

snow, whereas all physical quantities in the atmosphere are vertically inhomogeneous (e.g., the

concentrations of all types of gases and aerosols). In current climate models, the vertical layer

resolution is far from that required to resolve such vertical inhomogeneity. In this study, we

have proposed a new inhomogeneous SRT/IRT solution to address the vertical inhomogeneity

Figure 4. Same as Figure 3 but for the wavelength of 11 μm.
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by introducing an internal variation of IOPs inside each model layer. This scheme is based on

standard perturbation theory and allows us to use the standard solar Eddington solution and

standard infrared two-stream solution for homogeneous layers to identify a zeroth-order

equation and a first-order equation that includes the inhomogeneous effect. The new SRT/IRT

solution can accurately express the inhomogeneous effect in each model layer, and it reduces

to the standard solution when the medium is homogeneous.

The new inhomogeneous SRT/IRT solution is a good way to resolve cloud vertical inhomoge-

neity. In the spectral band of 0.25–0.69 μm, the relative error in the inhomogeneous SRT

solution is no more than 1.4%, whereas the error with the homogeneous SRT solution can be

up to 7.4%. At the specific wavelength of 0.94 μm, the relative error with the inhomogeneous

solution is not more than 5.7% but can be up to 10% with the homogeneous SRT solution. In

the band of 5–8 μm, the homogeneous IRT solution is not sensitive to F
þ
I τ0ð Þ, and its relative

error may reach �3.2% for upward emissivity, whereas the error of inhomogeneous IRT

solution is only 1%. With F
þ
I τ0ð Þ increasing from 0 to 5πB Tð Þ, the error of downward emissiv-

ity for homogeneous solution varies from 4 to �10%, while the error ranges from 1 to �2% for

inhomogeneous IRT solution. In the band of 11 μm, the relative error of homogeneous IRT

solution is around �1.2% for upward emissivity, and the error of inhomogeneous IRT solution

is only less than 0.5%. For downward emissivity, the maximum error of homogeneous IRT

solution can be up to �11%, and the maximum error of inhomogeneous IRT solution is only

around �1% when F
þ
I τ0ð Þ ¼ 5πB Tð Þ.

In specific spectral bands or at particular wavelengths, the vertical variations in IOPs can

typically be fitted easily into Eq. (3) to obtain the required parameters. A simple fitting

program can be easily incorporated into a climate model to produce the inhomogeneous IOPs

of stratocumulus clouds. If no such cloud inhomogeneity information is available in the

current climate models, the vertical variation rates of cloud LWC and DCA can be derived

empirically from observations, which show that the vertical variation rates of LWC and DCA

in stratocumulus clouds are not very different [5, 7, 8].

In this study, we presented only a single-layer inhomogeneous SRT/IRT solution. To imple-

ment the new solution in a climate model, the adding process for layer-to-layer connections

has to be solved. Under the homogeneous condition, the single-layer result in reflection and

transmission is the same for an upward path and a downward path, but this is not true for an

inhomogeneous layer. Therefore, the adding process has to be modified. We will present an

algorithm for this multilayer adding process in our next study, in which the climatic impact of

inhomogeneous clouds and inhomogeneous snows will be explored. The code base for the

inhomogeneous SRT/IRT solution is available from the authors upon request.
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