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Abstract

The high-speed electrical machines are widely used in different industries, such as mach-
ine tools, aerospace engineering, autonomous power engineering, etc. This chapter is
devoted to the basics of high-speed electrical machines with high-coercitivity permanent
magnets. It is considered in the application areas of high-speed electrical machines and
their classifications. In addition, design problems of high-speed electrical machines are
shown. To estimate the efficiency, loss calculations are performed. The obtained results
can be used in the design of high-speed electrical machines with high-coercitivity perma-
nent magnets and in their future development.

Keywords: high-speed electrical machine, high-coercitivity permanent magnets,
amorphous magnetic material, eddy-current losses, windage losses

1. Introduction

The main task of electrical machine (EM) design is to provide maximum power with a minimum

energy loss and volume of active and constructive elements. Reduction of the material consump-

tion and the production technology improvement can significantly reduce the cost of electrical

machines, and subsequently, the cost of the systems, where they are used (e.g., aircrafts and

machine tools), or resources obtained with their help (e.g., electricity and oil). In addition, the

development of new industries and the implementation of macro- and microresearch projects

lead to an emergence of new tasks to reduce mass-and-size parameters and to increase the

efficiency of electrical machines.

The directions that allow the solution of these problems can be determined from the analysis of

the mathematical formula proposed by Engelbert Arnold in 1896 [1]:

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



P ¼

π
2

60 � 1010ke
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where P is EM power, A is a linear current load, D is a rotor diameter, la is a length of the EM,

Bδ is a magnetic flux density in the air gap, n is a rotational speed, km:f is a coefficient of the

magnetic field shape in the air gap, ɑδ is a pole pitch coefficient, and kw is a winding coefficient.

From Arnold’s equation, it can be seen that at the invariable volume of the EM elements, its

power can be increased in three ways or their combinations: to increase linear current load, to

increase magnetic flux density in an air gap, and to increase rotational speed of EM rotor.

All these three ways have found the niche in different industries. One of the directions is the

high-speed and ultra-high-speed EMs, which are widely used in machine tools, aerospace

engineering, autonomous power engineering, etc. In this chapter, high-speed and ultra-high-

speed EMs are frequency-controlled EMs with high-coercitivity permanent magnets (HCPM).

Section 2 presets the classification of high-speed EMs. The main application areas are presented

in Section 3. Section 4 is devoted to calculation of losses and efficiency of the high-speed EMs.

2. Classification of high-speed EMs

To develop and generalize the high-speed EM theory, their classification should be considered.

In general, high-speed EMs can be classified according to the operation principle, design

features, frequency or output voltage, the stator type (slotted or slotless), etc. Table 1 shows

the basic designs of high-speed EMs. The slotless stator designs are not given in Table 1.

However, the design nos. 1–6 and 8–12 can be made with a slotless stator. The hysteresis motor

designs are not presented in Table 1, although they are also high speed and are used in

gyroscopes.

High-speed EM with electromagnetic excitation and designs nos. 5, 8, 9, 10, 11 are inferior to

the high-speed EM with HCPM for reliability, specific parameters, and efficiency. However,

they have some development prospects; for example, the design possibility of high-speed EM

with rotating rectifiers and a rotational speed of 50,000 rpm is presented in [1, 2].

Axial EMs with HCPM can be promising for power supply systems for rocket and space

equipment due to their small axial dimensions. The design and prospect review of axial EMs

are presented in [3, 4]. At the same time, axial EMs have been created with rotational speed of

30,000–48,000 rpm.

In addition, the use of HCPM made of NdFeB and SmCo alloys for high-speed damping

elements is promising to develop the space systems due to improving their energy character-

istics [5]. To develop the alternative energy, the ship and transport systems (railway trains),

including the cargo location tracking, the use of single-coordinate and multicoordinate vibra-

tional EMs with HCPM is of interest [6, 7]. To develop the ship power supply systems, energy

conversion systems of detonation engines and automotive systems, the use of high-speed

linear EM with HCPM as the main generators of the power supply system is topical.
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EM type Design

1. High-speed EM with a star-type rotor: 1 is a star-type

rotor, 2 is a stator magnetic core, and 3 is a stator

winding

2. High-speed EM with an assembled star-type rotor: 1

is a cylindrical HCPM, 2 is a stator magnetic core, 3 is

a stator winding, 4 is a rotor sleeve, and 5 is a rotor

back

3. High-speed EMwith interior permanent magnets: 1 is

the HCPM, 2 is a stator magnetic core, 3 is a stator

winding, and 4 is a rotor back

Basics of High-Speed Electrical Machines
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EM type Design

4. High-speed EM with combined rotor magnetic

systems (including the Halbach magnetic system): 1 is

the combined rotor magnetic system, 2 is the stator

magnetic core, and 3 is a stator winding

5. High-speed synchronous EM with rotating rectifiers:

1 is a rotor, 2 is a stator, 3 is a block of rotating

rectifiers, and 4 is an excitation system

6. Axial EM with HCPM: 1 is the HCPM, 2 is a stator

magnetic core, and 3 is a stator winding

Electric Machines for Smart Grids Applications - Design, Simulation and Control18



EM type Design

7. High-speed synchronous EM with combined

excitation: 1 is a rotor, 2 is a stator magnetic core, and

3 is an additional excitation system

8. High-speed asynchronous motors with squirrel-cage

rotor: 1 is a rotor, 2 is a stator magnetic core, and 3 is

rotor bars

9. High-speed liquid-metal asynchronous motor: 1 is a

annular channel, 2 is a ring winding, and 3 is a

magnetic core

Basics of High-Speed Electrical Machines
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EM type Design

10. High-speed induction EM: 1 is a rotor, 2 is a stator

magnetic core, and 3 is a stator winding

11. High-speed damping elements with HCPM: 1 is an

external HCPM, 2 is an internal HCPM, 3 is a hollow

rotor, and 4 is a bearing

12. High-frequency oscillating EM with HCPM: 1 is a

casing, 2 is a moving part, and 3 is a winding

Table 1. Basic designs of high-speed EMs.
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The presented classification shows that areas and prospects for the use of high-speed EM with

HCPM are quite broad. The improvement of this EM type leads to an expansion of its applica-

tion areas. Therefore, it seems expedient to consider in more detail the application areas of

high-speed EM and to reveal their development prospects.

3. Application areas of high-speed electrical machines and a review of

known works

To use the high-speed EMs, it is necessary to have a high-speed drive (for generator mode) or a

high rotational speed (for motor mode). Therefore, the main application areas of high-speed

EMs are high-speed machine tool, aviation and space power engineering, as well as autono-

mous power engineering. The initial application of high-speed EMs is associated with the

development of rocket and space technology. High-speed induction and hysteresis motors

with a rotational speed of 30,000–60,000 rpm have found wide application as a gyro-motor

for spinning the gyroscope. In autonomous power engineering, high-speed EMs are developed

as a microturbine component. Elliott Group serially produces decentralized power plants with

68,000-rpm magnetoelectric generators [8]. Capstone produces microturbines with high-speed

magnetoelectric generators. A distinctive feature of these generators is that the rotor is

installed on two air bearings, and the third air bearing is located between the compressor and

turbine working wheels [9].

In decentralized energy, the high-speed EMs have found a wide industrial application. Their

development is aimed to reduce bearing losses, to increase the working temperature and

efficiency. In addition, the high-speed EMs with a power below 250 kW find application in

the power supply systems of aircrafts and space vehicles. There are two main variants of high-

speed EMs for aircrafts: switched-reluctance EM and EM with HCPM. Comparison of these

EM types is presented in different works. It is shown that the high-speed EMs with HCPM

have smaller mass-and-size parameters than in switched-reluctance EMs. This determines

their preferred use in aircrafts.

The development of such industries as robotics, machine tool, turbomolecular pumps, high-

tech medical equipment, etc. and the development of new-generation unmanned aircraft

require the creation of ultra-high-speed EMs with a rotational speed from 200,000 to

1,000,000 rpm or more and a power from 50 W to 2 kW [10]. The main advantage of this EM

type is a high power density with overall miniature dimensions, which causes wide prospects

for their use in various microsystems. In addition, a significant advantage of ultra-high-speed

EMs is the uniqueness of the tasks they solve. For example, the application of motor with a

400,000-rpm rotational speed in the machine tool improves the quality of surface treatment

[11]. The 500-W microgenerator for an autonomous robotic complex allows abandoning bat-

tery cells that have high mass-and-size parameters. Table 2 shows a comparison of various

electricity sources for the electrical supply of robots.

With all the technical advantages of ultra-high-speed EMs with HCPM, this area began to

develop relatively recently. The development of this area was facilitated by the emergence of
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new electrical materials and the development of microelectronics. Therefore, theoretical stud-

ies on this topic are limited and represent a disparate material, which describes individual

design solutions for ultra-high-speed EMs for a particular application. It is necessary to con-

sider the main development trends of this EM type and to consider in more detail examples of

their practical application.

One of the application areas of ultra-high-speed EMs is autonomous system. Microturbines

with ultra-high-speed EMs are planned to be used instead of storage batteries in robotic

complexes, unmanned aerial vehicle, cryogenics, etc.

The main developers of ultra-high-speed EMs for microturbine installations are several

countries: Japan (IHI Corporation), France (Onera), Switzerland (Power Electronic Systems

Laboratory and ETH Zurich), USA, Germany (High-Speed Turbomaschinen GMBH). It

seems advisable to consider their development in more detail.

Onera [12] (France, DecaWatt research program) developed a microturbine system with a

microgenerator. The purpose of the program is the creation of a microturbine engine with a

power of 50–100 W to provide electrical energy for ammunition and equipment for future

soldiers. The microgenerator has a power of 55 W and a rotational speed of 840,000 rpm.

The generator tests were performed at a rotational speed of 700,000 rpm. It was used in the

mechanical high-speed bearings. The pole number of this high-speed EM is equal to 1. The

frequency of the output voltage is 14,000 Hz. Ultra-high-speed EMs should be considered as a

complex of interconnected systems, since the full efficiency of a high-speed EM and mass-and-

size parameters are determined not only by material parameters and geometric dimensions of

EM but also by parameters of its control system. In addition, a separate EM with an output

frequency of 14 kHz without a power electronics unit is unlikely to find practical application.

A similar conclusion was noted in [13, 14]. To achieve the maximum efficiency, Onera used the

following technical solutions: amorphous magnetic materials (AMM) as a stator core material

to minimize stator losses; a slotless stator design to simplify the manufacturing technology of

the stator magnetic core, to reduce the inductance of the stator winding scattering and to

minimize the demagnetizing effect of the armature reaction; and a cylindrical permanent

magnet (PM) to simplify the rotor manufacturing technology.

According to a similar technology, Power Electronic Systems Laboratory and ETH Zurich

developed and implemented two ultra-high-speed PM starter-generators for microturbines

[15, 16]; one of which has a power of 500 W and a rotational speed of 500,000 rpm, and the

second one has a power of 1 kWand a rotational speed of 500,000 rpm. To implement the ultra-

high-speed EM, Power Electronic Systems Laboratory and ETH Zurich used the same technical

Electricity sources Power-to-mass ratio [kW/kg]

Ultra-high-speed microgenerator with microturbine including the fuel mass 0.55

Batteries 0.50

Fuel cells 0.05

Ultra-high-speed microgenerator with flywheel system 0.50

Table 2. Comparison of various electricity sources for the electrical supply of robots.

Electric Machines for Smart Grids Applications - Design, Simulation and Control22



solutions as Onera. It was a slotless stator, a cylindrical PM and AMM were also used. For the

implementation of the starter mode, sensorless control was used.

The same technical solutions are used by High Speed Turbomaschiner, which develops a 150-W

high-speed magnetoelectric EM with a rotational speed of 490,000 rpm [17]. The stator magnetic

core is slotless and made of AMM.

IHI Corporation developed a microturbine system with a microgenerator [18]. It contains an

oil-free gas turbine with a 400-W ultra-high-speed magnetoelectric generator integrated into it.

The rotational speed of the microgenerator is 400,000 rpm. Kerosene, propane, light oil, etc. can

be used as fuel in the proposed system. Expected applications are power generation for

charging portable devices and the use as a power source for robots.

Robot/Mechatronics Research Center [19] is working on the development of a microturbine

with a 500-W microgenerator with a rotational speed of 400,000 rpm for unmanned aerial

vehicles and robotic complexes. The stator of this generator is made with six slots in which a

three-phase winding is laid. The rotor sleeve is made of Inconel 718 alloy. The HCPM type is

Sm2Co17. The disadvantages of this generator are the slotted stator design, which considerably

complicates the manufacturing technology of the stator magnetic core made of AMM. If the

AMM is not used as a stator core material, the hysteresis losses in the stator magnetic core can

significantly reduce the efficiency. For unmanned aerial vehicles and robotic complexes,

Stanford University and MDOTAeronautics develops an ultra-high-speed permanent-magnet

EM with a power of 400 W and a rotational speed of 800,000 rpm [20].

For all the above-considered ultra-high-speed EMs for autonomous power supply systems, the

shaft and the rotor back are made of nonmagnetic material to increase its mechanical strength.

However, this leads to a decrease in its power and in the magnetic flux density in the EM air

gap. Therefore, to increase the energy characteristics of ultra-high-speed EMs, it would be

more expedient to use a magnetic material, for example, the cobalt alloy Vacodur S Plus, which

is close to some titanium brands by its mechanical characteristics [1].

Thus, the ultra-high-speed EMs for autonomous power supply systems are actively develop-

ing abroad. They all practically have a common design: a slotless stator made of AMM and a

rotor with cylindrical HCPMs.

The publication analysis shows that the research and optimization of the design of all the above-

mentioned ultra-high-speed EMs was carried out together with power electronics and control

systems [21]. The tendency to reduce number of manufactured parts in mechanical engineering

by improving the quality of the treated surface poses the task of creating miniature machines and

spindles of small power with ultra-high-speed EMs. In particular, [22] presents a design and

prospects of using an ultra-high-speed EM with a 200,000-rpm rotational speed in machine tool

to produce electronic components. The stator magnetic core is slotless and made of electrical

steel 10SNEX 900 with a sheet thickness of 0.1 mm. The rotor speed is controlled by sensorless

algorithms. The rotor sleeve is made of a carbon fiber.

Westwind [23] (United Kingdom) produces PCB spindles with ultra-high-speed EMs with

rotational speeds from 85,000 to 370,000 rpm. All spindles are made with foil bearings. EMs

with rotational speed of 370,000 rpm are used in a drilling machine to make holes with a
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diameter of 75 μm. In addition, ETH Zurich and Power Electronic Systems Laboratory [15] for

the first time in the world developed a 100-W electrical motor with a rotational speed of

1,000,000 rpm, which was a breakthrough in rotational speeds of up to 1 million rpm. The

electrical motor was made with HCPM and ceramic ball bearings.

One of the important applications of ultra-high-speed EMs is a high-tech medical equipment.

Ultra-high-speed EMs are used in blood pumps, dental instruments, surgical operations, etc.

For example, Sinotech Motors [24] developed the ultra-high-speed EMs for blood pumps.

These motors are slotless. Their control system is integrated, which allows achieving minimum

mass-and-size parameters. Sirona has developed the ultra-high-speed EMs for dental instru-

ments [25]. EM data are executed with rotational speeds from 250,000 to 400,000 rpm. In [26],

the design of an ultra-high-speed medicine pump based on the ultra-high-speed EM with a

rotational speed of 200,000 to 600,000 rpm is described. The stator design of this EM is also

slotless. In addition, sensorless control methods are used.

To analyze trends in the high-speed EMs, the EM parameters are listed in Table 3. It shows that

all ultra-high-speed EMs are operated jointly with power electronics and control systems,

which confirms the need to study them not as a separate electrical machine. In addition, all

ultra-high-speed EMs have HCPMs, and their stators are slotless.

4. Efficiency of high-speed electrical machines

The EM efficiency is one of the main EM parameters and largely determines the EM design.

For example, to increase the EM efficiency, slot skewing or contactless bearings are used, i.e.,

technical solutions that lead to the complication of the EM design and the production technol-

ogy. Therefore, for the economic and technical justification of these complications, it is espe-

cially important to determine the EM losses and to select the effective EM design.

4.1. Winding losses in the high-speed EM

Total winding losses in the high-speed EM can be present as follow:

Parameter Onera ETH Robot/mechatronics

research center

Electric motor

EM type PM generator PM generator PM generator PM motor

Power [W] 55 1000 500 —

Rotational speed [rpm] 800,000 300,000–500,000 400,000 200,000

The need of a control system Yes Yes Yes Yes

Stator design Slotless Slotless Slotted Slotless

Stator magnetic core material AMM AMM — Electrical steel 10SNEX 900 with

a sheet thickness of 0.1 mm

Table 3. Parameters of ultra-high-speed EMs.
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Pcu ¼ Pm þ Pad, (1)

where Pm is the winding losses and Pad is additional eddy-current losses in winding.

Due to the uneven magnetization of the HCPM and the nonlinearity of loads, the current curve

differs from the sinusoidal, i.e., the third, fifth, seventh spatial harmonics have appeared. In

this case, the total winding losses are formed as the sum of the losses from these harmonics:

Pm ¼ I21 þ I23 þ I25 þ I27
� �

mra, (2)

where I1 is the first harmonic current, I3 is the third harmonic current, I5 is the fifth harmonic

current, and I7 is the seventh harmonic current.

To determine the eddy-current losses in winding, the following equation can be used:

Pad ¼
π3H2

s maxμ
2
0f

2d4sσculcu
4

, (3)

where Hs max the maximum value of the magnetic field strength in the slot, f is the current

frequency in the EM winding, ds is the strand diameter, σcu is the specific electric conductivity

of the winding, and lcu is the total strand length.

The maximum value of the eddy-current losses in the winding is in the slotless EM design. For

the slotted EMs, they are much smaller, but they also require calculation to determine and

select the optimal cooling system. The most convenient calculation way is the computer

simulation of the EM magnetic field and determination of the magnetic field crossing the

winding in the slots. Analytical calculation methods are known, but they are cumbersome for

engineering calculations.

4.2. Stator core losses of the high-speed EM

To determine the stator core losses in the EM, there is no general calculation methodology. In

[27, 28], to determine the stator core losses in a wide frequency range, the following equation is

proposed:

Ps:c ¼ kmPs:c50=1
f

50

� �β

B2, (4)

where Ps:c is the stator core losses [W/kg], Ps:c50=1 is the stator core losses at a 50 Hz frequency

and a 1 T magnetic flux density, km is a coefficient of the increase in the stator core losses

during processing, B is the magnetic flux density in the stator core, and β = 1.3,…, 1.5.

For a frequency of 400 Hz or more, the following equation [29, 30] is recommended for the

stator core loss calculation:

Ps:c ¼ Psz þ Psj ¼ kmPs:c:sB
2
j Mj

f

400

� �1:5

þ kmPs:c:sB
2
zMz

f

400

� �1:5

, (5)
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where Ps:c, Psz, Psj are stator core losses, losses in the stator teeth, and losses in the stator back,

respectively; km is a coefficient that takes into account the increase in the stator core losses

during processing; Ps:c:s are stator core specific losses at a frequency of 50 Hz and a magnetic

flux density of 1 T; Bj,Mj are the magnetic flux density and mass of the stator back, respec-

tively; Bz,Mz are the magnetic flux density and mass of the stator teeth, respectively; f is the

current frequency or magnetization reversal frequency of the stator back and teeth.

In [31], the following equation was proposed to determine the stator core losses:

Ps:c ¼ khystB
βf þ keddyB

2f 2
� �

Ms, (6)

where β = 1.7–2; kgyst, kvih are hysteresis and eddy-current factors, respectively, and Ms is a

stator mass.

A method for determining the stator core losses is proposed in [32], in which three coefficients

characterizing the properties of the stator core material are used: the hysteresis loss coefficient

khyst, the eddy-current loss coefficient keddy, and excess loss coefficient ke:

Ps:c ¼ khystB
2f þ keddyB

2f 2 þ ke Bfð Þ
3
2
: (7)

These coefficients are often indicated by manufacturers of electrotechnical steels and soft

magnetic alloys.

In [22], an empirical equation is presented for calculating the stator core losses of high-speed

EM, which is the approximated dependence of the stator core losses on the current frequency

of the 10JNEX900 steel:

Ps:c ¼ 7 � 10�4B1:75f 1:5 þ 4:7 � 10�4B1:86f 1:53
� �

: (8)

For analytical calculations of the stator core losses in the high-speed EMs in a wide frequency

range, Eq. (5) is the most optimal. Coefficients of this equation should be determined based on

the experimental studies or data of the specialized literature.

4.3. Influence of heating of EM with HCPM on specific losses in electrotechnical steels and

precision soft magnetic alloys

During the operation of the EM with HCPM, their stator core will heat up under the influence

of the ambient temperature, and because of the specific losses. An increase in the stator

core temperature leads to a change in its magnetic properties. Therefore, it is necessary to

evaluate the effect of the EM temperature on the stator core losses.

Measurements of the stator core losses were made under normal climatic conditions at sample

temperatures below 23�C, relative air humidity of 25%, and at a temperature below 70�C. For

studies at a temperature below 70�C, the sample was heated in a muffle furnace. Then, it was

repeatedly measured in a cold state at a temperature below 23�C. Experimental studies have

measured specific losses at different temperatures in two annular samples made of AMM (type
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E and type T of 5BDSR grade) produced by the Ashinsky metallurgical plant (Russia). The

saturation magnetic flux density of these AMMs is 1.3 T. The experimental results at a magnetic

flux density of 0.5 T are shown in Figure 1. It shows that with the temperature increase of the

stator core made of AMM, 5BCDR grade, type T (linear hysteresis loop) to 50�C, the stator core

losses decrease by 15%. For temperature increase of the stator core made of AMM, 5BCDR

grade, type E (rectangular hysteresis loop) to 50�C, the stator core losses decrease by 14%. Thus,

with the temperature increase of the stator core made of AMM, its losses decrease by 15%.

In addition to changing the losses in the EM stator core due to its heating, the losses in the EM

stator core during operation will also decrease due to the decrease in the HCPM energy

characteristics, and, accordingly, in magnetic flux density of the stator core. The study of this

process will be given below. To assess this decrease, a computer model was developed in the

Ansoft Maxwell software package, and a computer simulation for the magnetic field distribu-

tion along the section of the EM stator core was made. Simulation results for EM at a temper-

ature of 23�C are presented in Figure 2. It was found that with an increase of the HCPM to

150�C, the magnetic flux density in the stator core decreases by 6–6.5%. Taking into account the

dependence of the stator core losses on magnetic flux density for various materials, this can

lead to reducing losses in the stator core by 13–15%. Thus, heating of the stator core leads to a

significant loss reduction in the EM.

4.4. Eddy-current losses in the HCPM and rotor sleeve

In the high-speed EMs, spatial harmonics caused by the EM design, the winding type, or the

distribution coefficient, as well as the time harmonics caused by an external circuit (for

Figure 1. Dependence of the stator core losses on the frequency: curve 1 is for AMM, 5BCDR grade, type T at 20�C; curve

2 is for AMM, 5BCDR grade, type E at 20�C; curve 3 is for AMM, 5BCDR grade, type T at 70�C; and curve 4 is for AMM,

5BCDR grade, type E at 70�C.
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example, an inverter or rectifier) will induce significant eddy-current losses in the rotor sleeve

or HCPM. This can lead to overheating of the HCPM and to demagnetization of the HCPM. To

reduce these losses, HCPMs are usually laminated in the axial direction. To determine these

losses, it is necessary to determine separately the losses due to time harmonics (external circuit)

and losses due to spatial harmonics (EM design features). Usually, losses caused by time

harmonics are greater than the losses caused by spatial harmonics. This statement is valid only

for a number of the high-speed EM designs. For example, the EM with a tooth-coil winding

has significant spatial harmonics, and losses caused by these harmonics are higher than the

losses caused by time harmonics.

In the literature, there is no unambiguous opinion on the loss nature. Some authors argue that

the losses in the HCPM are only due to eddy currents. At the same time, several authors argue

that these losses are caused by eddy currents and magnetization reversal. In this chapter, the

losses in the HCPM and rotor sleeve are considered as created only by eddy currents.

a. Eddy-current losses in the HCPM and rotor sleeve created by time harmonics. As noted

above, these losses are formed by an external circuit (rectifier or inverter), which are

installed at the EM output for transmission to a standard frequency network. The EM

calculation scheme is presented in Figure 3. To estimate these losses, expressions obtained

by Poliender are convenient to use:

PHCPM ¼
rlhmb

2
m

12rm
pam þ sin pam

� �� � d

dt
bB cos pβ

� �� �� �� 	2
(

þ pam � sin pam
� �� � d

dt
bB cos pβ

� �� �� �� 	2
) (9)

where p is a number of pole pairs, l is the HCPM length, hm is the HCPM height, rm is the

HCPM resistivity, r is an average air gap radius, am is a pole angle, bm is a pole arc length, and

bB is a magnetic flux density created by time harmonics.

Figure 2. Simulation results for EM at a temperature of 23�C.
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To determine the magnetic flux density produced by time harmonics, it is necessary to under-

stand the time harmonics magnitude produced by different types of nonlinear load in the EM

windings. To solve this problem, a simulation EM model with an external network was

developed in the LTSpice IV. It contains a three-phase EM with HCPM, an uncontrolled

rectifier, and a DC load (Figure 4). The EM was represented by three single-phase sources

and three pairs of magnetically coupled inductors forming a three-phase voltage.

Simulation was carried out for a system with a three-phase 115/200 V source (EM with HCPM)

with a frequency of 400 Hz, a grounded neutral and a load connected via a single-phase or a

three-phase rectifier. In Figures 5 and 6, the simulated circuits for the inclusion of three-phase

and single-phase nonlinear loads are presented. As a simulation result, the current and voltage

curves of the EM and the load are shown in Figures 7–14.

To simplify the comparative analysis and to determine the influence of a certain nonlinear load

inclusion scheme, the obtained data were summarized in Table 4. It shows that when a three-

phase rectifier is connected, the phase current of the EM with the HCPM contains spatial

harmonics with the numbers 5, 7, 11, 13, 17, 19 in addition to the fundamental harmonic.

Figure 3. EM calculation scheme.

Figure 4. EM simulation model with external network for determining time harmonics and losses generated by them.
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Harmonics that are multiples of three are absent. For the studied numerical parameters, the

worst case scenario is for a three-phase active-capacitive load and a single-phase active-

capacitive load. In this case, the harmonic coefficient reaches 95.2%. For an active nonlinear

Figure 5. The simulated circuits for the inclusion of three-phase nonlinear loads: (a) active load, (b) active-capacitive load,

(c) active-inductive load, and (d) active-inductive-capacitive load.

Figure 6. The simulated circuits for the inclusion of single-phase nonlinear loads: (a) active load, (b) active-capacitive

load, (c) active-inductive load, and (d) active-inductive-capacitive load.
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three-phase load, the total harmonic distortion (THD) is 29%. For an active-inductive nonlinear

load, the THD is 31.1%. It is obvious that the voltage harmonic composition of the EM with

nonlinear load characterizes the harmonic composition of the magnetic flux density created by

the time harmonics.

To confirm the computer simulation data, an experimental setup was developed. It consists of

a DCmotor with independent excitation, EM, pulse width modulation (PWM) controller of the

Figure 7. Curves of the voltage, total current, and fundamental current harmonic for the circuit in Figure 5a.

Figure 8. Curves of the voltage, total current, and fundamental current harmonic for the circuit in Figure 5b.

Figure 9. Curves of the voltage, total current, and fundamental current harmonic for the circuit in Figure 5c.
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rotational speed for the DC motor, and rectifier with an active load. The PWM controller sets

the rotational speed of DC motor, which the armature winding is connected to the PWM

controller. The excitation winding is supplied from a constant current source with a voltage of

27 V and a current of 2 A. The PWM controller is powered by a 27 V DC source with a current

of 15 A. The DC shaft is mechanically connected to the EM shaft. The rotational speed of EM is

8000 rpm, the output voltage is 36 V, and the output current is 3.2 A. The outputs of the EM

Figure 10. Curves of the voltage, total current, and fundamental current harmonic for the circuit in Figure 5d.

Figure 11. Curves of the voltage, total current, and fundamental current harmonic for the circuit in Figure 6a.

Figure 12. Curves of the voltage, total current, and fundamental current harmonic for the circuit in Figure 6b.
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stator winding through a three-phase rectifier are connected to a resistive load of 100 W with

the LTS-6NP-type series-connected current transformers.

The experimental results correspond to the simulation data, which indicate the adequacy of

the developed simulation model and the obtained theoretical results: the frequency of the

fundamental harmonic is 396 Hz, THD is 29.6%, cos φ = 0.95, and cos φ(1) = 1.0.

Figure 13. Curves of the voltage, total current, and fundamental current harmonic for the circuit in Figure 6c.

Figure 14. Curves of the voltage, total current, and fundamental current harmonic for the circuit in Figure 6d.

Scheme Total power [kVA] Power [kW] сos φ cos φ(1) THD [%]

Three-phase active load 18.0 17.3 0.96 1.00 29.0

Three-phase active-capacitive load 24.7 17.5 0.71 0.99 95.2

Three-phase active-inductive load 17.9 17.1 0.95 1.00 31.3

Three-phase active-inductive-capacitive load 18.0 17.1 0.95 1.00 31.7

Single-phase active load 3.1 3.1 1.00 1.00 2.4

Single-phase active-capacitive load 6.9 4.5 0.65 0.90 93.3

Single-phase active-inductive load 3.1 3.1 1.00 1.00 3.6

Single-phase active-inductive-capacitive load 6.2 4.7 0.76 0.97 76.9

Table 4. Comparison of simulation results of connection schemes.
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In addition, it is possible to determine the losses in the HCPM and rotor sleeve by using the

obtained data. For example, calculations were made for EM with rotational speeds of 5000 and

32,000 rpm at active-inductive load. It was found that for nonlaminated HCPM, the eddy-

current losses are above 280 W at a frequency of 5000 rpm and above 8 W at a frequency of

32,000 rpm.

a. Eddy-current losses in the HCPM and rotor sleeve created by spatial harmonics. These

losses are determined by the slot type, the slot size, and the winding type; i.e., it depends

on many different factors. Analytically, the definition of these losses is difficult and does

not give the necessary accuracy. Therefore, it is more expedient to use the finite element

method (FEM) to analyze the losses in the HCPM and rotor sleeve.

To solve this task in Ansys Maxwell software package, it is necessary to specify the specific

HCPM conductivity. It is 1,100,000 S/m for SmCo and 625,000 S/m for NdFeB. In the project

window, in the excitation section, the eddy-current calculation (Set Eddy Effects) is carried out,

and HCPM and the rotor sleeve are selected. In a simulation result, the distribution of eddy-

current losses in the HCPM and rotor sleeve on the spatial harmonics will be obtained in the

Fields Overlaps-Field-Ohmic_loss tab. Figures 15–17 show the distribution of the magnetic

field and the eddy-current losses in theHCPMcaused by spatial harmonics for 250-kW60,000-rpm

EMs with a distributed winding, a tooth-coil winding, and a slotless design. The number of pole

pairs for all considered EMs was equal to 4. In addition, the minimum eddy-current losses in the

HCPM caused by spatial harmonics have the slotless EM and the EMwith a distributed winding.

The maximum eddy-current has the EM with a tooth-coil winding. The difference between the

losses in EMwith distributed and tooth-coil winding is above 500%. Therefore, it is obvious that in

the high-speed EMs with a tooth-coil winding, the eddy-current losses in the HCPM caused by

spatial harmonics exceed the eddy-current losses in the HCPM and the rotor sleeve caused by time

harmonics.

Figure 15. Distribution of the magnetic field (a) and the eddy-current losses (b) in the HCPM of the slotless EM with a

distributed winding.
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In addition, it seems advisable to estimate the influence of the rotor magnetic system (MS) type

on the eddy-current losses of HCPM in the high-speed EM.

This task was also solved by computer simulation methods. The results are shown in Figure 18.

It can be seen that the MS type does not significantly affect the HCPM losses. This is explained

by the fact that the HCPM losses are formed by the stator magnetic field. In the case of a

constant slot zone, the stator magnetic field remains unchanged. With an increase in the

rotational speed, the HCPM losses have a maximum point, after which they begin to decrease.

This is because with rotational speed increase, the magnetic field penetration depth in the

Figure 16. Distribution of the magnetic field and the eddy-current losses in the HCPM of the slotless EM with a tooth-coil

winding.

Figure 17. Distribution of the magnetic field (a) and the eddy-current losses (b) in the HCPM of the slotless EM.
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HCPM and rotor sleeve is reduced, and thereby the losses are reduced. Thus, the MS type has no

significant effect. The eddy-current losses in the HCPM can vary considerably due to the change

in the load angle. This should be taken into account in the design of the EMwith HCPM.

The reduction of the eddy-current losses in the HCPM and rotor sleeve of the high-speed EMs

can be achieved by the following ways.

For losses created by time harmonics:

• increasing the number of phases and thereby reducing pulsations,

• lamination of the HCPM and rotor sleeve in the axial direction,

• increasing the air gap and reducing the magnetic field penetration depth into the HCPM

and the rotor sleeve.

For losses created by spatial harmonics:

• slot skewing and the selection of a large winding distribution coefficient,

• lamination of the HCPM and rotor sleeve in the axial direction,

• increasing the air gap and reducing the magnetic field penetration depth into the HCPM

and the rotor sleeve.

For the EM with a tooth-coil winding, the minimization of the eddy-current losses created by

spatial harmonics can be achieved by the correct selection of the number of stator slots and the

number of rotor poles.

4.5. Eddy-current losses in bearings of the high-speed EM

For limited axial dimensions of the EM rotor and insignificant bearing removal from the

HCPM in the high-speed EM, the bearing balls can be magnetized under the influence of the

HCPM stray magnetic field. In a result, eddy currents are induced. This leads to overheating of

the bearing caused by its hysteresis losses. With increase in the rotational speed, the

overheating increases significantly. Therefore, the study of these processes is important for the

high-speed EMs.

Figure 18. Dependence of eddy-current losses in the HCPM on the frequency and MS type: A—MS with cylindrical

HCPM and B—MS with semicircular HCPM.
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The magnitude of the magnetic field flowing through the bearing is determined by the bearing

removal from the HCPM. For a numerical evaluation, a computer simulation of the three-

dimensional magnetic field of the EM with HCPM was performed. The results of this simula-

tion are presented in Figure 19. It shows that the magnetic flux density is 0.32 T at a distance

from HCPM. That is quite a sufficient value for the magnetization of the bearing balls and the

appearance of eddy-current losses in the bearing.

The object of study is the EM with HCPM. The geometric dimensions of the rotor are shown in

Figure 20. The shaft is made of steel with a saturation magnetic flux density of 1.7 T. In

this case, the effective value of magnetic flux density in the rotor steel is close to saturation

(1.6–1.65 T).

The following assumptions are used:

• the magnetic permeability of the environment and air gap is equal to the magnetic

permeability of the vacuum; and the magnetic permeability of the magnetic core, shaft,

and bearings are equal to infinity;

• the stator winding is represented as a thin electrically conductive layer distributed along

the stator core diameter;

• the density of the induced currents along the winding and bearing is constant;

• the mutual influence of temperature and magnetic fields is not taken into account;

• the influence of winding ends on the ball bearing magnetization is not taken into account.

Figure 19. The three-dimensional magnetic field of the EM with HCPM.
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To develop analytical equations for the loss analysis in the bearing, the EM calculation scheme

presented in Figure 21 is considered.

The mathematical analysis of eddy-current losses includes the determination of the three

magnetic field components of the EM with the finite-length HCPM. Maxwell’s equations are

considered here:

Figure 20. Calculation and experimental models of the research object.

Figure 21. The EM calculation scheme.
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rotH
!

¼ j
!

þjex
!

, rotE
!

¼ �
∂ B

!

∂t
, j
!

¼ σ E
!

þ V
!

� B
!

� �h i

, div B
!

¼ 0,div j
!

¼ 0, H
!

¼ μ0 B
!

(10)

where B
!

is a magnetic flux density vector, E
!

, H
!

are vectors of electric and magnetic fields,

respectively, V
!

is a rotor velocity vector, σ is an electric conductivity of the stator winding, j
!

is

an induced current density vector, and jex
!

is an external current density vector.

Since there are no currents in the air gap δ, the magnetic field in the air gap is described by the

Laplace’s equation in partial derivatives:

ΔH ¼ 0,
∂
2Hz

∂z2
þ

∂
2Hz

∂x2
þ

∂
2Hz

∂y2
¼ 0,

∂
2Hx

∂z2
þ

∂
2Hx

∂x2
þ

∂
2Hx

∂y2
¼ 0,

∂
2Hy

∂z2
þ

∂
2Hy

∂x2
þ

∂
2Hy

∂y2
¼ 0: (11)

The components Нх, Ну, Нz provide the continuity conditions of the magnetic field lines, while

Нz provides the energy conversion.

The magnetic field on the HCPM surface is given as a normal tension component:

Hz0 ¼ Hz0 cos q1x cos q2y, (12)

where q1 ¼
π
τ , q2 ¼

π
l , q3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q1
2 þ q3

2
p

, τ is a pole pitch, l is a rotor length, and Hz0 is a function

of coercive force and residual magnetic flux density and is determined by their magnetization.

The mathematical description of HCPM is represented as a dependence of the coercive force,

residual magnetic flux density, and magnetization:

B
!

¼ μμ0 M
!

þ H
!

� �

, (13)

where M
!

is the HCPM magnetization vector and μ is the HCPM magnetic permeability.

The solution of Laplace's equations is sought in the form:

Hz ¼ C1shq3zþ C2chq3z
� �

cos q1x cos q2y,

Hx ¼ C3shq3zþ C4chq3z
� �

sin q1x cos q2y, (14)

Hy ¼ C3shq3zþ C4chq3z
� �

cos q1x sin q2y:

The initial conditions determine the integration constants:

1. z ¼ 0

2. z ¼ δ, yC1chq3δþ yC2shq3δ ¼ 0, C1 ¼ �C2thq3δ;

3. divH ¼
∂Hz

∂z þ
∂Hx

∂x þ
∂Hy

∂y ¼ 0—magnetic field continuity conditions.

Basics of High-Speed Electrical Machines
http://dx.doi.org/10.5772/intechopen.78851

39



Then:

Hz ¼ q3 C1shq3zþ C2chq3z
� �

cos q1x cos q2yþ q1 C3shq3zþ C4chq3z
� �

cos q1

x cos q2yþ q2 C3shq3zþ C4chq3z
� �

cos q1x cos q2y:

(15)

Equal terms can be obtained for the same functions sh and ch:

q3C1 þ q1C4 þ q2C4 ¼ 0, q3C2 þ q1C3 þ q2C3 ¼ 0: (16)

Hence, the following is obtained:

С4 ¼ �С1
q3

q1 þ q2
,С3 ¼ �С2

q3
q1 þ q2

¼ �С2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q1
2 þ q2

2
p

q1 þ q2
:

Taking into account the relations for С1,С2,С3,С4, the components of the three field strength

vectors have the form:

Hz ¼ Hz0m chq3z� thq3δshq3z
� �

cos q1x cos q2y,

Hx ¼ �Hz0m
q3

q1 þ q2
chq3z thq3δ� thq3z

� �

sin q1x cos q2y, (17)

Hy ¼ �Hz0m
q3

q1 þ q2
chq3z thq3δ� thq3z

� �

cos q1x sin q2y:

It is obvious that the component Hz is the primary magnetic field for the rotating bearing balls

at l = l1. This component magnetizes the bearing balls and induces eddy-currents in the

bearing. In this case, the bearing is represented as an EM. It is assumed that the pole number

of a given EM is equal to the number of bearing balls (Figure 22). The air gap in this case tends

to zero. It should be noticed that the process of the ball magnetization has a complex character,

taking into account possible interactions between neighboring balls, and the pole number of

the EM cannot be equal to the number of bearing balls.

Figure 22. Calculation scheme of the bearing.
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The resulting bearing magnetic field can be represented by the sum of two magnetic fields:

bearing ball field and bearing cage field: H
!

¼ H1

!

þH2

!

and B
!

¼ B1

!

þB2

!

.

The system of Maxwell’s equations for the bearing is presented as:

rot H
!

¼ jþ jex; rot E
!

¼ �
∂B1

∂t
�

∂B2

∂t
; j
!

¼ σ E
!

þ V
!

� B
!

� �h i

;div B
!

¼ 0,div j
!

¼ 0; H
!

¼ μ0 B
!

:

(18)

The field on the bearing ball surface (primary field) is presented as following:

H1p ¼ Hz0m chq3D0 � thq3δshq3D0

� �

cos q1x cos q2l1: (19)

Solving the system of Maxwell’s equations concerning the intensity of the secondary field,

there is the following:

ΔH2

!

�μ0σ d
H2

!

dt
� rot V

!

�H2

!
� �

 !

¼ �μ0σ d
H1

!

dt
� rot V

!

�H1

!
� �

 !

: (20)

The final solution of this system is not given here. The losses in the bearing cage are deter-

mined based on that j2y ¼ �
∂H2z

∂x .

Losses in the bearing cage are defined as P ¼ j2y
2=σs, where σS is the conductivity of the

bearing cage material. Since the bearing is represented as an EM, the bearing cage field will

create a demagnetizing reaction (armature reaction) that can demagnetize the bearing balls

and induce eddy currents in the bearing balls. By analogy of the eddy-current losses in the EM

with the HCPM, eddy-current losses can be defined as:

Psh ¼ lsd
2
X

n

n¼1

d2

12r

d

dt
B2 cos p a� β

� �� �� �

� �2

: (21)

where r is a specific resistance of the bearing cage material, d is a bearing ball diameter, and p

is the number of pole pairs of the EM, which is equivalent to the bearing.

The developed mathematical equations provide a general understanding of the loss occurrence

processes in the bearing cage. They are obtained with a variety of assumptions, and the main

one is that the number of poles is equal to the number of bearing balls. Therefore, the devel-

oped mathematical apparatus can be used for preliminary loss calculations in bearings and the

selection of their location on the shaft of the EM with the HCPM.

4.6. Winding losses in the high-speed EMs

In addition to energy losses in the stator windings and stator сore, windage losses are impor-

tant to determine the efficiency of high-speed EMs with slotted and slotless stator design.
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Winding loss analysis is considered in different works. In [29], the model proposed takes into

account the effect of environmental pressure on the windage losses. Another model proposed

in [33] describes the winding losses that are analogous to the model proposed by M. Mack,

which has experimental confirmation to use in the EM. In this model, winding losses are

determined by the equation:

Pf ¼ сfπrairΩ
3R4

r l, (22)

where сf is a friction coefficient between rotor end environment, rair is an air density, Rr is a

rotor radius, Ω is a rotational speed [rad/s], and l is a length of the site on which losses are

determined.

This model does not take into account the windage loss dependence on the environment

pressure, the air gap temperature, and the stator and rotor slots, for example in the induction

EMs. Analysis of Eq. (7) shows that the winding losses depend to the rotational speed.

Consequently, the negligence of the air gap temperature, pressure and structural features of

the stator, and rotor can cause errors in calculations and can also lead to incorrect selection of

the rotor design and to decrease the efficiency of the high-speed EM.

Thus, this model needs refinements. For this, two designs are considered: EM with a smooth

rotor and a slotted stator and EM with a slotted rotor and a slotted stator (Figure 23).

Figure 23. EM designs: (а) smooth rotor and slotted stator and (b) slotted rotor and slotted stator.
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The friction coefficient is determined by the Reynolds and Taylor numbers:

Re ¼
R2
rΩ

ς
, Ta ¼

RrΩδ

ς

ffiffiffiffiffi

δ

Rr

r

, сf ¼
1:8

Re

δ

R2

� ��0:25 R2
s:r

R2
s:r � R2

r

, (23)

where ς is a kinematic air viscosity, Rs:r is an initial stator radius, δ is an air gap of the EM, and

Ω is the rotational speed.

The model with a smooth rotor and a slotted stator is initially considered. The space between

the stator and the rotor is represented in the form of two zones: a tooth and a slot, each of

which is characterized by a different air gap.

The friction coefficient for slot zone is considered as following:

сf1 ¼
1:8

Re

δþ δt

R2

� ��0:25 R2
s:r

Rs:r þ δt½ �2 � R2
r

, (24)

where δt is a distance from the tooth to the winding.

For the tooth zone, the friction coefficient is determined from Eq. (9).

Taking into account that the kinematic air viscosity depends on its temperature, the Reynolds

number can be rewritten in a general form:

Re ¼
R2
iΩ

ς T; pa
� � , (25)

where ς T; pa
� �

is a kinematic air viscosity at a certain temperature and pressure, Ri is a rotating

part radius of rotor or shaft, and pa is an air gap pressure.

Taking into account that the air density also depends on the temperature, the windage losses

for the slot zone are determined in the following form:

Pslot ¼
1:8

Re R2ð Þ

δþ δt

R2

� ��0:25 Rs:r þ δt½ �2

Rs:r þ δt½ �2 � R2
r

" #

rair T; pa
� �

Ω3R3
р
l3
zbп
2

, (26)

and, accordingly, for the tooth zone:

Ptooth ¼
1:8

Re R2ð Þ

δ

R2

� ��0:25 R2
s:r

R2
s:r � R2

r

" #

rair Т; pa
� �

Ω3R3
р
l3
zbz
2

, (27)

where z is a number of stator teeth, bz is a tooth width, bslot is a slot width, and rair Tð Þ is an air

density at a certain temperature.

Taking into account that the air temperature is the same over the entire surface of the air gap,

the total windage losses in the design of Figure 23a are defined as:
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PPwindage ¼
1:8

Re R2ð Þ
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(28)

As examples, the energy loss calculations of the EM rotors have been performed at various

temperatures in the air gap. The calculations were carried out using two EMs produced by

Turbec, which are used in microturbine installations T-100: the 100-kW 60,000-rpm EM with a

rotor diameter of 60 mm and the 100-W 500,000 rpm micro-EM with a rotor diameter of 5 mm.

Thus, calculations show that the windage losses largely depend on temperature. With a tempera-

ture increase in the air gap from 20 to 60�C, the windage losses increase by 6–7%. The known

models of windage losses have a significant error because they do not take into account the stator

slots, as well as the temperature influence and pressure in the air gap. Minimal windage losses

occurwhen the inner stator surface is smooth, for example,when slots are filledwith a compound.

Minimization of winding losses caused by the stator slots can be achieved by pouring the

stator teeth with a compound, or by performing closed stator slots, or by inserting a screen

over the entire surface of the air gap. At the same time, the screen will be a technological

complication of the EM design. And if it is made of an electrically conductive material, eddy

currents will be induced in it and will significantly reduce its efficiency.

For the slotted rotor, the winding loss calculation is similar. However, the slotted rotor surface

will cause additional winding losses. Therefore, the rotor and stator surfaces should be

smooth; that is, the slots should be filled with a compound or other nonelectrically conductive

substances with minimal mass parameters.

Minimal winding losses can be achieved by the operation of high-speed EM with HCPM in

vacuum, but it should be taken into account that only certain bearing designs can work stably

in a vacuum.

4.7. Efficiency of the high-speed EMs

The efficiency of high-speed EM is determined by the well-known formula:

η ¼ 100 1�

P

Ploss

Pþ
P

Ploss

� �

, (29)

where η is the EM efficiency,
P

Ploss is the total losses, and P is the EM power.
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The efficiency of modern EMs reaches high values from 90 to 95%. Even the well-known ultra-

high-speed EMs with a rotational speed of up to 800,000 rpm and a power of 50–500 W have

an efficiency of 80–90%. The main losses that significantly reduce the efficiency of high-speed

EM are the stator magnetic core losses, which increase significantly with increasing magneti-

zation reversal frequency, windage losses, and bearing losses. To reduce these losses and

increase the efficiency of ultra-high-speed EMs, various technical solutions are used. For

example, AMMs are used to reduce losses in the stator magnetic core. To reduce the friction

losses in the rotor, various antifriction coatings or vacuuming of the internal EM cavity are

used. To minimize bearing losses, contactless bearings are used.

4.8. Influence of the EM thermal state on the efficiency

As it was shown in the previous sections, the EM temperature has a significant effect on the

losses in various EM active elements. Heating of electrical steel leads to a decrease in its

specific losses; increasing of the rotor temperature leads to an increase in the friction losses;

and heating the winding leads to an increase in resistance. Thus, the EM efficiency is signifi-

cantly dependent on temperature. Therefore, it seems reasonable to evaluate the dependence

of the EM efficiency on temperature. An analysis of the dependence of the EM efficiency on

temperature was made by using the example of the high-speed micro-EM produced by Onera

[12]. The parameters of this micro-EM are presented in Table 5.

It is important to notice that the main consumers of micro-EMs are systems with constant

power consumption such as computer systems, navigation systems of unmanned aircrafts.

This type of load will lead to the fact that with the decrease of the HCPM energy characteris-

tics, the magnetic flux density in the air gap decreases under the temperature influence. In the

calculation result, it was found that for the indicated numerical parameters, the magnetic flux

density in the air gap will decrease by 6% at a temperature of 150�C. Under conditions of

constant input mechanical power and constant electric power consumption, this will lead to an

Parameters Value

Power [W] 55

Rotational speed [rpm] 840,000

Outer stator diameter [mm] 25

Active length [mm] 22

Shaft diameter [mm] 4.5

Efficiency [%] 91

Bearing losses [W] 9.7–9.8

Stator magnetic core losses [W] 0.18

Friction losses [W] 2.63

Winding losses [W] 2.33

Total losses [W] 14.84

Table 5. Parameters of the high-speed micro-EM produced by Onera.
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increase in the linear current load of EM and the current value by also 6%. Taking into account

that the copper resistance at a temperature of 100–110�Сwill also increase by 38%, the winding

losses will increase by 55%.

To evaluate the change in the linear current load and the magnetic flux density, an idealized

linear dependence of the current and magnetic flux density in the air gap of the micro-EM was

adopted. In real EMs, an increase in the linear current load will lead to an increase in the

demagnetizing armature reaction action, to additional winding heating, and, consequently, to

an increase in the resistance caused by this heating. Preliminary calculations show that in the

cold state and 10 min after the start of operation, the winding losses of the real EM can differ by

60–65%. The efficiency comparison of the micro-EM in the cold and heated states (after 10 min of

operation without a cooling system) is presented in Table 6. With the increase in the EM heat

emissions, losses in the active elements increase and, accordingly, the EM efficiency decreases.

For the studied numerical values, the efficiency of the micro-EM decreases by 2.8%. This sug-

gests that in the EM design, the efficiency should be calculated at the operating temperature.

5. Conclusion

In this chapter, basics of high-speed EMs with HCPM are presented. The application areas of

high-speed EMs are shown. The EM classification is proposed to generalize the theory of high-

speed EMs. Practical recommendations for the selection of active and structural components of

high-speed EMs are given. The loss determination in high-speed EMs is presented, including

methods for determining losses in the stator magnetic cores at high frequencies.

The obtained results can be used in practice in the EM design and in further research.
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Losses Temperature of the

active parts is below

23�C

Temperature of the active parts is 100–110�С after

10 min of operation without a cooling system

Stator magnetic core losses [W] 0.18 0.13

Friction losses [W] 2.63 3.02

Winding losses [W] 2.33 3.88

Efficiency without the bearing losses [%] 91.4 88.6

Table 6. The efficiency comparison of the micro-EM in the cold state and after 10 min of operation without a cooling

system.
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