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Abstract

Most decisions in aviation regarding systems and operation are currently taken under
uncertainty, relaying in limited measurable information, and with little assistance of formal
methods and tools to help decision makers to cope with all those uncertainties. This chapter
illustrates how Bayesian analysis can constitute a systematic approach for dealing with
uncertainties in aviation and air transport. The chapter addresses the three main ways in
which Bayesian networks are currently employed for scientific or regulatory decision-
making purposes in the aviation industry, depending on the extent to which decision
makers rely totally or partially on formal methods. These three alternatives are illustrated
with three aviation case studies that reflect research work carried out by the authors.

Keywords: Bayesian networks, prediction, classification, risk, anomaly detection, causal
modelling, uncertainty

1. Introduction

Technical and managerial decision-making is a critical process in any industry and any busi-

ness. Information is a fundamental cornerstone in the decision process, although sometimes its

availability and quality are limited or affected by uncertainty.

Uncertainty refers to the stochastic behaviour of a system and to the uncertain values of the

parameters that describe it. Most decisions in aviation systems and operation are currently
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taken under the assumption that the values of the parameters describing the system perfor-

mance are equal to their estimates. However, this postulation is only valid as long as there are

sufficient data or precise expertise for an accurate estimation of the system parameters. This is

not the case in many occasions, particularly when the system, product or process is new and

limited measurable information about its performance is accessible. Additionally, in many

occasions, decision makers in aviation do not count with the assistance of formal methods

and tools to help them cope with all those uncertainties in the decision-making process,

particularly when it is necessary to evaluate risks or perform causal analysis.

A systematic approach for dealing with uncertainties in aviation and air transport is possible

through Bayesian analysis. Bayesian Networks (BNs) have been broadly applied to decision-

making problems in a wide variety of fields because they combine the benefits of formal

probabilistic methods, understandable easily visual form, and efficient computational tools

when exploring consequences and risks.

In this chapter, we revise the advantages of applying BNs to aviation and air transport

decision-making problems in environments affected by uncertainty. We characterise typical

problems existing in aviation and air transport, which could benefit from this systematisation;

and describe recent research work carried out in this field. More particularly, the chapter

illustrates works performed by the authors regarding:

i. How Bayesian reasoning can support an integrated methodology to assess and evaluate

compliance with system safety goals and requirements when there is uncertainty in the

assessment of systems performances.

ii. How Bayesian networks can be used to evaluate the risk of runway excursion at an

airport and decide whether an airline will be authorised to operate at that airport vis-a-

vis of the operational risk.

iii. How causal analysis through a BN can be used to understand the interdependencies

between factors influencing performance and delay (drivers and predictors) at busy

airports.

2. Bayesian networks for decision-making in aviation

In general, we may consider three main ways that Bayesian networks are currently employed

in causal and risk analysis for scientific or regulatory decision-making purposes in the aviation

industry. While in general decision makers prefer to rely on formal infrastructures to back up

its decisions, the extent up to what they totally or only partially trust on the formal methods is

in the origin of this triple approach.

i. In the first way, the Bayesian reasoning assumes the entire process of evaluation and

decision. In this case, the Bayesian approach applies to all the phases and steps in the

process and estimations, and decisions respond to an overall Bayesian framework. Typi-

cal decision problems normally tackled with this approach addresses questions such as:
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• Should a company be allowed to operate at a new airport?

• Does an on-board system satisfy the prescribed safety objectives?

• Should a new aircraft model be certified and allowed to fly?

Those in favour of this approach sustain that Bayesian reasoning is able to provide such

an all-inclusive and formal scheme to arrive at decisions, and that applying a scientifically

homogenous approach to all the phases of the decision-making process guarantee coher-

ent, objective and solid decisions. Those against this approach claim that with this

approach, the Bayesian analyst is put in charge and takes over the entire process and

endeavour. Although widely applied in other industries, its use is still rare in aviation.

ii. In the second option, Bayesian methods can be used just to estimate probability distribu-

tions. In this case, Bayesian analysis is still a central piece of the decision-making process,

although it is not anymore in charge of the whole process. Typical questions addressed by

this application of Bayesian methods are:

• What are the odds of an aircraft suffering a runway overshoot?

• What is the probability that a flight will experience a delay?

• What is the probability that passengers will lose their flight?

In this case, Bayesian analyst furnishes the quantities and probability distributions that

will help managers to take informed decisions but will not condition their decision,

which might be influenced by other factors. Therefore, the decision process is formally

isolated from the Bayesian analysis.

iii. At the opposite end, Bayesian methods can be used to select or parameterise input

distributions for a probabilistic model. In this case, neither the model nor the decision

process relay on the Bayesian methods. Bayesian analysis is reduced at a basic role and is

used to estimate the input parameters to many complex models, instead of answering

questions directly. This is the simplest application of Bayesian methods in a decision-

making process, and it normally constitutes the first application when Bayesian methods

are introduced in a new industry.

This application is of particular interest when there are too little data available to sustain

statistical analysis, and the only source of available information should be obtained from

expert knowledge. Most decisions in aviation are taken under the assumption that the

values of the parameters describing the system performance are equal to their estimates,

which is only valid as long as there are sufficient data or precise expertise for an accurate

estimation of the system parameters. It is not the case in many situations, particularly

when the system, product or process is new and tiny measurable information about its

performances is accessible. In these cases, BNs represent a framework of causal factors

linked by conditional probabilities, which are elicited from aviation experts. Best-expert

estimates will use the best available and accessible data.

Typical questions answered by this approach are:
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• What is the distribution of partial and total failures of an aircraft component?

• What is the in-service time of an aircraft component?

• What is the uncertainty about the probability of a critical event? and

• How can we characterise uncertainty about the aircraft trajectories or delays?

When talking about the different areas of aviation, the application of Bayesian networks is not

homogeneous. Several respected research groups and authors have initiated the application of

BNs in aviation. In fact, literature nowadays is wide enough to support reviews as the ones

recently performed by Broker in [1] or Roelen in [2], about BN applications for aviation risk

estimation.

Aviation safety and risk analysis are by far the domain where more BN applications can be

found. A thoughtful revision shows that this technique is particularly useful to provide addi-

tional insights into problems of “low probability-high consequence,” such as the aviation

safety domain where events occur very infrequently.

• In [3], Bayesian Belief Networks are applied to model a number of safety defensive

barriers in Air Traffic Control environment from airspace design, through tactical control,

and from the operation of aircraft safety net features to a potential accident.

• In [4], Luxhoj and Coit used Bayesian networks to model a certain aircraft accident type

known as Controlled Flight Into Terrain (CFIT).

• In [5], the authors develop causal models for air traffic using “event sequence diagrams,

fault-trees and Bayesian belief nets linked to form a homogeneous mathematical model

suitable as a tool to analyse causal chains and quantify risks…”.

• Some authors [6] have developed an inclusive aviation safety model to evaluate manage-

ment decisions potential impact.

• Ref. [7] introduces a BN for the evaluation of flight crew performance, and Delphi tech-

nique to complement data from accident reports

• Problems at very low level of detail regarding safety in operational issues have also

benefited from the application of Bayesian methods [8].

• Reducing aviation safety risk is a matter of concern also for NASA, who focuses on the

reasoning of selecting Object-Oriented Bayesian Networks (OOBN) as the technique and

commercial software for the accident modelling [9].

• In [10], a BN analysis model is established by using 10 years of flight crew members’ error

data in China civil aviation incidents to analyse the probability distribution of flight crew

members’ errors in civil aviation incidents analysis.

• Several models have attempted to explain various factors influencing aeronautical acci-

dents: human, organisational, environmental and airport infrastructure factors. The

model by [11] permits to evaluate the influence of these factors and identify the depen-

dence and relationship among them.
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• A very initial attempt to assess aviation security can be found at [12], which addresses the

evaluation and mitigation of security risks in the aviation domain and realises a multi-

dimensional approach of complex systems.

• Bayesian networks are capable of providing real-time safety monitoring functionalities,

like those in [13] that integrates automatic video analysis algorithms and Bayesian models

to detect anomalous behaviours of ATCs and spatiotemporal details about how errors due

to fatigue and distractions eventually lead to near-ground incidents/accidents.

• In [14], Arnaldo et al. used Bayesian inference and hierarchical structures to predict

aircraft safety incidents.

The second domain where more BNs can be found is operational analysis, particularly delays

optimisation. BNs represent a paradigm shift in the study of aviation delays because they have

a structure that is machine-learned from data and do not require assumptions about “causal”

patterns; they can produce estimates even in situations with sparse or limited data, and they

can be used well in advance of the actual flight, as they can predict based on only partial

evidence.

• In [15], the random characteristics of civil aviation safety risk are analysed based on flight

delays, using a BN to build an aviation operation safety-assessment model based on flight

delay.

• The propagation of micro-level causes to create system-level patterns of delay, a problem

difficult to assess by traditional methods, has been assessed with BNs to investigate and

visualise propagation of delays among airports, demonstrating greater predictive accu-

racy than using linear regression [16].

• In [17], a new Bayesian Network algorithm, Negotiating Method with Competition and

Redundancy (NMCR), demonstrate excellent performances in estimating of arrival flight

delay, especially in flight chains mainly operated in China.

• The NextGen Advanced Concepts and Technology Development Group of the FAA (Fed-

eral Aviation Administration) have tackled this problem by developing Bayesian Net-

works for Departure Delay Prediction [18].

• The aviation supply chain has also been modelled through Bayesian networks to minimise

delays causing factors [19].

• Another relevant case on airport delay analysis can be found in [20]. This chapter

develops a functional analysis of the operations that represent the aircraft flow through

the airport airspace system. By considering the accumulated delay across the different

processes and its evolution, different metrics are proposed to evaluate the system’s state

and its ability to ensure an appropriate aircraft flow in terms of time saturation.

Another area that has received attention from Bayesian experts is the modelling of airline risk

considering reliability data, maintainability data and management data.

• Some attempts have been made to approach software health management based on a

rigorous Bayesian formulation to monitor the behaviour of software and operating
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system, to perform probabilistic diagnosis, and to provide information about the most

likely root causes of a failure or software problem. Three realistic scenarios from an

aircraft control system were considered: (1) aircraft system-based faults, (2) signal han-

dling faults, and (3) navigation faults due to inertial measurement unit (IMU) failure or

compromised Global Positioning System (GPS) integrity [21].

• Ref. [22] covers the construction of a probabilistic risk analysis model for the jet engines

manufacturing process, based on BN coupled to a bow-tie diagram. It considers the effects

of human, software and calibration reliability to identify critical risk factors in this pro-

cess. The application of this methodology to a particular jet engine manufacturing process

is presented to demonstrate the viability of the proposed approach

• BN has also been designed for fault detection and isolation schemes to detect the onset of

adverse events during operations of complex systems, such as aircraft and industrial

processes [23].

• Another relevant work on fault diagnosis is the one by [24] to study automatic fault

diagnosis of IFSD (in-flight shutdown).

• In the area of maintenance, BNs are also applied for improving Human reliability analysis

(HRA) in visual inspection [25].

Finally, one of the most attractive probabilistic modelling framework extensions of Bayesian

Networks for working under uncertainties from a temporal perspective, Dynamic Bayesian

Networks (DBNs), has also had some applications in aviation.

• DBNs have been used to model abnormal changes in environment’s data at a given time,

which may cause a trailing chain effect on data of all related environment variables in

current and consecutive time slices.

• In [26], an algorithm is proposed for pilot error detection, using DBNs as the modelling

framework for learning and detecting anomalous data, based on the actions of an aircraft

pilot, and a flight simulator is created for running the experiments. The proposed anom-

aly detection algorithm has achieved good results in detecting pilot errors and effects on

the whole system.

• Another application to dynamic operational problems can be found in [27], where the

variables which affect the Helicopter’s real-time aviation decision process are represented

on Structure Variable Discrete Dynamic Bayesian Network, building up a model that

could be used in real-time aviation decision process in perpetual variational air combat.

• From a point of view, less operational and more economical, BNs also help the aviation

industry and dynamically recommend airline managers relevant contents based on

predicting passengers’ choice to optimise the loyalty.

The remaining sections of the document illustrate the application of each one of the three

options, enumerated at the beginning of this section, through three aviation case studies that

reflect research works carried out by the authors.

Bayesian Networks - Advances and Novel Applications26



3. Case study 1: Bayesian framework for safety compliance assessment

and acceptance under uncertainty

In [28], we present a good example where Bayesian reasoning assumes the entire process of

evaluation and decision. This work presents an integrated methodology, based on Bayesian

inference, to assess and evaluate compliance with system safety goals and requirements when

there is uncertainty in the assessment of systems performances.

Compliance assessment process is addressed in this work as a Bayesian decision problem:

B ¼ A;N;P;W;Uh i, (1)

where

• A states for the decision maker actions space, ai, A ¼ a1; a2;…anf g

• N represents the space of possible “states of nature”, i.e. magnitudes about which there is

uncertainty, N ¼ Ns1;Ns2f g ¼ Cs;Cs
� �

• P represents the space of uncertainties about the state of nature of the system,

P ¼ P Ns1ð Þ;P Ns2ð Þ;f g ¼ P Cs jD, Ið Þ;P Cs jD, I
� �� �

• W represents the set of decision outcomes, W ¼ W11;W12;…;W ij;…;Wnm

� �

• U represents the set of utility functions, U ¼ u11; u12;…; uij;…;Wnm

� �

Each combination ai;Nsið Þ∈C ¼ A x N determines a consequence of a course of action for the

decision maker. The utility function uij cð Þ defines the predilections of the decision maker on a

course of action ai for a system with a state of safety complianceNsj.

The overall process of safety compliance assessment is addressed through a Bayesian approach

as illustrated in Figure 1. The rectangle at the left-hand part of the figure represents a decision

node, which displays the three potential actions, ai, which the decision maker can take as a

result of the safety compliance process:

• a1 - Judge the system compliant;

• a2 - Judge the system as non-compliant; or

• a3 - Judge the information insufficient.

The circles denote random nodes, which represent the “states of nature”, that is, the actual

state of system compliance, Nsj, where

• Ns1 ¼ Cs; Ns2 ¼ Cs

Being the notation of Cs the event that the system is actually compliant, whereas Cs denotes

the event that the system is not actually compliant. The uncertainties in the states of nature Pj
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are provided by the Bayesian estimation process. The belief or uncertainty about the compli-

ance state of the system Cs is dependent on the data D and information I available.

• P1 ¼ P Ns1ð Þ ¼ P Cs jD, Ið Þ;

• P2 ¼ P Ns2ð Þ ¼ P Cs jD, I
� �

¼ 1� P1

Each of the branches of the tree represents the set of possible (unpredictable) outcomesW ij that

can occur under each action taken by the decision maker. The six possible outcomes, in this

case, correspond to:

• W11: The system is stated compliant and it is so;

• W12: The system is declared compliant although it is not;

• W21: The system is stated non-compliant although it is truly trustable;

• W22: The system is declared non-compliant and it is so;

• W31: The decision maker has no enough information although the system truly compliant;

• W32: The decision maker has no enough information and the system is in fact non-

compliant.

Safety compliance is assigned a probability of being true, which represents the decision maker

uncertainty (or state of knowledge), about its truth or falsity. Namely, the uncertainty on the

state of nature of the system compliance considering previous knowledge and information is

expressed as: P Nsnð Þ ¼ P Cs jD, Ið Þ, where a proposition D stands for data and I stands for

background information. This framework subscribes to the concept that probability is not a

Figure 1. Bayesian decision tree for safety acceptance of a system.
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frequency, rather a measure of uncertainty, belief or a state of knowledge. That is, probability

allows doing plausible reasoning in cases where we cannot reason with certainty.

The result is the predictive probability that the system meets the safety objectives for what it

has been designed, considering the envelope of data, knowledge and information gathered

from the system during its design, production and operation.

To that aim, compliance assessment is redefined as the determination of the degree of belief in

the fulfilment of the applicable failure probability objectives by the candidate system, for all

failure conditions N. The whole system is considered compliance if all the λn satisfy their

pertinent failure safety objective On: In this step, the principles of Bayesian inference are

applied to improve the estimation of the system/ component rate of failureλn.

The conditional probability distribution P λn jD, Ið Þ describes then the uncertainty in the param-

eter under study (λn) considering new events D and the prior understanding of the system I.

It represents the sampling distribution of the rate of failure conditional upon the observed data

and information and is precisely the form required for decision-making without the need for

approximation. It is determined using the Bayes’ theorem:

P λn jD, Ið Þ ¼
P Djλn, Ið Þ � P λn jIð Þ

P DjIð Þ
(2)

where

• P λn jD, Ið Þ corresponds to the posterior distribution. The posterior distribution will the

foundation for all inference about the parameter λn;

• P Djλn, Ið Þ corresponds to the likelihood distribution, sometimes referred as sampling;

• P λn jIð Þ is the prior distribution; and

• P DjIð Þ is the failure of unconditional or marginal probability D.

Epistemic uncertainty is incorporated through the Prior distribution P λn jIð Þ. It epitomises the

degree of belief in model parameters λn and defines an initial state of knowledge. Prior

distribution can be non-informative or informative. Non-informative priors include very little

fundamental info regarding the unknown and facilitates data dominate the posterior distribu-

tion. Other terms for non-informative priors are diffuse priors, vague priors, flat priors, formal

priors, and reference priors. Informative priors provide essential information about the

unknown parameter. Historical data and expert judgement can be incorporated into the prior

probability distribution. Although the prior can take the form of any distribution, conjugate

priors simplify the evaluation of the previous equation and allow analytical solutions avoiding

the use of numerical integration. In practice, the Bayesian approach often leads to intractable

integrals and numerical simulation procedures need to be adopted. Normally, due to the

complexity of the distributions, the solution of Equation has to be accomplished by numeri-

cally Markov Chain Monte-Carlo (MCMC) simulation.

The resulting posterior distribution, P λn jD, Ið Þ, stands for updated knowledge about λn and

is the basis for all inferential statements about λn:
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The distribution P Djλn, Ið Þ represents the chance of the data D and model aleatory uncer-

tainties. It represents inefficiencies in the data collection as well as the failure mechanism or the

failure model. Likelihood functions commonly used in safety assessment are binomial,

Poisson, or exponential ones.

Finally, P DjIð Þ is just a normalisation constant.

P Csn jD, Ið Þ can be inferred from the posterior distributions P λnjD, Ið Þ through marginalisation

of the parameter λn, as indicated in the following equation.

P Csn jD, Ið Þ ¼

ð
^

P On,λn jD, Ið Þ:dλ ¼

ðOn

O

P Onjλnð ÞP λnjD, Ið Þ:dλ¼

ðOn

O

P Onjλnð Þ
P Djλn, Ið Þ � P λn jIð Þ

P DjIð Þ
:dλ (3)

Eq. (3) computes an average of the model uncertainty integrating the sampling distribution

P Onjλnð Þ over the posterior distribution P λn jIð Þ. The output is a predictive probability of a

failure condition meeting its safety objective.

This Bayesian framework espoused is exemplified over a practical case. This practical case

corresponds to a real situation with current hypothesis, requirements and data: a new ANSP

initiates the provision of Tower Control and CNS (Communications, Navigation and Surveil-

lance) services at the new international airport of Castellón (Spain).

The service provider is subject to supervision by the National Aeronautical Authority and

must demonstrate compliance with applicable safety requirements. At Castellón airport, air

navigation service comprises ground-based radio navigation aids, very high-frequency omni-

directional range (VOR), distance measuring equipment (DME), and precision approach and

landing aids, instrument landing system (ILS). The functionalities of each of these systems and

the applicable requirements are regulated at international level. Providers of air navigation

services must prove that their operating procedures and working methods are compliant with

the prescriptions and standards of ICAO Annex 10. They must guarantee the accuracy, conti-

nuity, availability and integrity, as well as the quality level, of their services.

4. Case study 2: runway excursion

In [29], the authors work on a representative example of the option where Bayesian methods

are used to estimate probability distributions. Statistics about commercial aircraft fleet accident

produced by Boeing (2012) states that around 37% of the accidents took place during landing

and final approach flight phases, and among them, runway excursions accounted for 25% of

all accidents. In particular, within the runway excursions, those that are produced by a too

long landing (overrun excursion) represent 96%, and the 10-year moving average during 1992–

2011 indicates a deteriorating tendency.
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This section summarises the work done by the authors to develop a Bayesian model to

evaluate the runway overrun risk at a given airport and operational conditions. The model

allows comparing the probability of excursion at landing at several runways or airports. The

model relates overrun probabilities with possible generating factors, then suggesting the

outline of mitigation actions.

The probabilistic influence diagram for runway overrun Bayesian network (see Figure 2) is

based on the information from safety authorities, operators and manufacturers [30–32]. The

network combines expert judgement and data analysed with the aid of the GeNIe SW.

The critical variable chosen as network outcome is “the remaining runway at 80 kt (I), mea-

sured in ft”, since, as indicated by the FSF SLGs [33], the risk of a runway overrun increases

significantly if when there are just 2000 ft. (610 m) of landing distance available (LDA) the

aircraft is not decelerated below 80 kt. The nodes in the network account for:

• Relevant Runway. It is a categorical variable: (A).

• Crosswind component at threshold. Unit of measurements is knots: (B).

• Speed of the aircraft which it is discretised to the nearest integer in the avionic: (kt).

• Tailwind component at threshold. Unit of measurements is knots: (C).

• Stabilised/unstabilised state at the approach: (D).

• Maximum reverse thrust, which describes the maximum reverse thrust is applied during

ground roll. It is measured in seconds: (E).

• Autobrake state at landing, which has three values: low, medium, and no autobrake: (F).

• Difference between the Indicated AirSpeed (IAS) and the Final Approach Speed (Vapp): (G)

Figure 2. BN for overrun events.

Bayesian Networks for Decision-Making and Causal Analysis under Uncertainty in Aviation
http://dx.doi.org/10.5772/intechopen.79916

31



• Aircraft height at threshold, measured in feet (ft): (H).

The safety issue analysed in this work is among the group of most frequently reported

accident/incident types all over the world, and it is considered as a big threat to aviation safety.

Runway excursions take place with very low frequency, but their consequences may be quite

severe. Very low probabilities of occurrence are an added challenge for a risk analyst. Reduc-

ing landing overruns is a priority for international aviation organisations that are actively

investigating and proposing safety strategies to contain this risk.

The work carried out by the authors in this study uses public information provided by safety

agencies, operators and manufacturers; as well as expert judgement and data to create an

influence diagram and a probabilistic model.

The model is illustrated with a case study in which three runways are benchmarked in terms of

runway excursion risk. The critical event considered to evaluate the risk of runway excursion

was the probability that the aircraft not being below 80 kts when just 2000 ft. (610 m) of LDA

remains Pr (I < 2000). The case study is a representative of the decision problems, and airline

has to cope with when opening new routes and evaluating operation at new airports or with

new fleet. To illustrate the usability of the model and its benefits, the case study uncovered the

following issues:

• For this specific case study, the Bayesian network and the supporting data allow discarding

correlation between cross and tailwind components.

• Although in general, landing with windy, both crosswind and tailwind components,

increases the probability of unstabilised approach, however, tailwind influence is not so

determinant at runways 2.

• The variables with the toughest effect on the lasting runway at 80 kt were:

i. the LDA, available landing distance,

ii. the used of the autobrake system, and

iii. the difference between the Vapp and the IAS at the threshold.

• Height at the threshold and maximum reverse thrust variables does have a minor effect on

the risk of excursions at the three compared runways.

• The network faithfully reflects operational aspects the propensity to pitch down prior to

the threshold to increase the distance available for landing, commonly known as “ducking

under” effect.

• The probability of slowing the aircraft at 80 kt in the last 2000 ft. of the runway rises as

wind, both components crosswind and tail, increase, except for runway 2.

• Crosswind results are coherent with normal operations. With a severe crosswind, the use

of the autobrake system is recommended, since it is more difficult to control and deceler-

ate the aircraft.

• Unstabilised approaches are prone to the most hazardous conditions.
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• Longer periods of maximum reverse thrust operation, favour reduction of remaining

runway at 80 kt, and consequently have a negative effect on risk of runway excursion.

Prolonged operation of the maximum reverse thrust may indicate difficulties to decelerate

the aircraft during the ground roll. This variable could then be used as a proxy for runway

excursion risk by the airlines Flight Data Monitoring (FDM) teams.

• Runway excursion risk increases with longer operation of reverse thrust, which might be

an indicator of difficulties to slow down during the ground run. Accordingly, it is

recommended to consider this variable as a precursor of runway excursion risk, and

closely monitored it in the Airline’s Flight Data Monitoring (FDM) programs.

5. Case study 3: airport operation uncertainty characterisation

In [34], the authors analysed the aircraft flow through the Airport focusing on the airspace/

airside integrated operations and characterising the different temporal aircraft operation mile-

stones through the airport based on an aircraft flow’s Business Process Model and Airport

Collaborative Decision-Making methodology. Probability distributions of the factors influencing

aircraft processes are estimated, as well as conditional probability relationship among them. The

work turned up in a Bayesian network, which manages uncertainties in the aircraft operating

times at the airport. This case study constitutes a representative example of the third manner

Bayesian networks are currently employed decision-making purposes in the aviation industry.

The work is based on the collection and analysis of nearly 34,000 turnaround operations at the

Adolfo Suárez Madrid-Barajas Airport and concluded with several lessons learned regarding

the characterisation of delay propagation, time saturation, uncertainty precursors and system

recovery.

The BN structure is represented in Figure 3 and the network variables. It was organised in

different layers attending to the nature of the data to facilitate the understanding of the causal

relationships among influence parameters. Colours in Figure 3 represent the different BN layers.

• Nodes 1–5 refer to meteorological conditions.

• Nodes 6–13 count for variables regarding the arrival airspace: timestamps and congestion

metrics (throughput, queues and holdings).

• Nodes 14–15, 26 and 38–39 refers to the airport infrastructure.

• Nodes 16, 22–25 and 40 account for the operator, aircraft, route and flight data.

• Nodes 17–21, 27–37 and 41–42 include data about airside operational times and flight

regulations

• Nodes 43–49 stand for delay causes.

The probabilistic Bayesian Network is able to predict outbound delays probability distribution

given the probability of having different values of the causal control variables, and by setting a
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target to the output delay, the model provided the optimal configuration for the input nodes.

The main outcomes of this work were:

• the statistical characterisation of processes and uncertainty drivers and

• the causal model for uncertainty management (BN).

The case study showed that considering the 34,000 aircraft operations analysed Madrid Airport:

• Arrival delay increases and accumulates its impact over the day, due to network effects.

• However, departure delay does not follow arrival delay’s pattern.

• The airport is capable of absorbing a fraction of the arrival delay.

• The main potential drivers for delay include:

i. time of the day,

ii. congestion at ASMA,

iii. weather conditions,

iv. amount of arrival delay,

v. scheduled duration of processes,

vi. runway configuration,

Figure 3. BN model to explain the interdependencies between factors that influence delay performance and system

saturation.
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vii. airline business model,

viii. handling agent,

ix. aircraft type,

x. route origin/destination, and

xi. existence of ATFCM regulations.

• Departure delay is highly influenced by the event of longer duration, which at the same

time, are the event offering greater possibilities for recovery delays.

6. Conclusions

As stated at the introduction of this chapter, important decisions in aviation systems and

operation are currently taken in less than optimal circumstances, under high levels of uncer-

tainty, with only limited amount of data and reliable information, and without the assistance

of formal methods and tools.

Based on a thoughtful revision of the available the literature, to determine what domains in

aviation and air transport Bayesian Networks applications, the chapter characterises the three

main ways that Bayesian networks are currently employed for scientific or regulatory decision-

making purposes in the aviation industry, depending on the extent to which decision makers

rely totally or partially on formal methods:

i. Bayesian reasoning assumes the entire process of evaluation and decision.

ii. Bayesian methods are used just to estimate probability distributions.

iii. Bayesian methods are used to select or parameterise input distributions for a probabilistic

model.

These three alternatives have been illustrated with three case studies that reflect research

work carried out by the authors and accounts for the following research questions:

iv. Use of Bayesian decision theory under uncertainty to evaluate compliance with system

safety goals and requirements.

v. Runway excursion risks evaluation at an airport, using Bayesian networks to decide

about airline initial operation considering the operational risk.

vi. Understand the interdependencies between factors influencing performance and delay

(drivers and predictors) at busy airports with using Bayesian networks.

In this work, the authors pretend to highlight the advantages of Bayesian networks as a useful

systematic approach to help decision makers to cope with all those uncertainties and difficulties

in the decision-making process, particularly when it is necessary to evaluate risks or perform

causal analysis.
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