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Abstract

This work was conducted to present some studies that show the behavior of Listeria

monocytogenes in meat, according to intrinsic and extrinsic factors. The understanding of
factors that affect the survival and growth of L. monocytogenes in meat, such as tempera-
ture, pH, acid, salt, water activity or modified atmosphere packaging, is crucial to develop
strategies for food operators to reduce and prevent Listeria contamination and growth.
The knowledge of L. monocytogenes behavior according to its physiological and ecological
characteristics, under all probable conditions, will support risk assessors to find strategies
to control this ubiquitous bacteria in food industry and food service. The Regulation (EC)
No 2073/2005, reviewed by the Regulation (EC) No 1441/2007, does not establish the limits
for L. monocytogenes in fresh meat. However, it is generally accepted a level of 100 cells on
fresh meat, except for some risk groups. Food business operators and authorities can use
predictive microbiology models as important tools to model bacterial growth in quantita-
tive microbial risk assessments.

Keywords: Listeria monocytogenes, meat, modified atmosphere packaging (MAP),
antimicrobial agents, predictive microbiology

1. Introduction

Meat is a protein food commodity with a significant water content that makes it a great matrix

susceptible to bacterial growth [1]. Since meat forms part of the dietary habits of consumers,

several strategies to improve its safety, shelf-life and quality have been studied in the recent

years.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



The genus Listeria includes a group of Gram-positive psychrotrophic bacteria that can be isolated

from a large variety of environmental sources such as water, soil, foodstuffs, animals or humans

[2, 3]. Also, Listeria can colonize various inert surfaces (e.g., surfaces of foodmachinery) [4]. Genus

Listeria includes nonsporulating, catalase positive, Voges-Proskauer positive, indol and oxidase

negative, facultative anaerobic rods that show motility at 25�C. Listeria can also grow in a large

variety of conditions like high salt concentrations, low water activity, broad pH range (pH 4.5–9)

and broad range of temperature (0–45�C, optimum 30–37�C) [3, 5]. This genus Listeria includes

several species such as L. monocytogenes, L. ivanovii, L. innocua, L. welshimeri, L. seeligeri, L. grayi, L.

marthii, L. rocourtiae, L. leichmannii, L. weihenstephanensis, L. floridensis, L. aquatica, L. cornellensis, L.

riparia and L. grandensis [6]. Among them, L. monocytogenes is the most important due to its

pathogenicity that affects animals and humans. The ingestion of contaminated foods is the most

important source of human infection. According to somatic (O) and flagellar (H) antigens, 13

serotypes of L. monocytogenes have been recognized and identified alphanumerically as 1/2a, 1/2b,

1/2c, 3a, 3b, 3c, 4a, 4ab, 4b, 4c, 4d, 4e and 7. Serotypes 1/2a, 1/2b and 1/2c are the most frequently

isolated from both foodstuffs and food processing areas [6, 7]. Concerning the different kind of

implicated food vehicles of listeriosis outbreaks, cooled meats, ready-to-eat foods, cheese, smoked

fish and seafood seem to be more susceptible to L. monocytogenes development [8–10]. According

to [9], in 2016, a total of 0.47 cases of listeriosis per 100,000 population was reported with an

incidence of about 10% compared to the previous year. In addition, mortality achieved 16%

among the confirmed cases. For most healthy people, listeriosis does not imply more than a

threat, limited to gastrointestinal symptomatology ended in 36–48 hours. However, life-

threatening infections mainly occur in high-risk populations, including pregnant women, neo-

nates, infants, elderly and individuals with compromised immune systems [10]. Clinical features

of listeriosis have considerable variability and can be confused with other infections. Sometimes,

gastrointestinal manifestations as primary infection are observed. These digestive manifestations

are usually self-limited and spontaneously resolved [11]. L. monocytogenes has a tropism for the

central nervous system causing meningitis. Sepsis without a localized infection is the most

common presentation in patients with deficient immune systems [12]. Since L. monocytogenes is a

microorganism of ubiquitous nature, meat and meat products may become contaminated

throughout contact with raw materials, processing environment and at retail markets [4], L.

monocytogenes can adhere to the surfaces forming biofilms [13], which consist of cells and extra-

cellular polymeric materials that protect bacteria and lead to its survival and growth. Indeed, L.

monocytogenes showed some resistance against biocides [13] and temperature-dependent resis-

tance to phages. Therefore, finding alternative methodologies to avoid the contamination and

further survival and growth of L. monocytogenes are important requests of meat industry [14].

The Regulation (EC) No 2073/2005, reviewed by the Regulation (EC) No 1441/2007, does not

establish the limits for L. monocytogenes in fresh meat. However, a level of 100 cells on fresh

meat, except for some risk groups, is generally accepted.

This chapter provides a brief background on L. monocytogenes as an important foodborne

pathogen and describes the main factors, such as temperature, pH, acid, salt, water activity or

packaging, that influence its behavior in meats. There will be referred some control strategies

for control of survival and growth of L. monocytogenes and the advantageous use of predictive

microbiology programs.
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2. Factors related to survival and growth of L. monocytogenes in meat

2.1. Influence of pH

The optimal pH growth of L. monocytogenes is between 6 and 8 [15]. However, L. monocytogenes

can adapt, grow and survive in acid environments. Its resistance depends on other ecological

factors and its physiological condition. The influence of the pH in the growth of L. monocytogenes

was largely studied [1, 16]. With reference to [1], it was shown that ultimate pH (normal and

DFD meats) influenced significantly the growth of L. monocytogenes inoculated on beef samples

stored at two temperatures (4 and 9�C). The growth of L. monocytogenes was higher on DFD

meat, revealing the effect of the ultimate pH with evident dependence of the storage tempera-

ture. In fact, at 4�C, no growth of L. monocytogenes was observed on meat with normal ultimate

pH, but on DFD meat, this bacteria achieved levels of 5.5 log CFU/g in vacuum-packed samples

at day 14 of storage. At this time, levels of 8 log CFU/g was obtained in vacuum-packed meats

stored at abusive temperature (9� C) [1].

It has been shown that tolerance to low pH can be induced in L. monocytogenes by exposure to

sublethal pH conditions. During the adaptation period, L. monocytogenes synthesizes a set of

proteins that allows it to survive under stress conditions. Thus, according to [17], it was

evidenced the existence of proteins, using two-dimensional gel electrophoresis, which are only

present in acid stress conditions. The activation of several genes responsible for the codification

of the proteins that confer resistance in pH stress conditions has been discussed by several

authors [18, 19]. The stress sigma factor (σB) has been referred as responsible for L. monocytogenes

resistance, although other genes are also involved in the resistance mechanisms [19, 20].

The resistance of L. monocytogenes to acid conditions may compromise the safety of several

foodstuffs with low pH. It should be taken into consideration especially in foodstuffs with a

long shelf-life in which survival microorganisms might be associated to an outbreak.

2.2. Osmotic stress

The resistance of L. monocytogenes at low aW values depends on environmental factors as well

as its physiological condition. Most of the reports assessed the osmotic resistance together with

other factors such as temperature or pH. [21] reported that minimum aW value required for L.

monocytogenes growth generally increased with the reduction of temperature. The range of aW

of L. monocytogenes that allows growth is variable. According to [22], it was showed that aW

resistance depends on the initial counts of L. monocytogenes in broth. Thus, at low contamina-

tion (between 1 and 20 CFU/ml), an inhibition of L. monocytogenes was observed at aW values

above 0.975. However, the critical aW for L. monocytogenes growth was set at 0.965 at high

contamination levels (between 500 and 1000 CFU/ml). With reference to [23], the authors

inoculated 107 CFU/ml in Mueller-Hinton broth at three levels of aW (0.91, 0.95 and 0.97) to

study the effect of aW factor. Although a reduction, of about 1 log CFU/ml, was observed after

incubation for 4 hours at 0.97 of aW, L. monocytogenes survivors developed after 24 hours of lag

phase, showing that can adapt to the osmotic stress condition. L. monocytogenes is tolerant to

NaCl, and it was capable to grow in 25.5% and survived for 1 year in 16% NaCl [24].

Modeling the Behavior of Listeria monocytogenes in Meat
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The adaption of L. monocytogenes to osmotic stress is associated to three main mechanisms:

induction of proteins, accumulation of solutes as osmoprotectants and the stress sigma factor.

The induction of proteins has been observed by [25] throughout electrophoresis analysis.

Although the mechanisms are not clearly understood, some genetic interference has been

reported by [26]. The accumulation of osmoprotectants to maintain the osmotic balance such

as glycine betaine, proline betaine, acetyl carnitine or carnitine was described by [27]. The

amount of each accumulated osmolyte by the cell appeared to be dependent of the growth

media osmolarity. All of them play an important role in the osmoprotection, although with

reference to [28] observed that carnitine is not as effective as glycine betaine in contributing to

either salt or chill stress responses of L. monocytogenes. The stress sigma factor is induced upon

exposure of Listeria to several stress conditions and improves the resistance of Listeria by

regulation the production of protective substances [29].

2.3. Temperature

L. monocytogenes is capable to survive and to multiply over a wide range of temperatures. The

lower limit for the growth of L. monocytogenes in food matrices with a high content of nutrients

and neutral pH is around 0�C. With reference to [1], the final storage of air and vacuum-packed

beef samples stored at abusive temperatures (9�C) produced higher (2–3 log CFU/g) counts of L.

monocytogenes than observed in samples stored at 4�C. The presence of L. monocytogenes in

refrigerated meat products during the product shelf-life has been reported by [30]. Although

refrigeration is a common conservation method, the indiscriminate use of cold, that is, in sliced

dry-cured meat products [23] may improve the survival of L. monocytogenes [31] reported that L.

monocytogenes has grown in air-packed beef stored at 5�C up to 16 days. The lag phase is variable

according to the environment temperature and may be associated to the physiological modifica-

tion of Listeria to survive at low temperatures. The changes in the membrane composition at low

temperatures may lead to a change in the membrane lipid composition in order to maintain the

fluidity required for proper enzymatic activity and solute transport. Growth at low temperatures

also results in an increase in the percentage of unsaturated fatty acids to improve the membrane

fluidity [32].

Low temperatures lead to changes in gene expression and induction of proteins named cold

shock proteins in response to temperature shocks. In consequence, this adaptation of Listeria

implies changes in its gene expression [33]. As previously discussed, the accumulation of

solutes such as glycine, betaine and carnitine acts as a cryoprotectant. Moreover, the role of

the alternative sigma factor B (σB) is associated to the resistance of L. monocytogenes at low

temperatures as it may be involved in the stimulation of the genes responsible for the synthesis

and accumulation of the cryoprotectant solutes [34].

2.4. Packaging

The growth of L. monocytogenes is scarcely affected by anaerobic or oxygen-reduced atmosphere.

According to [16, 35], modified atmosphere packaging (MAP) systems may reduce the survival

and growth of L. monocytogenes by the presence of carbon dioxide in modified atmosphere

packaging (MAP). In fresh beef, MAP with 60% CO2: 30% O2: 10% N2 prevented growth at 4�C
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for more than 2 weeks of storage. Although regarding vacuum packaging, this preservation

methodology seems not affecting the growth of L. monocytogenes as observed by [16]. With

reference to [35], it was showed that L. monocytogenes survives better in vacuum packaging than

in air-packed beef samples. According to [36], neither L. monocytogenes grow after 42 days of

storage nor significant reductions were observed in inoculated vacuum-packed beef stored at

4�C [37] observed L. monocytogenes growth in vacuum-packaged beef stored at 0 and 5�C. They

indicated that growth of this bacteria on beef depends on the storage temperature, pH and the

type of tissue (fat or lean). Although L. monocytogenes grows at both temperatures, a scarce lag

period was observed in beef stored at 5�C. Similarly, [35] observed an increase of lag phase of L.

monocytogenes in beef samples stored at 4�C compared to those stored at 9�C. In a study with

pork cuts [38] stored at mean refrigerator temperatures did not increase the populations of L.

monocytogenes over 2 log CFU/g in the end of product shelf-life. However, at abusive tempera-

tures, microbial counts were higher than 3 log CFU/g for some cases, which required a more

severe heat inactivation treatment before consumption. According to the lag phase of L.

monocytogenes in vacuum-packed beef at 0�C, it was extended until 60 days. Regarding the type

of the tissue, a faster growth of L. monocytogenes was observed in fat than in lean that may be

associated to the differences of pH of both tissues. In consequence, to improve the beef safety

against L. monocytogenes, the storage at low temperatures and vacuum packaging must be

associated to other barrier systems such as bacteriocins or essential oils [39].

3. Strategies for L. monocytogenes growth control in meat

Classically, the main methodologies for fresh meat preservation are chilling and freezing, but

technologies such as packaging systems like modified atmosphere packaging (MAP) and

active packaging (AP) or use of natural antimicrobial compounds have arisen to improve its

safety and quality.

Currently, consumers’ growing concern about chemical hazard in foods reflects an increased

awareness about the harmful effects that they may have on human health. In consequence, the

consumers’ demand on more healthy and natural foods, leading food industry to use natural

substances such as plant extracts, essential oils, chitosan and organic acids to satisfy this green

consumering tendency.

The use of essential oils (EOs) to control L. monocytogenes has been studied by several authors.

With reference to [40], the antimicrobial effect of thyme EO against L. monocytogenes in minced

beef during 12 days of storage at 4�C was studied, and about 2 log CFU/g reduction of L.

monocytogenes counts was observed after 2 days of storage. Although an increase of L.

monocytogenes counts was found after 6 days of storage, indicating a potential of its adaptation

to the EO. Similar results were observed by [41] in minced meat inoculated with thymus EO,

although concentrations of thymus EO at 0.25 and 1.25% decreased progressively the counts of

L. monocytogenes up to 15 days of storage at 7�C.

In a study of [39] rosemary EO sprayed in beef samples presented a greater inhibitory effect

against L. monocytogenes compared to thymus EO was reported. This fact can be related to the
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chemical composition of this EO since the concentration of phenolic compounds (i.e., thymol)

was lower than the obtained in rosemary EO. With reference to [42], an antimicrobial effect of

oregano, cinnamomum, rosmarinus, salvia and thymus EO against L. monocytogenes in meat-

balls stored at 4�C was observed, while the extension of the antimicrobial effect varied

according to the added EO and its concentration. A reduction of 1 and 2 log CFU/g, on

average, was observed when concentrations of about 1 and 2% were added, respectively. It

indicates that the antimicrobial effect of EO in foodstuffs is not enough to guarantee the safety

of meat in case of high contamination. In addition, the negative impact on sensory acceptance

was also indicated by the authors.

Regarding active packaging, the addiction of several substances with antimicrobial effect such

as organic acids, chitosan or nisin among others has also been studied to improve meat safety

against L. monocytogenes. With reference to [43], the authors observed that the use of chitosan

diluted in acetic acid or lactic acid as coating in highly contaminated ready-to-eat roast beef

(6.5 log/CFU) is useful to control L. monocytogenes. The use of sodium lactate and sodium

diacetate in edible coating in combination with polysaccharide-based edible coatings have

been studied by [44] in chilled and frozen roasted turkey. Although organic acids decreased

the counts of L. monocytogenes, its combination with chitosan increased the antimicrobial effect.

With reference to [45] who evaluated the decontaminating efficacy of lactic acid (2%), potas-

sium sorbate (1%), sodium hypochlorite (200 ppm) and ethanol (10%) sprayed on the surface

of meat previously inoculated with 100 μL of a suspension of L. monocytogenes (1.5� 104 CFU/g),

the authors observed that samples treated with lactic acid showed significantly lower counts

than the controls and other treatments. Lactic acid was shown to be promising in the control of L.

monocytogenes presenting an early bactericidal effect.

The use of Lactobacillus sakei to control L. monocytogenes in fresh beef was reported by [46].

Incorporation of lactic acid bacteria into sodium-caseinate films protected beef by lowering the

growth of L. monocytogenes during storage under abusive temperatures. This strategy could be

useful to guarantee the safety of fresh beef along the food chain in which temperature fluctu-

ations may occur.

Bacteriophages harmless to human cells are considered natural biocontrol agents against

foodborne pathogens [47]. Bacteriophages are bacterial viruses with host specificity and lysis

activities and can be used as preservatives or for pathogens rapid detection [48].

Phages used for biocontrol purposes should be virulent and feature abroad host range, that is,

infect and kill as many target strains as possible [49, 50]. Virulent myoviruses closely related to

P100 and A511 are the most popular and have been isolated from the sources in Europe, the US

and New Zealand [51–53]. Commercially, “ListexTM P100” is available that was generally

recognized as safe (GRAS) by FDA and USDA in 2007 for use in all food products. Several

studies have showed its efficacy in foods such as ready-to-eat (RTE) meats and poultry [50, 51].

The phage A511, closely related to P100, also showed efficacy in various RTE foods [54].

According to [55], the direct immobilization of the viral particles in the cellulose membranes

of the packaging materials can be used in alternative to the phage suspension as a possible

intervention strategy against Listeria.
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4. Predictive microbiology models of L. monocytogenes

Predictive microbiology models are used to infer about the evolution of microbial population

considering the initial contamination and food environment, as the responses of microorgan-

isms populations in a specific environment are reproducible [56]. Mathematical models may be

generally categorized into three types: primary, secondary and tertiary models. The primary

models are used to estimate the changes in the microbial population as a function of time,

under a single set of conditions [57, 58]. The secondary models describe the microorganisms’

responses to environmental conditions, according to one or more parameters of a primary

model [59]. The tertiary models were defined by [60] as algorithms incorporated into software

to integrate the effect of environmental variables on microbial responses and to provide pre-

dictions of the outcomes.

The increasing interest in the behavior of hazards such as L. monocytogenes promoted impor-

tant advances in predictive microbiology, and it started to use the food matrix, instead of

culture media [61]. Traditional strategies using fast-growing strains in optimal growth condi-

tions usually overestimate the bacterial growth in a food product. This can lead to safe results

but may also conduct to unnecessarily safety measures. A stochastic (or probabilistic) appro-

ach take into account the variability and uncertainty of various factors that affecting microbial

behavior by using probability distributions of the input data. This provides safe enough pre-

dictions to avoid unacceptable health risks for consumers [62].

Predictive microbiology models are important tools to model bacterial growth in quantitative

microbial risk assessments (MQRA) [63]. In this context, food business operators and author-

ities can use accessible predictive models, such as Pathogen Modeling Program [64], SymPre-

vius [65] and ComBase [66]. The incorporation of predictive microbiology models in MQRA

must follow some guidelines [56]. The complexity of the predictive microbiology model

elected in a MQRA depends on different factors, namely the needs of risk assessment, available

model and data availability [63].

For an assessment of microorganisms’ behavior in naturally contaminated foods, biological

factors, food characteristics and storage conditions must be considered [67]. These authors

emphasize the variability of L. monocytogenes growth in foods. According to [61], the role of

microbial competition in models is now taken into consideration. Some studies were published

regarding the survival of L. monocytogenes in fresh beef stored at two temperatures and differ-

ent packaging systems as modified atmosphere packaging (MAP), using omnibus model

based on the Weibull Equation [35]. Besides the increase of studies using predictive models,

there are few data referred to the application of predictive models to composite foods contain-

ing raw and cooked ingredients [67].

According to [63], it is challenging for a risk assessor to choose an applicable predictive

microbiology model in the abundant literature. This author suggests that the choice of a model

should be done with the closed cooperation between microbiologists, mathematicians and risk

managers.
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5. Conclusions

Besides the Regulation (EC) No 2073/2005, reviewed by the Regulation (EC) No 1441/2007

does not establish limits for L. monocytogenes in fresh meat, it is generally accepted a level of

100 cells on fresh meat, except for high-risk populations. Thus, the implementation of control

procedures during processing and at retail level is important. These measures are closely

dependent on intrinsic and extrinsic meat factors that could influence microbial growth,

namely pH and storage temperature.

Several strategies to improve meat safety and shelf-life have been studied in the latest years.

From those, the use of alternative meat packaging systems has been strongly studied to obtain

an attractive meat with a higher shelf-life. However, in some cases, these strategies associated

to refrigerated storage can promote the survival and growth of some pathogenic microorgan-

isms such as L. monocytogenes. However, some authors referred that independently of the

refrigeration temperature, the presence of CO2 in the package atmosphere exerted a bacteri-

cidal effect on L. monocytogenes cells.

Food business operators and authorities can use predictive microbiology models as important

tools to model bacterial survival or growth in quantitative microbial risk assessments. There

are several mathematical models to predict the behavior of microorganisms in meat and meat

products. However, predictive microbiological models must be carefully used and by whom

who is expertise and has an understanding of their limitations and conditions of use.
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