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Abstract

Interfacial tension (IFT) between “native reservoir fluid” and “injected CO
2
” and the 

contact angle (CA) among the reservoir rock, native reservoir fluid, and injected CO
2
 

are major factors that dictate the relative permeability and capillary pressure character-
istics which in turn control the fluid flow and distribution characteristics in the reser-
voir and cap rocks. This chapter is a comprehensive review on the state-of-the-art of the 
experimentally measured and theoretically predicted IFT and CA data of water/brine-
CO

2
-quartz/calcite/mica systems that are relevant to CO

2
 sequestration. Experimental 

techniques used to generate the IFT and CA data and details of molecular simulations 
used to predict the data are discussed. Respective comparisons of the IFT and CA data 
reported by various research groups are also made. Possible reasons for disagreements 
in the published literature are discussed, and suggestions are made for future research 
in this area to address the potential technical issues in order to obtain reproducible data.

Keywords: CO
2
 sequestration, contact angle, interfacial tension, wettability, quartz, 

calcite, mica

1. Introduction

CO
2
 (or carbon) sequestration is a process of injecting CO

2
, that is typically captured at point 

sources such as coal gasification plants, and oil & gas production and refining facilities, into 
subsurface formations that have sufficient storage volume and stratigraphic confinement for 
it to be stored indefinitely to reduce its atmospheric concentration levels in order to mitigate 
the adverse effects of global warming [1–5]. Saline aquifers, depleted oil & gas reservoirs, 
and unminable coal seams are commonly considered host sites (shown in Figure 1) with 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
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their respective advantages and disadvantages [6]. For example, saline aquifers are present 
in widespread areas so the CO

2
 transportation cost is minimum but their storage and safety 

potentials are not well characterized, whereas depleted oil & gas reservoirs are well charac-
terized but are scarcely present and hence the transportation cost from source to storage site 
is higher. CO

2
 injection into oil & gas reservoirs and unminable coal seams may potentially 

recover enhanced oil and coalbed methane, respectively [6].

An ideal carbon sequestration site would consist of a reservoir rock with high porosity and 
permeability and a caprock with adequate sealing integrity. High porosity and permeability 
of the reservoir rock are important to have sufficient storage volume and efficient injection 
process, respectively. The low permeability caprock would facilitate the structural and strati-
graphic confinement, which is a primary storage mechanism in the early years of the storage 
process, of the injected CO

2
 [7].

Structural/stratigraphic trapping, residual/capillary trapping, solubility trapping, and min-
eral trapping are different types of trapping mechanisms for the injected CO

2
. These trap-

ping mechanisms are effective at various time scales during and after the injection process 
as shown in Figure 2. Structural/stratigraphic trapping is very critical during and in the first 
few years after the injection process. The injected CO

2
 is normally lighter than brine or oil in 

the host site; hence, the buoyant force leads CO
2
 towards caprock where it is stratigraphically 

Figure 1. CO
2
 sequestration methods (Source: SRCCS Figure TS-7, IPCC).
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confined. During the injection process, CO
2
 displaces the native reservoir fluid(s) (water and/

or oil) and the displacement is usually a drainage process since CO
2
 is usually the non-wetting 

phase (NWP). During injection, CO
2
 moves forward and/or upward in the porous media, 

under the influence of positive capillary pressure (i.e., pressure in NWP–pressure in WP) and 
gravitational force, displacing the WP until irreducible wetting phase saturation (SWP, r). After 
the injection is stopped (or pressure in NWP is reduced), WP moves back (imbibition) until 
the capillary pressure becomes zero. During the imbibition, WP displaces a fraction of the CO

2
 

while trapping the remaining fraction of the CO
2
 as immobile disconnected ganglia [8]. This 

capillary immobilization of the CO
2
 is termed as capillary or residual trapping. Later, portions 

of the immobile and mobile CO
2
 dissolve in the native reservoir fluid(s), and the process is 

called solubility trapping [4]. The dissolved CO
2
 reacts with minerals in the reservoir rock and 

forms solid carbonate minerals and is called as mineral trapping [4]. The percent trapping 
contributions of the four trapping mechanisms after the injection period are schematically 
shown in Figure 2.

The four trapping mechanisms, especially stratigraphic and residual trapping, are dependent 
on IFT and CA of the rocks and fluids involved [9]. The stratigraphic trapping depends upon 
the caprock’s capillary entry pressure for CO

2
. The capillary entry pressure is a function of the 

pore size, IFT between the native fluid (usually brine) in the caprock and injected CO
2
, and 

relative wetting preference (CA) of the fluids to the caprock. The CA is the angle between the 
two tangent lines drawn at a point on three-phase contact line, one along fluid-fluid interface 

Figure 2. Post-injection contributions of CO
2
 trapping mechanisms (Source: Figure 5.9 from IPCC 2005).
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and the other drawn along solid-fluid interface, as shown in Figure 4(a), and is normally mea-

sured into the denser fluid phase. If the CA is higher than 90°, the rock has more preference 
to CO

2
 compared to the native fluid, and hence it can easily imbibe into the caprock and leak 

through it. An ideal caprock for stratigraphic trapping would have strong wetting preference 
to native fluid (i.e. a CA value close to 0°).

Akbarabadi and Piri conducted 30 unsteady- and steady-state drainage and imbibition 
coreflooding tests in a medical CT scanner for CO

2
-brine (10 wt.% NaI, 5 wt.% NaCl, and 

0.5 wt.% CaCl
2
) system in three different types of sandstone rock samples with 14.3–21.2% 

and 50–612 mD ranges of porosities and permeabilities [9]. They reported that at a given 
initial brine saturation (S

wi
), less scCO

2
 (11 MPa, 55°C) was trapped compared to gaseous 

CO
2
 (3.46 MPa, 20°C) and the observed difference was attributed to brine being relatively 

less wetting to the rock in the presence of scCO
2
. However, it should be noted that the above 

saturations were volume fractions and in terms of actual mass of the fluids trapped, scCO
2
 

is nearly 4 times higher than the gaseous CO
2
. They also reported that about 49–83% of the 

initial CO
2
 was capillary trapped during secondary brine imbibition. The influence of wet-

tability on residual trapping of CO
2
 was investigated by Rahman et al. [10]. They conducted 

microcomputed tomography (microCT) core-flooding experiments using 5 mm diameter 
and 10 mm length water-wet and oil-wet (originally water-wet sample was treated with 
99.9 mol% purity Dodecyltriethoxysilane) Bentheimer sandstone samples having 22% poros-

ity and 1800 mD permeability and CO
2
-brine (7 wt.% NaI doped) fluid systems at 10 MPa and 

318 K. The reported air-water CAs on the water-wet and oil-wet porous core samples were 
0 and 130°, respectively. From the experimental findings, they concluded that lesser residual 
trapping occurs in oil-wet reservoirs (17.7% of initial CO

2
) compared to water-wet reservoirs 

(29.4% of initial CO
2
). The range of %capillary trapped CO

2
 reported by Akbarabadi and Piri 

is much higher compared to the range reported by Rahman et al. [9, 10]. The difference in the 
%capillary trapped CO

2
 ranges may be due to the differences in porosities and applied capil-

lary pressures, as both the properties are known to affect the residual NWP saturation [8]. It 
should also be noted that the pore volumes of the core samples used by Akbarabadi and Piri 
[9] and Rahman et al. [10] were 24.1–36.3 cc and 0.044 cc, respectively.

Tokunaga et al. and Wang and Tokunaga conducted drainage and imbibition capillary pres-

sure measurements for CO
2
-brine (1 M NaCl) system in unconsolidated quartz [11] and lime-

stone [12] sandpacks at 45°C and 8.5 and 12 MPa. The reported porosities of the sandpacks 
were ~38%. Based on the capillary pressure curves, they concluded that higher capillary 
trapping is possible for scCO

2
 at higher pressures. The measured SNWP,r in both fresh and 

1.5 months aged sandstone packs were 8% at 8.5 MPa, whereas the saturations for limestone 
sand were 11 and 25%. At 12 MPa, the measured SNWP,r in 3 months aged and 4.5 months 
aged sandstone packs were 20 and 32% and in fresh, 1.5 months aged, and 4 months aged 
limestone sand were 29, 25, and 44%, respectively. It should be noted that the above SNWP,r 

were measured at zero capillary pressure. By using capillary scaling criteria, they inferred 
that long-term (in the order of months) exposure of scCO

2
 alters the wettabilities of the sands 

towards less brine-wet state.

For a safe and efficient sequestration process, an accurate representation of IFT and CA that 
strongly influence the relative permeability and capillary pressure is essential [13]. Further, 
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both IFT and CA data trends with pressure, temperature, and native and injected fluids com-

positions are of paramount importance during and post-injection periods [14]. Quartz/silica, 
calcite, and mica are dominant mineral species both in the reservoir and caprock systems; so, 
in this chapter, we review the current understanding on the effects of relevant process param-

eters on IFT and CA, the agreements and disagreements in the published data (both from the 
experimental and molecular simulation works), and potential reasons for the disagreements.

2. Measurement techniques

Sections 2.1 and 2.2 discuss key details of measurement techniques used for the IFT and CA 
data, respectively.

2.1. Interfacial tension

Drop shape analysis techniques (e.g., ADSA and ADSA-NA) that are suitable for direct 
measurement of IFT at high pressure and temperature conditions were used for most of the 
reported CO

2
-water/brine IFT data [13, 15–28]. In general, the drop shape analysis meth-

ods involve: (1) formation of aqueous phase droplet in continuous CO
2
 phase as shown in 

Figure 3(a) or CO
2
 bubble/droplet in continuous aqueous phase as shown in Figure 3(b), via a 

needle inside a pressure cell; (2) capturing the droplet image; (3) inputting the phase densities; 
and (4) obtaining IFT by matching the drop profile to the solutions of the Laplace equation 
[18, 25]. Capillary rise method was also used for the IFT data [29].

The following are the critical factors suggested to obtain reproducible IFT and/or CA data by: 
mutual saturation of the fluids and using saturated fluid densities [15]; placing thermocouple 
close to droplet phase [19]; avoiding contamination caused either due to low purity fluids 
and/or dissolution/rusting of wetted parts in fluids due to chemical incompatibility [30]; 

Figure 3. (a) Aqueous fluid droplet in CO
2
 and (b) CO

2
 bubble/droplet in aqueous fluid.
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preventing droplet evaporation due to leakage of fluids and/or using unsaturated fluids [31]; 
and using same type of substrates with similar surface chemistry and morphology [32, 33].

2.2. Contact angle

Wettability of an inert solid surface is its relative affinity towards a fluid in the presence of 
another immiscible or sparingly soluble fluid. CA measurement is a widely used and accepted 
method for quantifying wettability of a surface. Direct and indirect measurement methods 
have been used for the published CA data [12, 16, 23, 31–38]. Direct methods include static 

Figure 4. (a) Sessile aqueous fluid droplet on substrate in CO
2
; (b) captive CO

2
 bubble/droplet on substrate in aqueous 

fluid; (c) sessile aqueous fluid droplet on inclined substrate in CO
2
; (d) captive CO

2
 bubble/droplet on inclined substrate 

in aqueous fluid; (e) advancing aqueous fluid droplet on substrate in CO
2
; and (f) receding aqueous fluid droplet on 

substrate in CO
2
. Notation: θ—static CA; θ

a
—aqueous fluid advancing CA; and θ

r
—aqueous fluid receding CA.
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(sessile-drop and captive-bubble) and dynamic (advancing and receding) CA measurements. 
Both the static and dynamic CAs were conducted using aqueous fluid as the droplet phase 
(called as sessile drop method, shown in Figure 4(a)) or the CO

2
 phase as the bubble/droplet 

phase (captive bubble method, shown in Figure 4(b)).

For static CA measurement, the droplet phase is slowly released through a needle and depos-

ited on the substrate immersed in external phase. In the case of advancing CA (w.r.t. droplet 
phase) measurement, either the droplet phase volume is slowly increased so that the three-
phase contact line advances to an area where it was previously occupied by the external phase 
as shown in Figure 4(e) or the substrate is slowly titled so that the droplet phase advances on 
it due to gravitational or buoyant force. In the tilting base method, both the advancing and 
receding CAs can be measured simultaneously as shown in Figure 4(c) and (d). Similarly, 
in the case of receding CA measurement, the droplet phase volume is slowly decreased so 
that the three-phase contact line recedes as shown in Figure 4(f). CO

2
 advancing (water/brine 

receding) CA is relevant for CO
2
 injection into the reservoir and also to determine the capil-

lary entry pressure of the caprock and thus to estimate the capacity of the host site to hold the 
injected CO

2
. CO

2
 receding (water/brine advancing) CA is required to estimate the amount of 

CO
2
 that can be capillary trapped in the host site [39].

With the recent advancements in CT and microCT technologies, some researchers performed 
in-situ pore-scale CA measurements [37]. The procedure involves: (1) loading the core sample 
in an X-ray transparent coreholder; (2) scanning dry and wet core samples at various fluid 
saturations; (3) identifying rock and fluid phases in the collected tomographs; and (4) mea-

surement of CA values either manually or using an automated algorithm.

CA data can be indirectly estimated from relative permeability or capillary pressure curves. 
Based on endpoint relative permeability of CO

2
 in a core-flooding experiment where CO

2
 

displaces aqueous phase, relative wetting preferences of the fluids for the rock can be inferred. 
Typically, the endpoint relative permeability value less than 0.2 represents a strongly CO

2
-wet 

porous media, whereas a value from 0.7 to 1 represents a strongly CO
2
 non-wetting porous 

media. An endpoint relative permeability value close to 0.5 indicates an intermediate wetting 
state [36]. Advancing and receding CAs can also be estimated through capillary scaling of the 
drainage and imbibition capillary pressure curves [11, 12].

3. Fluids and substrate preparation methods

Sections 3.1 and 3.2 discuss the fluids and substrate preparation methods and their potential 
impact on the IFT and CA data.

3.1. Fluids

Various compositions of aqueous-rich phase and CO
2
-rich phase fluids, ranging from pure 

water and CO
2
 to brines containing different types of salts and salinities, and CO

2
 streams 

with impurities such as H
2
S, SO

2
, N

2
, and Ar have been used for both the published IFT and 
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CA data. The details of the compositions of the fluid phases, ranges of pressure and tempera-

ture, whether the fluids had been mutually saturated before the IFT and CA measurements, 
whether the saturated fluid phase densities were used for the IFT measurement, and how the 
phase densities were obtained are provided in Table 1.

3.2. Substrates

Quartz is one of the polymorphs of silica (SiO
2
). The other polymorphs include tridymite, 

cristobalite, coesite, stishovite, etc. There are two types of quartz based on the geometrical 
positions of the atoms: α-quartz and β-quartz [51]. The published CA data were collected on 
α-quartz as it is related to typical pressure and temperature ranges of CO

2
 sequestration. Calcite 

and aragonite are the two polymorphous groups of carbonate minerals. Calcite (CaCO3) is a 

mineral in calcite group. Generally, these minerals are impure, but majority of the CA data 
were collected on Iceland Spar calcite crystals which are pure CaCO3 [33, 34, 52]. Mica group 
is a subdivision of phyllosilicates. Muscovite (KAl3Si3O10(OH)

2
), also known as common mica 

or potash mica, is the most common form of mica. Phlogopite (KMg3(AlSi3O10(OH,F)
2
), called 

as Mg-Mica, is another form of mica. Mica is usually soft and has perfect basal cleavage [53]. 
Both muscovite [27, 35, 40, 54, 55] and phlogopite [34] micas have been used for CA data 
related to carbon sequestration.

In a short communication, Iglauer et al. attempted to identify possible reasons for the 
observed scatter in the reported CA data of quartz/glass-CO

2
-water/brine systems [30]. 

Different cleaning procedures such as acetone washing followed by DI water rinsing, piranha 
solution (5:1 v/v H

2
SO

4
 and H

2
O

2
) cleaning (etching), and air plasma cleaning were evaluated. 

Approximately 0° CAs on the surfaces cleaned using piranha solution and air plasma were 
reported. It was also reported that the CA of piranha solution cleaned substrate increased 
to about 25° when a clean paper towel was used to wipe the substrate and to 70° when the 
substrate was kept in the laboratory atmosphere for several weeks. Even though both the 
piranha solution and plasma cleaning could give near 0° CA, plasma cleaning was suggested 
based on its relative merits in terms of health and environmental hazards. However, there is a 
significant scatter in the CA data of plasma cleaned quartz/silica surfaces. For example, water 
advancing CAs reported for Ar plasma and 20% O

2
–80% Ar plasma cleaned quartz surfaces 

were 40 and 16°, respectively [56]. The publication also reported advancing and receding CAs 
of about 39 and 23° for piranha solution cleaned quartz surface. Another study reported an 
air-water CA of about 45° on silica that had been cleaned using reactive ion etching oxygen 
plasma [57].

As Iglauer et al. [30] pointed out, surface contamination is one of the critical factors that 
affects wettability of a substrate; however, severe surface cleaning methods such as plasma 
or piranha etching could also alter the surface chemistry and/or morphology both of which 
are known to modify the wettability of a substrate [58, 59]. Quartz/silica surface cleaning has 
been done using degreasing chemicals such as acetone, methanol, and trichloroethylene and 
strong oxidizing agents such as hot nitric acid, hydrogen peroxide, and hydrofluoric acid that 
may remove surface layer [56].
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Author (Year) Aqueous-rich 

phase

CO
2
-rich phase P 

(MPa)

T (K) Pre-

equilibrated?

Densities 

for IFT

Cleaning 

chemicals

Chun et al. 
(1995) [29]

DIW CO
2

0.1–18.6 278–344 No Water: 
NM,

CO
2
: Pure

NM

Chiquet et al. 
(2007) [18]

0–0.34 M NaCl CO
2

5–48 308–383 Yes DM C: NM

Chiquet et al. 
(2007) [55]

0.01–1 M NaCl CO
2

1–11 NM No NA S: TND

Bachu et al. 
(2008) [20]

0–5.72 M NaCl CO
2

2–27 293–398 Yes DM NM

Shah et al. 
(2008) [21]

Water CO
2
:H

2
S,

70:30 mol%

0.45–
15.6

313–393 Yes Water: 
PRSW,

CO
2
: 

PRSW

NM

Chalbaud et al. 
(2009) [13]

0–2.75 M NaCl CO
2

4.5–25.5 300–373 Yes Brine: 
SWRC,

CO
2
: Pure

C: DIW

Espinoza et al. 
(2010) [23]

0–3.42 m NaCl CO
2

0.1–20 296.5 ± 1.5 No Brine: 
PGM,

CO
2
: DS

NM

Georgiadis et al. 
(2010) [24]

DIW CO
2

1–60 298–374 No NIST C: HITC

Aggelopoulos 
et al. (2011) [22]

0.045–1.5 M 
NaCl: CaCl

2
, 

50:50 mol%

CO
2

5–25 300–373 Yes Brine: 
SWRC,

CO
2
: Pure

C: EDC

Bikkina et al. 
(2011) [15]

DIW CO
2

1.48–
20.76

298–333 Yes Water: 
HB,

CO
2
: MS

C: ADC

Bikkina 
(2011) [31]

DIW CO
2

1.48–
20.76

298–323 Yes NA C: AD, 
Quartz: AD, 
Calcite: DIW

Broseta et al. 
(2012) [40]

0.08–6 M NaCl CO
2

0.5–15.5 282–413 Yes NA NM

Jung et al. 
(2012) [41]

0–5 M NaCl CO
2

0.1–25 318 Yes NA C: DIW,

S: Ethanol

Shariat et al. 
(2012) [25]

DIW CO
2

6.89–
124.1

323–478 No BM NM

Farokhpoor et al. 
(2013) [35]

0–0.8 M NaCl CO
2

0.1–40 309–339 No NA S: DDN

C: WMC

Saraji et al. 
(2013) [16]

DIW CO
2

3.45–
11.72

308–333 Yes DM S: IHND
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Iglauer et al. concluded that a clean quartz/silica surface should have a 0° air-water CA; 
however, since the wettability of quartz/silica is primarily determined by surface silanol 
(Si-OH) group density that could vary from a sample to sample, the CA does not necessarily 
be 0° [30, 60, 61]. For example, as reported in [58], even a freshly prepared silica surface has 
an air-water CA of about 45°. The publication also mentions that cleaning methods such as 
acid washing would hydroxylate the surface and correspondingly reduce the CA (or make 
it hydrophilic). Suni et al. mentioned that plasma treatment induces a highly disordered 
surface structure and significantly increases the surface silanol group density [59]. Lamb 
and Furlong reported that when the surface silanols on a quartz substrate are changed to 
siloxane (Si-O-Si) bridges, the substrate becomes less water-wet with an advancing CA of 
44° and a receding CA of 39° [60].

Quartz, calcite, and mica substrates used for published CA data have many orders of magni-
tude difference in their surface roughness values. For example, quartz and calcite substrates 
with surface roughness values ranging from 0.5 to 1300 nm [16, 32, 34, 38] and 7.5 to 250 nm 
[33, 34], respectively, were used for the CA measurements. CA values are known to be affected 
by the surface roughness values and cleaning methods [32, 33, 56, 62]. The trends of the effect 
of surface roughness on CAs measured on quartz and calcite substrates are discussed in CA 
data comparison section.

Author (Year) Aqueous-rich 

phase

CO
2
-rich phase P 

(MPa)

T (K) Pre-

equilibrated?

Densities 

for IFT

Cleaning 

chemicals

Iglauer et al. 
(2014) [30]

0–0.342 M 
NaCl & 1 M 
NaHCO3

CO
2

0.1–
13.89

296–323 No NA Piranha 
solution or 
air plasma

Saraji et al. 
(2014) [42]

0.2–5 M NaCl CO
2
 + SO

2
 

(0–6 wt%)
13.89–
27.68

323–373 Yes DM S: IHND

Al-Yaseri et al. 
(2015) [26]

0.084 M NaCl CO
2
 + N

2
 

(0–50 mol%)
13 333 No GS S: Acetone 

and air 
plasma

Arif et al. 
(2016) [27]

0–5.13 M NaCl CO
2

0.1–20 308–343 No NM S: Air plasma 
for 45 min

Kravanja et al. 
(2018) [28]

0.3 M Brine* CO
2
 + Ar 

(0–100 vol%)
0.1–40 313–363 Yes DM NM

DIW: DI water; C: cell; S: substrate; NM: not mentioned; NA: not applicable; DM: Anton Paar DMA density meter; PRSW: 
Peng and Robinson [43] and Søreide and Whitson [44]; SWRC: Søreide and Whitson [44] and Rowe and Chou [45]; PGM: 
Perry and Green [46] and McCutcheon et al. [47]; DS: Duan and Sun [48]; NIST: National Institute of Standards and 
Technology Chemistry Webbook; BM: Blue M Model CSP-400A; HB: Hebach et al. [49]; MS: modified Spycher et al. 
[50]; GS: from Georgiadis et al. [24]; TND: tensioactive solution, 10% nitric acid solution and DI water; HITC: hexane, 
isopropanol, and/or toluene, CO

2
 flush; KID: KOH-isopropanol solution and DI water; CNE: cyclohexane, nitrogen, and 

ethanol; EDC: ethanol, DI water, and CO
2
; ADC: acetone, DI water, and CO

2
; DA: DI water and acetone; DDN: DI water, 

Deconex, and 6% nitric acid solution; WMC: water, methanol, and dry CO
2
; IHND: IPA, H

2
SO

4
 with 10% Nochromix, DI 

water [43–50].*(10.88 g/L KCl, 6.68 g/L NaHCO3, 3.14 g/L NaCl, and 2.38 g/L K
2
CO3).

Table 1. Details of fluids, process conditions, and cleaning chemicals used for published IFT and CA data.
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4. Theoretical studies on IFT and contact angle data

Molecular dynamics simulations for the prediction of IFT and CA data were performed by 
various research groups for systems pertaining to CO

2
 sequestration [19, 63–70]. The simula-

tion procedure consists of choosing potential models for molecules, intermolecular interac-
tion models for short-range and/or long-range interactions, initial and boundary conditions, 
and the ensemble (NVE, NVT, NPT, etc.), followed by simulation until equilibration criteria 
is satisfied. After simulation, the results (IFT/CA data) are analyzed and compared with 
experimental values. The models evaluated were CO

2
—DZ, EPM2, flexible EPM2, PPL and 

TraPPE; Water—SPC, SPC/E, TIP4P2005, F3C, and flexible F3C; and NaCl brine—SD and 
DRVH [19, 63, 64, 66, 68].

The predictions on the effect of temperature and pressure on IFT for CO
2
-water system were 

found to be in good agreement with experimental data for the models used by Nielsen et al. 
(PPL-TIP4P2005 and renormalized PPL-SPC/E) and Liu et al. (TraPPE-TIP4P2005 (and SD 
model for NaCl) below 250°C except at 150°C and EPM2-SPC at 150°C), whereas EPM2-
TIP4P2005 model combination used by Iglauer et al. and Liu et al. resulted in overpredic-
tion of IFT [64–66]. EPM-SPC/E model combination used by Kvamme et al. and Nielsen et al. 
underpredicted IFT data in the low-pressure region (<4 MPa) and overpredicted in the high-
pressure region (>10 MPa) [19, 65]. Nielsen et al. [65] observed the similar trend for DZ-SPC/E 
model combination, and they also observed that PPL-SPC/E model combination underpre-
dicted IFT throughout 0–40 MPa. In agreement with experimental data [20, 22, 41, 42], IFT was 
found to increase with salinity by Zhao et al., Iglauer et al., and Liu et al. [63, 64, 66].

Various research groups performed CA predictions for water/brine–CO
2
–quartz/silica systems 

using molecular dynamics simulations [64, 67, 69, 70]. Iglauer et al. and McCaughan et al. 
considered fully coordinated quartz (i.e., siloxane bridges (Si-O-Si) and no silanol groups) 
surface structure and they only used short-range force field parameters Si-O (bonded) and 
O-O (non-bonded) retrieved from Beest and Kramer [64, 67, 71] in their simulations. Iglauer 
et al. [64] reported an abrupt increase in CA (0–80°) for water-CO

2
-quartz system at 300 K in 

the low-pressure region (0–6.7 MPa) and a nearly constant CA above 6.7 MPa. Simulations 
performed by McCaughan et al. [67] for 1 M CaCl

2
 brine-CO

2
-quartz system at 300 K yielded 

similar CA values with pressure showing negligible effect of the divalent ions. At 350 K, sig-
nificantly smaller CA values near both sides of the phase changing pressure were reported by 
Iglauer et al. [64] and the CA values at pressures above 17 MPa were found to be identical for 
300 and 350 K. They also reported no significant effect of salinity (1 and 4 m NaCl) on CA at 
300 K and ~4 MPa.

Liu et al., McCaughan et al., and Chen et al. considered hydroxylated quartz surfaces with different 
silanol group densities ranging from 1.6 to 9.4 OH/nm2 for CA measurements [67, 69, 70]. Liu et al. 
[70] modeled a pristine silica plane having silicon atoms on the surface as hydrophobic surface 
and its partially hydroxylated variant with a silanol density of 1.6 OH/nm2 as hydrophilic surface. 
They reported that CA on the hydrophilic surface increased from ~60 to ~90° when the CO

2
 density 

increased from 0 to 1 g/cc. In the case of hydrophobic surface, water droplet with a CA of 115° at 
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0.2 g/cc CO
2
 density lost its contact from the surface upon further increase in CO

2
 density. At 300 K 

and 10 MPa, McCaughan et al. [67] reported that the CA reduced with increasing silanol group 
density (42° at 1.7 OH/nm2 to 35° at 3.7–4.5 OH/nm2). Chen et al. [69] performed molecular simula-

tions, on fully hydroxylated silica surface with 9.4 OH/nm2 silanol group density, using force field 
parameters for Si-O, O-H, O-Si-O, Si-O-Si, and Si-O-H groups to predict CAs for brine-CO

2
-quartz 

systems. 0–3 M NaCl and CaCl
2
 brines were used in the study. The predicted static CAs (e.g., 

22.6° for water) agreed well with their experimental results (20–21°). Their results indicate that CA 
slightly increases (about 7–13°) with ionic strength (0–3 M), and the trend is similar for both mon-

ovalent and divalent ions. They also reported that CA dependence on pressure and temperature is 
insignificant within the conditions tested (7 and 9.6 MPa at 318 K and 10.9 MPa at 333 K).

Tenney and Cygan performed molecular dynamics simulations for brine-CO
2
-clay system at 

330 K and 20 MPa and reported CO
2
 CAs for hydrophilic gibbsite and hydrophobic siloxane 

surfaces in the presence of water, NaCl, and CaCl
2
 brine solutions. The reported CO

2
 CAs 

were 169° in water and 180° in both brines on the hydrophilic surface, whereas on the hydro-

phobic surface, the reported CO
2
 CAs were 145° in water, 141° in 0.78 M NaCl brine, and 145° 

in 0.26 M CaCl
2
 brine [68].

5. Interfacial tension data comparison

There have been a significant number of experimental and simulation studies on the IFT data 
of CO

2
-water/brine systems at typical reservoir pressure and temperature conditions. In gen-

eral, a fair agreement in the trends and values can be observed in the data reported by various 
research groups [15, 20, 28, 29, 72]. Figure 5 shows reproducibility of the effect of pressure on 
IFT data for CO

2
-water system at 298 K.

As shown in Figure 5, IFT sharply decreased with pressure when the CO
2
 is gas and it becomes 

nearly constant when the CO
2
 is liquid. It should be noted that Hebach et al., Bachu and 

Bennion, Bikkina et al., and Kravanja et al. used pendant drop method, whereas Chun et al. 
used capillary rise method [15, 20, 28, 29, 72]. The lowest IFT reported by Chun et al. [29] near 

the phase changing pressure was explained by Hebach et al. [72] as a potential consequence 
of the placement of thermocouple away from the droplet.

Similarly, IFT vs. pressure trends were also observed at above critical temperature of CO
2
-

rich phase, as shown in Figure 6 [15]. Majority of the reported experimental and molecular 
simulations IFT data for CO

2
-water system show an increase in IFT with temperature when 

the CO
2
-rich phase is gas and the temperature is above the critical temperature and when 

CO
2
 is gaseous phase [15–17, 20, 24, 29, 64, 72]. The increase in IFT with temperature is higher 

near the phase changing pressure from gaseous to supercritical CO
2
. At very low pressures 

(of about 2.5 to 3.5 MPa), the IFT vs. temperature isotherm crossover was reported by Hough 
et al. [17], Chun et al. [29], and Hebach et al. [72], but Hebach et al. [72] hypothesized that the 
observed crossover of the isotherms could be due to the use of pure component phase densi-
ties instead of saturated phase densities for CO

2
 and water. Bikkina et al. [15] used saturated 

phase densities for their IFT data and did not observe the crossover point to a pressure as low 
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as 1.48 MPa, as shown in Figure 6. For pressures above ~13 MPa and temperatures above the 
critical temperature (i.e., supercritical state), no or insignificant effect of temperature on IFT 
was reported [15, 17, 29, 64, 65, 72]. Whereas, a decrease in IFT with temperature between 
212 and 400°F and pressure up to 18,000 psia was reported by Shariat et al. [25]. It should be 
noted that the experimental temperatures used for Shariat et al. [25] data are much higher 
than others.

Figure 5. Comparison of published IFT data for CO
2
-water system at 298 K [15].

Figure 6. IFT isotherms for the CO
2
-water system at various pressures [15].
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As shown in Figure 7, an invariant IFT vs. “aqueous and CO
2
 phase density difference (Δρ)” 

irrespective of the pressure and temperature until a Δρ of about 600 kg/m3 and then a steep 
increase in IFT with Δρ was reported by Bikkina et al. [15]. Similar trends were reported by 
Chalbaud et al. for CO

2
-NaCl brine system [13].

There has been a common agreement on the effect of salinity on IFT data (from experimental 
measurements and molecular simulations) of CO

2
-brine systems [13, 15, 20, 22, 42, 63–65]. 

At a given pressure and temperature condition, IFT was observed to increase with salinity. 
Aggelopoulos et al. [22] reported that the increase in IFT, at a given molality of aqueous 
phase, is more than double for CaCl

2
 solution compared to that of NaCl solution reported by 

Chalbaud et al. [13], and this increase was attributed to the presence of divalent cations in the 
case of CaCl

2
 solution.

The influence of H
2
S, SO

2
, N

2
, and Ar contamination in CO

2
 stream on IFT were investigated 

by Shah et al., Saraji et al., Al-Yaseri et al., and Kravanja et al., respectively [21, 26, 28, 42]. 
Shah et al. [21] conducted water-H

2
S IFT measurements up to 15 MPa and at 120°C and 

water-(30, 70 mol% H
2
S:CO

2
) IFT measurements up to 15 MPa and at 77°C. Upon combined 

analyzation of their IFT data along with Chiquet et al. [18] water-CO
2
 IFT data, they con-

cluded a strong decrease of IFT with increase in H
2
S content in CO

2
. A significant linear 

decrease in IFT (i.e. from 29 mN/m in the case of pure CO
2
 to 18 mN/m in the presence 

of 6 wt% SO
2
) was reported by Saraji et al. [42]. The presence of weakly bounded surface 

complex between SO
2
 and water molecules at the supercritical fluid/liquid interface was 

suggested as the probable reason for the decrease in IFT. Pressure, temperature, and salinity 
conditions used in their experiments were 3000 psig, 60°C, and 1 M brine, respectively.

Figure 7. Effect of phase density difference on IFT for the CO
2
-water system at various temperatures [15].
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Effect of N
2
 contamination on IFT was studied by Al-Yaseri et al. [26]. About 5000 ppm NaCl 

brine and 50:50 mol% CO
2
-N

2
 mixture were used as aqueous and gas phases, and the IFT mea-

surements were conducted at 13 MPa and 333 K. It was found that 50 mol% N
2
 has negligible 

effect on IFT (CO
2
-brine IFT of 38.7 ± 3.9 mN/m and 50:50 mol% CO

2
/N

2
 mixture-brine IFT of 

40.6 ± 3 mN/m) within experimental uncertainty. Kravanja et al. [28] measured IFT between 
CO

2
 stream containing Ar impurity and 23.26 g/L salinity brine and found that the presence of 

5 and 10 vol.% Ar impurity in CO
2
 stream has negligible effect on IFT within the temperature 

and pressure ranges of 40–90°C and 7.5–40 MPa.

6. Contact angle data comparison

There is a significant scatter in the reported CA (wettability) data [30, 54]. The reported CA 
data include static [23, 30, 31, 41] and dynamic [16, 27, 30, 32, 33, 35, 38, 42, 55] CAs. The data 
also include measurements of water/brine droplet on substrate in CO

2
 [23, 26, 27, 30, 31, 33, 

38, 41] and CO
2
 bubble/droplet on substrate immersed in aqueous phase [34, 35, 41, 42, 54, 55]. 

One of the major reasons for the apparent spread in CA data is in fact due to the comparison 
of the data collected at significantly different process parameters. For example, the CA data 
collected on quartz substrates having orders of magnitude, different surface roughness val-
ues, and at different temperatures and salinities were compared [38]. Similar inappropriate 
comparisons were also made for calcite [33] and mica substrates [27]. It should also be noted 
that even static and dynamic CAs have been compared [27, 33].

It is possible that the so-called smooth and pure substrates used for some of the published 
data may have surface chemical and physical heterogeneity which could cause significant 
CA hysteresis (i.e., the difference between advancing and receding CAs). In general, static 
CA falls somewhere between the advancing and receding CAs [73]. Hence, it is inappropri-
ate to compare static and dynamic CAs. Some researchers reported surface roughness data 
of their substrates [16, 27, 32–34, 38, 41, 42, 74]. The reported quartz surface roughness data 
range from 0.5 to 1300 nm (5 orders of magnitude). In the case of mica, Wang et al. [34] used 
phlogopite mica with 250 nm surface roughness and Arif et al. [27] used muscovite mica with 
a roughness value of 12 nm.

Al-Yaseri et al. thoroughly investigated the influence of surface roughness on advancing and 
receding CA trends of quartz-CO

2
-water system using the substrates of different surface rough-

ness (RMS) values: 56, 210, 560, and 1300 nm [32]. They found that as the roughness increases 
from 56 to 1300 nm, advancing and receding CAs at 296 K and 10 MPa decrease by ~6.5 and ~2°, 
respectively, whereas at 323 K, the CAs decrease by ~14 and ~14°, respectively. The effect of sur-
face roughness on advancing and receding CA trends of calcite-CO

2
-water system was studied 

by Arif et al. using calcite substrates of surface roughness (RMS) values: 7.5, 30, and 140 nm [33]. 
They noted that as the roughness increases from 7.5 to 140 nm, both the advancing and receding 
CAs at 323 K and 15 MPa decrease by ~10°. There have not been any systematic experimental 
studies reported on the influence of surface roughness on CA of mica-CO

2
-water system.
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Al-Yaseri et al. and Arif et al. measured advancing and receding CAs on quartz and calcite 
substrates placed on 12° and 15° (w.r.t horizontal) tilted bases, respectively. About a 6 μl 
water droplet that was not pre-saturated with CO

2
 was dispensed on to the titled substrate 

and the advancing and receding CAs were measured on droplet images extracted from the 
recorded video [32, 33].

Al-Yaseri et al. [32], Arif et al. [27], and Arif et al. [33] also investigated the effect of pressure, 
temperature, and salinity on advancing and receding CAs of quartz-CO

2
-water, mica-CO

2
-

water, and calcite-CO
2
-water systems, respectively. The pressure, temperature, and salinity 

ranges studied for quartz, mica, and calcite substrates were: 0.1–20 MPa, 296–343 K, and 
0–35 wt% (NaCl, CaCl

2
, and MgCl

2
); 0.1–20 MPa, 308–343 K, and 0–30 wt% NaCl; and 0.1–

20 MPa, 308–343 K, and 0–20 wt% NaCl, respectively. For both quartz and calcite substrates, 
advancing and receding CAs increased with pressure, but the effect of temperature was dif-
ferent for the substrates. Both the advancing and receding CAs increased with temperature 
in the case of quartz, but the opposite trend was reported for calcite. In the case of quartz, 
both the advancing and receding CAs increased with salinity and the increase was higher 
for MgCl

2
, followed by CaCl

2
 and NaCl. Whereas in the case of calcite, salinity has negligible 

effect on both the advancing and receding CAs up to 5 wt% NaCl and the CAs increased 
with salinities above 5 wt% NaCl. The effect of pressure and temperature on advancing and 
receding CA trends of mica was similar to that of calcite. The effect of salinity on mica CA was 
similar to that of quartz.

Broseta et al. conducted water/brine advancing and receding CA measurements on quartz, 
calcite, and mica substrates [40]. For quartz, insignificant change in receding CAs with pres-

sure (0.5–14 MPa) and salinity (0.08–6 M NaCl) was observed, whereas increase in the advanc-

ing CAs with the pressure and salinity was reported. For calcite, the receding and advancing 
CAs increased by 8 and 15°, respectively, with pressure (0.5–14 MPa) at 0.08 M and 308 K. In 
case of mica, the change in receding CAs with pressure was less than 10°, but a significant 
increase (up to ~40°) in advancing CAs with pressure was observed when there was CO

2
 

adhesion to mica. However, when there was no CO
2
 adhesion, the increase in advancing CAs 

with pressure was only about 10°. Wan et al. also observed CO
2
 adhesion on mica and similar 

levels of hysteresis in CA; however, they did not observe any clear CA trends with pressure 
and salinity [54].

Espinoza and Santamarina [23] and Bikkina [31] measured static CAs by placing a single 
aqueous fluid droplet on substrate (quartz/calcite) at a given temperature and pressure and 
successively injected CO

2
 into the measurement cell to increase the system pressure. For 

quartz substrate at 298 K (below critical temperature of CO
2
, Tc,CO2), they did not observe any 

significant effect of pressure on CA, both in gaseous and liquid regions; however, the values 
reported by Espinoza and Santamarina [23] and Bikkina [31] were ~20 and ~45°, respec-

tively. At 313 and 323 K (i.e., above Tc,CO2), Bikkina [31] observed about 5° increase in CA in 
gaseous region compared to 298 K and the CA gradually decreased in supercritical region. 
The surface roughness values of the substrates used were not reported in both the above 
studies. Bikkina [31] used equilibrated fluids and the droplet was placed on the substrate 
at 1.48 MPa, whereas Espinoza and Santamarina [23] used non-equilibrated fluids and the 
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droplet was placed at 0.1 MPa. Bikkina [31] reported a significant shift in CA towards less 
water-wet state upon repeated exposure of the substrates to liquid or scCO

2
. Desorption of 

physisorbed water and subsequent capping of the silanols (on quartz surface) by CO
2
 were 

proposed as the possible mechanism for the observed CA shift, and hence the CA measure-

ment systems with CO
2
 as droplet phase may not observe this phenomenon due to insuf-

ficient CO
2
 volume [75]. Kim et al. (2012) observed a dewetting phenomenon in brine-filled 

silica micromodels upon exposure to scCO
2
. The tested pressure, temperature, and salinities 

were 8.5 MPa, 318 K, and 0.01–5 M NaCl. The pore-scale CAs were observed to increase from 
near 0 to 80° upon exposure to scCO

2
, and the highest CA increase was observed in the case 

of 5 M brine [76].

For calcite substrate, at ~298 K, both Espinoza and Santamarina [23] and Bikkina [31] reported 
a sudden dip (~6°) in the CA at the phase changing pressure. The CA values reported by 
Bikkina [31] were 45–48° in CO

2
 gaseous region and 42–40° in the CO

2
 liquid region. The cor-

responding values reported by Espinoza and Santamarina [23] were 35 and 30°, respectively. 
Andrew et al. performed pore-scale CA measurements for CO

2
-brine-carbonate (99.1% calcite 

and 0.9% quartz) system at 10 MPa and 323 K, after secondary imbibition. The observed CA 
values were in the range of 35 and 55° [37].

Wang et al. [34] reported CAs of dissolving CO
2
 bubble/droplets as water/brine advancing 

CAs, so it appears that the CAs are neither static nor dynamic. It should be noted that the 
dissolution occurred irrespective of using pre-equilibrated fluids. If there exists evaporation/
dissolution of the droplet, the corresponding CA can increase, decrease, or stay constant 
depending upon the relative molecular forces among the three phases involved and the 
triple line movement [77–79]. Farokhpoor et al. [35] reported that water/brine receding CAs 
on quartz and calcite and no significant effect of pressure on the CAs were observed. They 
reported increase in CAs with temperature and salinity for quartz substrate, but a decrease in 
CA with salinity for calcite substrate.

Three significantly different CA trends with pressure have been reported for quartz/silica: (1) 
no or insignificant change in CA [23, 31, 35, 69]; (2) sudden increase in CA near the phase 
changing pressure [40–42]; and (3) asymptotic increase in CA with increase in pressure [32, 64]. 
Al-Yaseri et al. found a remarkable linear correlation between CA and density of gas for quartz-
brine (4.48 M = 20 wt% NaCl +1 wt% KCl) system [80]. The correlation is applicable for a wide 
range of gases. Temperature was found to change the slope of the correlation.

Saraji et al. [42] studied the influence of SO
2
 contamination in CO

2
-rich phase on advancing 

and receding CAs (using drop addition and withdrawal method) on quartz at 3000 psig, 60°C, 
and 1 M NaCl. They observed insignificant difference in the CAs with 1 and 6 wt% SO

2
 com-

pared to those measured for pure CO
2
 at the same pressure, temperature, and salinity. Effect 

of N
2
 contamination on water advancing CA on quartz was studied by Al-Yaseri et al. [26] 

using drop addition method. About 5000 ppm NaCl brine and 50:50 mol% CO
2
:N

2
 mixture 

were used as aqueous and gas phases, and the CA measurements were conducted at 13 MPa 
and 333 K. They reported 47 ± 3.4°, 33.9 ± 6°, and 40.6 ± 3.9° water advancing CAs for CO

2
-

brine, 50:50 mol% CO
2
:N

2
 mixture-brine, and N

2
-brine systems, respectively.
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7. Recommendations for future work

We believe that the potential reasons for the scatter in the CA data are due to the differences in: 
substrate types used (e.g., muscovite mica and phlogopite mica, quartz and silica), their prepa-
ration methods, and surface roughness values and patterns; fluid types (i.e. purities of droplet 
and external phase fluids and whether the fluids had been mutually saturated in the presence 
of substrate material); chemical compatibility of the materials used in the experimental facili-
ties with the cleaning and process chemicals; types of CA data reported (e.g., static or dynamic 
CAs, sessile or captive, one droplet/bubble for a given pressure range or new droplet/bubble 
at each pressure). Repeatability in the data is necessary but not sufficient. Reproducibility is 
what is important. So, comparisons should only be made among the data collected using same 
system of solid and fluids, purities and preparation methods, measurement techniques, and 
especially type of CA data. We suggest microCT-based in-situ CA measurement with auto-
mated three-phase contact line detection for simultaneously obtaining several hundreds of 
thousands of CA values, as performed by AlRatrout et al. [81]. The method may also provide 
relative permeability and capillary pressure data for indirect estimation of wettability. One 
disadvantage of the suggested method is the requirement of doping the fluids. We also sug-
gest in-situ surface chemical analysis as performed by Tripps and Combs [75] during the CA 
measurement in order to know any surface chemical alterations responsible for CA changes.

8. Conclusions

A detailed overview on the published IFT and CA (experimental and molecular simulation) 
data relevant to CO

2
 sequestration is presented. Overall, the IFT trends reported by various 

research groups are found to be in good agreement, but there exists significant scatter in the 
reported CA data. Potential reasons for the disagreements in CA data are discussed, and 
recommendations are made for future research to obtain reproducible CA data.
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