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Abstract

Thermotolerant ethanologenic yeasts receive attention as alternative bio-ethanol producers 
to traditionally used yeast, Saccharomyces cerevisiae. Their utilization is expected to provide 
several benefits for bio-ethanol production due to their characteristics and robustness. They 
have been isolated from a wide variety of environments in a number of ASEAN countries: 
Thailand, Vietnam, Laos, and Indonesia. One of these yeasts, Kluyveromyces marxianus has 
been investigated regarding characteristics. Some strains efficiently utilize xylose, which is 
a main component of the 2nd generation biomass. In addition, the genetic basis of K. marx-

ianus has been revealed by genomic sequencing and is exploited for further improvement 
of the strains by thermal adaptation or gene engineering techniques. Moreover, the glucose 
repression of K. marxianus and its mechanisms has been investigated. Results suggest that 
K. marxianus is an alternative to S. cerevisiae in next-generation bio-ethanol production 
industry. Indeed, we have succeeded to apply K. marxianus for bio-ethanol production in 
a newly developed process, which combines high-temperature fermentation with simul-
taneous fermentation and distillation under low pressure. This chapter aims to provide 
valuable information on thermotolerant ethanologenic yeasts and their application, which 
may direct the economic bioproduction of ethanol and other useful materials in the future.
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1. Introduction

Worldwide economic growth with the related increase in CO2 emissions from fossil fuels 
causes global warming. Utilization of renewable energy with low CO2 emission therefore 
has been getting increased attention. Renewable energy is generated from renewable natural 
resources, such as sunlight, wind, rain, tides, waves, geothermal heat, as well as biomass. One 
such important source of renewable energy, bio-ethanol, has been highlighted due to the char-
acteristics of its production from biomass, which is generated by plants using sunlight for CO2 

fixation, resulting in carbon neutrality. Bio-ethanol is the name for ethanol produced from 
biomass by fermentation. This bio-process is thoroughly researched and well-established, and 
to-date, it produces the most prominent and cost-effective biofuel [1]. Although bio-ethanol 
production is increasing worldwide and the production of biofuels including ethanol in 2022 
is forecasted to be more than 126 billion L [2], biofuels are still more costly than fossil fuels 
[3]. Therefore, several industrial companies and researchers aim to develop new technologies, 
enabling the cost-effective production of bio-ethanol from biomass. Since microorganisms 
are essential for material production through bio-processing, their characteristics and traits 
are crucial for the production process efficiency. Ethanologenic yeast, Saccharomyces cerevisiae, 
has been traditionally and widely utilized for the production of alcoholic beverages and bio-
ethanol [4, 5]. Industrially common problems in bio-ethanol production related to S. cerevisiae 

strains are temperature level (35–45°C) and high ethanol concentration (over 20%) [6]. These 

two factors inhibit yeast proliferation and fermentation activity if they reach the upper limit. 
In addition, for cost-effective bio-ethanol production, the production source must be changed 
from 1st generation biomass (sugarcane, corn, and wheat, which are important food sources) 
to 2nd generation biomass (lignocellulosic biomass or woody crops, which are agricultural 
residues or waste) [7]. Lignocellulosic biomass is composed of hemicellulose, cellulose, 
and lignin, and the first consists of six (e.g., glucose) and five (e.g., xylose) carbon sugars. 
However, the low efficiency of ethanol production by S. cerevisiae from lignocellulosic biomass 
hydrolyzates is mainly due to its little ethanol productivity from xylose [8]. Although the S. 

cerevisiae genome encodes all components necessary for xylose utilization, most of them are 
rarely expressed [9]. In addition, S. cerevisiae preferably utilizes glucose while repressing the 
uptake and catabolism of alternate carbon sources by a mechanism such as glucose repression 
[10]. This results in the reduction of ethanol production rates from several kinds of biomass. 
For economically feasible bioethanol production from lignocellulosic biomass, the efficient 
co-fermentation of glucose and other sugars is also necessary. Therefore, genetic engineering 
of S. cerevisiae strains has been extensively performed, and metabolically engineered strains 
were developed [11], which have showed higher stress tolerance and/or improved xylose 
utilization [12, 13]. However, the utilization of genetically recombinant strains in industry 
has been very limited, especially due to the instability of the desirable phenotype and the 
necessary confinement to a closed system to prevent their leakage into the environment, 
which can eventually endanger public health or biodiversity. Therefore, the development of 
new feasible strains for next-generation bio-ethanol production is under way, and new yeast 
strains have been isolated that may have advantages compared to S. cerevisiae.

Recently, thermotolerant microorganisms were found among mesophiles with optimum 
growth temperatures that are 5–10°C higher than those of the typical mesophilic strains 
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belonging to the same genus or even to the same species [14]. These thermotolerant meso-
philes are mainly and widely distributed in foods, plants, soils, and waters from tropical 
environments in ASEAN countries [15]. In these environments, relatively high temperature 
presumably becomes a selective pressure to enrich thermotolerant strains. These thermotoler-
ant strains are expected to provide a benefit for the industries because they are more robust and 
resistant to many stressors [14]. In addition, some of these thermotolerant microorganisms can 
produce distinctive enzymes that function under relatively high temperature conditions [16–
18]. Thermotolerant yeasts have been found and isolated from a number of countries [19–28]. 

Of these, K. marxianus is a haploid, homothallic, thermotolerant, and hemiascomycetous yeast 
[29, 30]. One such yeast, K. marxianus DMKU 3-1042 isolated in Thailand, shows relatively 
high ethanol productivity and fermentation ability at high temperatures [31], assimilates 
various sugars including xylose and/or arabinose [32], and exhibits relatively weak glucose 
repression on utilization of some sugars including sucrose [33]. Therefore, K. marxianus is, in 
comparison to S. cerevisiae, a promising candidate for next-generation bio-ethanol produc-
tion. In addition, the genomic sequences of K. marxianus are available [34, 35], and genetic 
technology and tools have also been developed [36]. Moreover, K. marxianus has been a plat-
form for next-generation protein production for structural and biochemical studies [18, 29].  

However, it is possible that unidentified and more beneficial thermotolerant yeasts exist in 
ASEAN countries, especially, thermotolerant high xylose-utilizing and ethanol-producing 
yeasts, which are needed for 2nd generation biomass utilization. None of the isolated K. marx-

ianus strains, however, are able to more efficiently convert xylose to ethanol than strains of 
other xylose-utilizing yeasts, such as Pichia stipitis (Scheffersomyces stipitis) [32, 37].

Thermotolerant strains allow the development of high-temperature fermentation (HTF) 
technology, which enables fermentation at 5–10°C higher than the traditional fermentative 
process [38, 39]. HTF is thus expected to reduce cooling costs, running costs at the simulta-
neous saccharification and fermentation (SSF) stage, and contamination risks [6, 31, 38–40], 
therefore offering a promising technology for bio-ethanol production. Moreover, thermotol-
erant yeast can also be applied for temperature-uncontrolled fermentation, hence offering 
another economical advantage. A combination of efficient bioreactors and robust hosts, such 
as thermotolerant strains, leads to lowest energy consumption and emission of CO2 in biofuel 
production [41].

In this chapter, we outline a number of thermotolerant yeasts including K. marxianus species 
isolated in Thailand and their characteristics, including utilization of various sugars, glucose 
repression, and genetic information, that are beneficial for high-temperature fermentation. In 
addition, new strains of thermotolerant yeasts that have been isolated in Indonesia, Vietnam, 
and Laos are summarized. Subsequently, the trial results of HTF with some of these strains 
for ethanol production are presented.

2. Various ethanologenic thermotolerant yeasts and their 

characteristics

Increasing global energy demand that exceeds the finite supply of fossil fuel has spurred 
scientific research to deliver alternative fuels. Microbial fermentation and efficient conversion 
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technologies now allow the extraction of biofuels from biomass, such as wood, crops, and 
waste materials. Supplies of ethanol have increased tremendously and are expected to con-
tinue rising rapidly in both developed and developing countries [41]. A variety of feedstocks 
from the 1st, 2nd, and 3rd generation have been used in bioethanol production [42]. First-
generation bioethanol involves feedstocks rich in sucrose (sugar cane juice, molasses, and 
sweet sorghum) and starch (corn, wheat, cassava, and potato). Second-generation bioetha-
nol comes from lignocellulosic biomass such as wood, straw, and other agricultural wastes. 
Third-generation bioethanol is derived from algal biomass including microalgae and mac-
roalgae [43, 44]. The process of ethanol production depends on the types of feedstocks used. 
Generally, there are three major steps in ethanol production: decomposition of biomass, 
fermentation, and product recovery. During fermentation, the cooling of fermenters is one of 
the major energy consuming steps because the metabolism of yeast releases a large amount of 
heat. Therefore, the application of thermotolerant yeasts can significantly reduce the cooling 
cost and help prevent contamination [38]. High-temperature ethanol fermentation will also 
benefit a simultaneous saccharification and fermentation process.

Many thermotolerant yeasts have been isolated from various natural habitats and tested 
for their capability to produce ethanol at high temperatures (Table 1). Many strains of K. 

marxianus, Pichia kudriavzevii, and S. cerevisiae were often isolated as ethanol-producing 
yeasts at high temperatures. Of these, K. marxianus was found to be the most thermotoler-
ant yeast. Limtong et al. [31] isolated K. marxianus DMKU 3-1042 in Thailand and found 
optimum ethanol production at 40°C. The strain was compared with other K. marxianus 

strains including NCYC587, NCYC1429, and NCYC2791 and found to be the best etha-
nol producer at 45°C [36]. Kumar et al. [45] isolated Kluyveromyces sp. IIPE453 from a soil 
sample in a sugar mill, which showed high ethanol production rate at 45–50°C. Yanase 
et al. [46] reported that K. marxianus NBRC1777 efficiently produced ethanol correspond-
ing to 92.9% of the theoretical yield. K. marxianus DBKKUY-103, that was recently isolated, 
achieved the maximum ethanol concentration of 83.5 g/L, corresponding to 96.6% of the 
theoretical yield [47]. Nitiyon et al. [37] reported that K. marxianus BUNL-21 is a highly 
competent yeast for high-temperature ethanol fermentation with lignocellulosic biomass. 
When compared with the strain DMKU 3-1042, the strain BUNL-21 had stronger ability for 
conversion of xylose to ethanol and tolerance to various stresses including high tempera-
ture and hydrogen peroxide.

Recently, there have been several reports on ethanol production at high temperatures using 
P. kudriavzevii (formerly known as I. orientalis). Several P. kudriavzevii strains were reported to 
grow and produce high levels of ethanol at high temperatures. The strain DMKU 3-ET15 was 
isolated from traditional fermented pork sausage in Thailand by an enrichment technique in 
a medium supplemented with 4% ethanol at 40°C. The strain produced 78.6 g/L ethanol from 
180 g/L glucose at 40°C [20]. The strain KVMP10 that was isolated from soil located beneath 
apple trees for ethanol production from orange peel achieved 54 g/L ethanol at 42°C [48]. 

Strain RZ8-1 that was recently isolated from various samples collected from plant orchards in 
Thailand produced 33.8 g/L ethanol from 160 g/L glucose at 40°C [49].
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Several S. cerevisiae strains were also isolated for high-temperature ethanol fermentation. 
Sree et al. [50] reported a strain VS3 that could grow at 40°C and produced ethanol up to 
60 g/L. Auesukaree et al. [51] reported a strain C3867 that produced 38.8 g/L of ethanol at 
41°C. Recently, Nuanpeng et al. [52] and Techaparin et al. [53] isolated S. cerevisiae DBKKUY-53 
and KKU-VN8, respectively, in Thailand. The former strain produced the maximum ethanol 
concentration and volumetric ethanol productivity of 85.0 g/L and 2.83 g/L h, respectively, at 
40°C, and the latter strain produced the maximum ethanol concentration of 89.3 g/L with a 
productivity of 2.48 g/L h and a theoretical ethanol yield of 96.3% from sweet sorghum juice 
at 40°C.

Table 1 shows a number of ethanologenic thermotolerant yeasts. A temperature of 40°C was 
found to be the best condition for most strains to produce ethanol.

3. Utilization of various sugars in thermotolerant yeasts

Bioethanol significantly contributes to the reduction of crude oil consumption and environ-
mental pollution. Thus, it has been identified as the mostly used biofuel worldwide [42]. 

Feedstocks for biofuel currently seem to be the option for sustainable development in the 

Yeast strain Temp. (°C) P (g/L) Qp (g/L/h) T.Y (%) Refs.

Kluyveromyces marxianus

DMKU 3-1042 40 67.8 1.13 60.4 [31]

IIPE453a 50 82.0 nd nd [45]

NBRC1777 40 47.4 nd 92.9 [46]

DBKKUY-103 40 83.5 1.39 96.6 [47]

Pichia kudriavzevii

DMKU 3-ET15 40 78.6 3.28 85.4 [20]

KVMP10 42 54.0 2.25 nd [48]

RZ8-1 40 33.8 1.41 77.9 [49]

Saccharomyces cerevisiae

VS3 40 60.0 nd nd [50]

C3867 41 38.8 nd nd [51]

DBKKUY-53 40 85.0 2.83 — [52]

KKU-VN8 40 89.3 2.48 96.3 [53]

aKluyveromyces sp.
P, ethanol concentration; Qp, volumetric ethanol productivity; T.Y, fraction of theoretical yield; nd, no data.

Table 1. Thermotolerant yeasts used in bioethanol production.
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context of economical and environmental considerations. There are various types of feed-
stocks for ethanol production [54], and accordingly, different processes including biomass 
pretreatment are required. Feedstock rich in sugar that mainly contains sucrose is readily 
fermented to ethanol. Feedstock rich in starch must first be hydrolyzed to glucose monomers 
by the action of enzymes [55]. Lignocellulosic and algal biomass needs further pretreatment 
and hydrolysis before liberating simple sugars, which can be readily converted to ethanol by 
microorganisms [56–58]. The resulting hydrolysates of these raw materials contain various 
sugars depending on the type of biomass [59]. In case of algal biomass, the sugar compo-
sition varies largely, based not only on algal species but also on their environmental and 
nutritional conditions [43, 56]. Lignocellulosic biomass is a complex mixture of carbohydrate 
polymers, and the biomass hydrolysate mainly contains hexoses (D-galactose, L-galactose, 
and D-mannose) and pentoses (D-xylose and L-arabinose) [60]. Glucose and xylose are the 
most abundant monosaccharides in this biomass taking up 60–70% and 30–40% of the total 
hydrolysate, respectively [61, 62]. Predominant pentose sugars derived from the hemicel-
lulose of most feedstocks are xylose and arabinose. Like in higher plants, algae biomass is 
comprised of rigid cellulose-based cell walls and various complex polysaccharides, which 
can be hydrolyzed to sugars and subsequently fermented to ethanol [43, 63]. However, algae 
biomass contains a low percentage of lignin and hemicellulose compared to other lignocel-
lulosic plants [64].

Microorganisms are the key factor in the conversion of sugars to ethanol. One of their several 
desired characteristics is thermotolerance. Ethanol production at high temperatures by ther-
motolerant yeasts has earned much interest due to several advantages as described above 
[38]. There are several ethanologenic yeasts that have been characterized and classified as 
thermotolerant yeasts such as K. marxianus [31, 37, 47], P. kudriavzevii (formally known as 
I. orientalis) [20, 48, 49, 65, 66], Hansenula polymorpha [67], and some strains of S. cerevisiae 

[21, 52, 68–70]. However, for cost-effective and efficient ethanol production, not only ther-
motolerance but also a broad spectrum in sugar assimilation and fermentation capability 
is beneficial for the conversion of a variety of raw materials containing various sugars to 
ethanol, especially xylose, which is the most common pentose sugar and the second most 
abundant after glucose in lignocellulosic biomass and algal biomass [71, 72].

S. cerevisiae is commonly employed in ethanol production due to its high ethanol productiv-
ity and high ethanol tolerance [73]. It is capable of converting different types of sugars, such 
as glucose, mannose, galactose, fructose, sucrose, and maltose to ethanol via the glycolysis 
pathway under anaerobic conditions [55]. Unfortunately, it is not able to ferment other carbon 
sources from plant or algal hydrolysates such as D-xylose, L-arabinose, and L-rhamnose [59]. 

A few types of yeasts can ferment both glucose and xylose but their performance regard-
ing the rate of ethanol production from xylose, and the yield is lower than those from the 
main hexose sugars (for example, S. (Pichia) stipitis [74], Scheffersomyces (Candida) shehatae [75], 
Pachysolen tannophilus [76], H. polymorpha [67], and K. marxianus [32, 37]). Among these xylose-
fermenting yeasts, it seems that K. marxianus has the potential for practical application in 
high-temperature ethanol fermentation because of its thermotolerance and ability to utilize a 
variety of sugars.
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K. marxianus’s most important characteristics in this respect are thermotolerance to tem-
peratures between 45 and 52°C, efficient ethanol production at temperatures between 38°C 
and 45°C, and a rapid growth rate that is twice as high as that of S. cerevisiae in rich media. 
Moreover, it has a broad spectrum of sugar assimilation, which includes glucose, mannose, 
galactose, fructose, arabinose, xylose, xylitol, sucrose, raffinose, cellobiose, lactose, and inu-
lin [32, 36]. However, there has been little ethanol production from xylose and none from 
arabinose [32]. This strain can utilize a wide variety of industrially relevant substrates and 
efficiently converts substrates to ethanol. Especially, with lignocellulosic raw materials, it 
resulted in 78–98% of the theoretical ethanol yield (Table 2).

4. Complete genome sequence of thermotolerant yeast K. marxianus 

DMKU 3-1042 and transcriptomic analysis

High-temperature fermentation technology with thermotolerant microbes has been expected 
to reduce the cost of bioconversion of biomass to fuels or chemicals. K. marxianus was 
included in GRAS (FDA) and QPS (EU) lists of safe microorganisms for use in foods [83, 84]. 

The capacity of K. marxianus to utilize a wide variety of sugars reflects its potential for bio-
technological applications [29, 84], which has been indicated by many studies with diverse 
substrates such as whey permeate, crop plants, and lignocellulosic biomass [32, 33, 78, 85, 86]. 

K. marxianus is also distinguished by its thermotolerance [36, 87] and the highest growth rate 

Feedstock Substrate Organism Temp. (°C) P (g/L) T.Y (%) Refs.

Sugar containing materials Sugar cane juice K. marxianus DMKU 
3-1042

40 67.8 60.4 [31]

Jerusalem artichoke K. marxianus 

DBKKU-Y102
40 97.5 92 [77]

Sweet sorghum juice K. marxianus 

DBKKUY-103
40 83.5 100 [47]

Palm sap K. marxianus TISTR 5925 40 45.4 92.2 [39]

Jerusalem artichoke K. marxianus PT-1 40 73.6 90 [21]

Starchy materials Taro waste K. marxianus K21 40 43.8 94.2 [78]

Lignocellulosic biomass Kanlow switchgrass K. marxianus IMB3 45 22.5 86 [79]

Switchgrass K. marxianus IMB4 45 16.6 78 [80]

Solka-floc K. marxianus L. G. 42 37.6 98 [81]

Rice straw K. marxianus 

NRRLY-6860
45 21.5 86 [82]

P, ethanol concentration; T.Y, fraction of theoretical yield.

Table 2. Ethanol production of K. marxianus from various substrates at high temperatures.
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in eukaryotes [88]. In recent years, interest also increased in several new applications such as 
production of biomolecules [89, 90], biocatalysts [91, 92], and heterologous protein expression 
[93, 94].

Genomic and transcriptomic studies have started to shed light on K. marxianus, and a grow-
ing number of genome sequences of K. marxianus strains are now available. Those include 
KCTC 17555 [34], DMB1 [95], CCT 7735 [96], NBRC1777 [97], DMKU 3-1042 [35], B0399 [98],  
UFS-Y2791 [99], and other nine strains: L01, L02, L03, L04, L05, CBS397, NBRC0272, NBRC0288, 
and NBRC0617 [100].

4.1. Genomic information and comparative genomics

The genome sequence of K. marxianus DMKU 3-1042 as one of the most efficient thermotol-
erant strains was determined, and the complete genome sequence of 11.0 Mb including all 
centromeric regions and boundary regions containing up to one to several sequence repeats 
(GGTGTACGGATTTGATTAGTTATGT) of telomeres was obtained [35]. The genome was 
composed of eight chromosomes in total, including mitochondrial DNA. Annotation of the 
genome of DMKU 3-1042 revealed a total of 4952 genes. UniProt and KAAS assignments 
led to the assignment of homologous genes of about 86.4% of predicted genes and KEGG 
Orthology numbers of 50.5% respectively.

A total of 202 tRNAs and 8 rDNAs were identified. According to the optical mapping experi-
ment, 140 rDNA copies were observed on chromosome 5 instead of 6 rDNA copies found in 
the genome sequence in the database. The rDNA copy number and the thermotolerance were 
expected to positively relate. However, there was no such correlation among 10 K. marxianus 

strains, which exhibited different growth at different temperatures, and at least 31 copies of 
rDNA are sufficient to support its thermotolerance [35].

The yeast shares 1552 genes with other hemiascomycetous yeasts, including K. lactis, Ashbya 

gossypii, Candida glabrata, S. cerevisiae, Ogataea parapolymorpha, Debaryomyces hansenii, S. stipitis, 

Clavispora lusitaniae, Yarrowia lipolytica, and Schizosaccharomyces pombe [101–105]. K. marxianus 

was found to be phylogenetically closest to K. lactis. There are 193 genes specific to K. marxianus, 
which may be responsible for its species-specific characteristics [35]. The 422 genes shared 
between K. marxianus and K. lactis may be related to their genus-specific characteristics, such 
as production of β-galactosidase [106], assimilation of a wide variety of inexpensive substrates 
[84], efficient productivity of heterologous proteins [107–109], and synthesis of a killer toxin 
against certain ascomycetous yeasts [110, 111].

The two attractive traits of K. marxianus for fermentation applications were the thermotol-
erance and pentose assimilation capability. The thermotolerant ability was also found in 
O. parapolymorpha, and 30 genes were found to be shared between the two thermotolerant 
yeasts, including genes for three siderophore-iron transporters and three vacuolar proteins. 
For pentose assimilation capability, there are 27 putative genes for sugar transporters in 
the K. marxianus genome, and some of them (KLMA_60073, KLMA_70145 and KLMA_80101) 
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were induced by xylose. The initial xylose catabolism after its uptake in K. marxianus is 

accomplished by three reactions catalyzed by enzymes, xylose reductase (XYL1), xylitol 
dehydrogenase (XYL2), and xylulokinase (XKS1), which are involved in the conversion of 
xylose to xylulose-5-phosphate as an intermediate in the pentose phosphate pathway (PPP). 
Genes for utilization of various other sugars and alcohol dehydrogenases were also found 
[35, 112, 113].

4.2. Ploidy variation in K. marxianus

K. marxianus showed a high level of phenotypic variation. Recently, the single nucleotide 
polymorphisms (SNIPs) in 14 strains of K. marxianus were analyzed [100]. On the basis of 
SNIP analysis and flow cytometry, it was found that the isolates included haploid, diploid, 
and triploid strains. All isolates from dairy environments were diploid or triploid, whereas 
most isolates (6 out 7 isolates) from nondairy environments were haploid.

4.3. Transcriptomic analysis

A major potential future application of K. marxianus may be ethanol production from lig-
nocellulosic biomass, which is an anaerobic or oxygen-limited process where both glucose 
and xylose may be present. Detailed transcription start site sequencing (TSS Seq) to explore 
the response of K. marxianus DMKU 3-1042 was reported for four different conditions: 
shaking condition in rich medium at 30°C (30D) or 45°C (45D), static condition in rich 
medium at 30°C (30DS), and shaking condition in xylose-containing rich medium at 30°C 
(30X) [35].

Under the 30DS condition, there were 159 and 154 significantly upregulated and downregu-
lated genes, respectively. In brief, K. marxianus may increase the turnover of RNAs and pro-
teins in addition to suppression of transporters that depend on mitochondrial respiratory 
activity. Most genes for several oxygen-dependent biosynthetic pathways (Figure 1), such as 
those for heme, sterols, unsaturated fatty acids, pyrimidine, and deoxyribonucleotides [114], 
are crucial for the cellular metabolism under the static condition.

Under the 45D condition, there were 199 and 508 significantly upregulated and downregu-
lated genes, respectively. K. marxianus seems to drastically change metabolic pathways under 
the 45D condition, that is, the enhancement of PPP and the attenuation of TCA cycle after the 
fumarate-producing step (Figure 2). Several genes for homologous recombination and non-
homologous end joining, which function in the repair of DNA-double stranded breaks, were 
also upregulated. As expected, heat shock proteins and chaperones, such as Hsp26, Hsp60, 
Hsp78, Hsp82, Ssa3, and Cpr6, are crucial for survival at high temperatures. The thermo-
tolerance of K. marxianus is likely achieved by systematic mechanisms consisting of various 
strategies. The yeast prevents reactive oxygen species (ROS) generation by minimizing mito-
chondrial activity and mainly acquires ATP from glycolysis rather than from TCA cycle at 
high temperatures.
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Under the 30X condition, there were 89 and 79 significantly upregulated and downregu-
lated genes, respectively. This condition may stimulate the degradation of lipids in the 
peroxisome and keep a low level of amino acid synthesis, indicating the possibility that 
fatty acids could be a subsidiary intracellular carbon source in xylose medium (Figure 3). 
Similarly, Schabort et al. [99] also reported that peroxisomal fatty acid catabolism was 
dramatically upregulated in a defined xylose mineral medium without fatty acids, 
along with mechanisms to activate fatty acids and transfer products of β-oxidation to 
the mitochondria. It is known that K. marxianus tends to suffer from cofactor imbalance 
in xylose medium [115, 116]. Redox balancing mechanisms between the cytoplasm and 
mitochondria are probably used to resolve the NADH/NADPH imbalance owing to lack 
of transhydrogenases [117]. In S. cerevisiae, five cytosolic-mitochondrial redox shuttles 
have been proposed [118]. Of these, genes for enzymes related to ethanol-acetaldehyde, 
citrate-oxoglutarate, and oxaloacetate-malate shuttles were relatively upregulated under 
the 30X condition, which were different from those found in S. cerevisiae and S. stipitis 

[103, 119].

Figure 1. Oxygen-related metabolism in budding yeast. Oxygen is used for the biosynthesis of unsaturated fatty 
acids, ergosterol, heme, pyrimidine, and deoxyribonucleotides, as well as during disulfide bond formation and fatty 
acid oxidation. Oxygen is also the final electron acceptor for the electron transport chain, which oxidizes reduced 
equivalents of nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FADH2) for the synthesis of 
ATP. However, ROS are produced as a by-product during some of these processes. The ROS can cause damage to DNA, 
proteins, and lipids.
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TSS seq analysis revealed that the oxidative stress-response genes were highly induced under 
the three conditions tested, indicating that ROS is accumulated in the cytoplasm, mitochon-
dria, and peroxisome under the 30DS and 30X conditions and in the cytoplasm and mitochon-
dria under the 45D condition.

Moreover, K. marxianus has been exploited as a cell factory to produce valuable enzymes, 
showing retention of the activity in a broad temperature range [120]. The 30X condition 
showed high expression of INU1 for inulinase, which is useful for the production of recombi-
nant proteins [108, 109, 121]. These useful characteristics may allow simultaneous production 
of ethanol and valuable proteins, thus generating additional revenue from ethanol production.

In conclusion, the transcriptome analyses clarified distinctive metabolic pathways under three 
different growth conditions, static culture, high temperature, and xylose medium, in comparison 
to the control condition of a glucose medium under a shaking condition at 30°C. Interestingly, 
the yeast appears to overcome the issue of ROS, which tend to accumulate under all three 
conditions. Nicotinamide adenine dinucleotide phosphate (NADPH) synthesis from several 
reactions is the key for cells to cope with ROS (Figure 4).

Figure 2. Difference of metabolism under the 45D condition from that under the 30D condition in K. marxianus DMKU 
3-1042 (see more detail in Ref. [35]).
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Figure 4. Generation and utilization of NADPH in budding yeast. A major source of cellular-reduced NADPH is 

thought to be produced via the oxidative branch of the pentose phosphate pathway. Oxidation of isocitrate, malate, and 
acetaldehyde generates NADPH. NADPH is consumed during the synthesis of amino acids and lipids. The reducing 
power of NADPH is also used to regenerate a variety of antioxidants and antioxidant enzymes, which protect the cell 
from ROS and engage in deoxyribonucleo tide triphosphate (dNTP) synthesis. Abbreviations: G6P, glucose-6-phosphate; 
6PGL, 6-phosphogluconolactone; 6PG, 6-phosphogluconate; Ru5P, ribulose-5-phosphate.

Figure 3. Difference of metabolism under the 30X condition from that under the 30D condition in K. marxianus DMKU 
3-1042 (see more detail in Ref. [35]).
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5. Glucose repression in thermotolerant yeast K. marxianus

Glucose repression is a general phenomenon in organisms including yeasts, by which glucose 
prevents the assimilation of other sugars [122, 123]. This process will disturb the fermenta-
tion of mixed sugars like hydrolysate of cellulosic biomass. As mentioned in the previous 
sections, K. marxianus is a well-known budding yeast, which has potential for production of 
bioethanol, hydrolytic enzymes, food biomass, and food additives [29, 31, 124]. K. marxia-

nus DMKU 3-1042 is a thermotolerant yeast from Thailand and efficiently produces ethanol 
at high temperatures [31]. Although the strain can utilize various sugars including xylose  
[32, 35, 125], it has an intrinsic system of glucose repression like other microbes. In this sec-
tion, we describe glucose repression in thermotolerant yeast, K. marxianus, and in conven-
tional yeast, S. cerevisiae.

5.1. Mechanism of glucose repression in S. cerevisiae

Glucose repression in S. cerevisiae has been well studied. Mig1 and Hxk2 play as the main 
regulator of glucose repression in this species [126]. The former is a C2H2 zinc finger pro-
tein [127], and the latter is a bi-functional protein acting as a hexokinase and transcriptional 
regulator, which is localized in both the cytoplasm and the nucleus [128, 129]. Hxk2 activity 
in glucose repression mechanism is influenced by the concentration of glucose. Under high 
concentrations of glucose, Hxk2 in the cytoplasm moves to the nucleus and, as a complex with 
dephosphorylated Mig1, Cyc8, and Tup1 [126], represses the transcription of several genes 
including respiratory and gluconeogenic genes. As a result of Hxk2 binding to Mig1, serine 
311 in Mig1 is dephosphorylated, resulting in maintenance of repressive conditions [130]. On 

the other hand, in the presence of a low concentration or absence of glucose, Hxk2 and Mig1 
remain in the cytoplasm, where neither Mig1 nor Hxk2 can repress Mig1-regulated genes 
[126]. In this situation, Hxk2 does not interact with Mig1 but still interacts with Snf1. No inter-
action between Hxk2 and Mig1 facilitates phosphorylation of serine 311 in Mig1 by the Snf1 
kinase. Snf1 is phosphorylated by Sak1 and forms a complex with Snf4 and Gal8 to become 
activated. The Snf1 complex inhibits formation of a complex of Mig1-Hxk2-Cyc8-Tup1. In 
this situation, since Mig1 is also phosphorylated or inactive and absent in the nucleus, Mig1-
regulated genes are de-repressed [130].

5.2. Mechanism of glucose repression in K. marxianus

K. marxianus DMKU 3-1042 exhibits almost no glucose repression on sucrose assimilation 
unlike S. cerevisiae [33]. To acquire glucose repression-defective strains in K. marxianus, some 
researchers performed spontaneous isolation on 2-deoxyglucose (2-DOG) plates or random 
insertion of kanMX4 [131, 132]. According to the characteristics of sugar consumption abilities, 
cell growth and ethanol accumulation along with cultivation time, only one of 33 isolates of 
2-DOG-resistant mutants showed enhanced utilization of xylose in the presence of glucose. 
Further analysis revealed that this isolate had a single nucleotide mutation to cause amino 
acid substitution (G270S) in RAG5 encoding hexokinase and exhibited very low activity of the 
enzyme [132]. Another technique for obtaining glucose repression-defective strains showed 
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one group of 2-DOG-resitant mutants with intragenical insertion of KanMX4. This group also 
exhibits enhanced utilization of xylose in the presence of glucose, presumably due to a defect 
in the glucose-repression mechanism [131].

On the other hand, Zhou et al. focused on the function of Mig1 in K. marxianus and showed 
that the MIG1 mutation increased hydrolysis of lactose [133] and production of inulinase 
[134]. Nevertheless, information on the function of Rag5 as a transcriptional regulator is 
hardly available, and thus construction of the complete disrupted mutation of RAG5 and its 
analysis become a challenge. Thus, disrupted mutants of genes for Mig1 and Rag5 were con-
structed, and their characteristics were compared with those of the corresponding mutants 
of S. cerevisiae. MIG1 and RAG5 mutants exhibited more resistance to 2-DOG in YP plates 
containing sucrose. RAG5 and HXK2 mutants showed more resistant to 2-DOG than the cor-
responding MIG1 mutants [135].

Several attractive characteristics of MIG1 and RAG5 mutants of K. marxianus DMKU 3-1042 
were uncovered. MIG1 mutants consumed almost two times faster xylose and accumulated 
glycerol and xylitol much more than those of the parental strain and the RAG5 mutant in 
the liquid media YPX (containing 20 g/L of xylose) and YPDX (containing 20 g/L of glucose 
and 20 g/L of xylose) at 30°C. The accumulation of glycerol and xylitol may be due to accu-
mulation of NADH. RAG5 mutants exhibited very slow utilization of glucose in the liquid 
media of both YPD (containing 20 g/L of glucose) and YPDS (containing 20 g/L of glucose 
and 20 g/L of sucrose). However, with this mutant, high amounts of fructose (about 11.9 g/L 
in YPDS at 30°C for 96 h) were accumulated. MIG1 and HXK2 mutants of S. cerevisiae also 

accumulated high amounts of fructose in the same medium, but after 12 h, fructose was 
consumed.

The fructose accumulation in RAG5 mutants is probably due to the inability of this 
mutant to uptake fructose or the lack of kinase activity. To further analyze this phenom-
enon, Enzyme activitiesa and gene expression levels of inulinase and kinase in MIG1- and 
RAG5-disrupted mutants and the parental strain were measured (Table 3) [135]. RAG5 

mutants showed very high activities of inulinase, about 77 times higher than those of the 
parental strain, but almost no activities of hexokinase and glucokinase that are encoded 
by RAG5 and GLK1, respectively. The inulinase activity in RAG5 mutant was consistent 
with the gene expression level of INU1, being about 22 times higher than that of the 
parental strain. However, the expression level of GLK1 in this mutant was higher, which 
was inconsistent with glucokinase activity. It is thus likely that there is a post-transcrip-
tional regulation for glucokinase. MIG1 mutants showed no significant increase in inulin-
ase activity, but INU1 transcriptional expression was eight times higher than that of the 
parental strain. This inconsistence may also be due to post-transcriptional regulation for 
inulinase. These results suggest that Mig1 and Rag5 are related to the glucose repression 
mechanism in K. marxianus and share some functions with Mig1 and Hxk2, respectively, 
in S. cerevisiae.

In conclusion, Mig1 and Rag5 in K. marxianus share some functions with Mig1 and Hxk2, 
respectively, in S. cerevisiae. Mig1 and Rag5 in K. marxianus may form a complex similar to that 
consisting of Mig1 and Hxk2 in S. cerevisiae.
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6. Thermotolerant and ethanologenic yeasts in Vietnam

In Vietnam, ethanol is a compound in many different products from fermentation technology 
including alcoholic drinks and biofuel. In the national strategy with a vision to 2025 designed by 
the government, the technology of biofuel production in Vietnam using the various raw material 
resources that are abundantly available, e.g., pineapple, cassava, sugarcane, etc., will reach the 
advanced worldwide level. For the scheme on the development of Vietnam’s alcoholic beverages 
with a vision to 2025, the Mekong Delta is one of the top national areas for the improvement of 
such products. In addition, nowadays due to global warming, the exploration of thermotolerant 
yeasts for ethanol fermentation at high temperature also falls in the potential priorities in Vietnam.

6.1. Characteristics of thermotolerant and ethanologenic yeasts

Recent research studies under international programs, such as the Asian Core Program 
(2008–2012) and the Core-to-Core Program (2014–2018), have addressed the exploration of 
useful thermotolerant ethanologenic yeasts isolated from Vietnam and their applications for 
fermentation technology at high temperature. The diversity of yeast isolates with high capaci-
ties and stability for the controlled processing of alcoholic winemaking and ethanol produc-
tion from cheap and available raw materials in the region has been studied.

A total of 712 yeast isolates were purified from many different kinds of raw material sources 
in the Mekong Delta, Vietnam, such as ripe fruits, flowers of fruit-tree, cocoa, fermented prod-
ucts, alcoholic fermentation starters, sugarcane, molasses, sawdust, agricultural by-products, 
and soil samples. All of these yeast isolates could grow well at 37°C and about 80, 45 and 10% 
of these yeasts could grow at 40, 43 and 45°C, respectively. More than 80% of yeasts were able 
to grow in a medium containing 9% (v/v) of ethanol, this number decreased to about 40% of 
yeasts growing in a medium supplemented with 12% (v/v) of ethanol. For conservation, all 
pure yeast isolates have been stored at −20 and −80°C in stock culture of glycerol freezing broth.

A bank collection of genetically diverse yeasts with thermotolerant ethanologenic capac-
ity at high temperatures was developed and systemized. The full data of morphological, 

Strains Enzyme activitiesa Gene expression levels

Inulinase (U/

mg DCW)

Gluco-

hexokinase  

(U/mg)

Hexokinase 

(U/mg)

INU1/ACT1 GLK1/ACT1 RAG1/ACT1

DMKU 3-1042 127.38 1.107 0.662 0.087 0.136 0.916

MIG1 mutant 160.1 1.466 0.774 0.696 0.141 0.266

RAG5 mutant 9838.16 0.007 0.005 1.927 1.495 0.051

RAG1 mutant 4229.23 0.203 0.027 1.234 0.606 0.091

aThe data are from Ref. [135].

Table 3. Comparison of enzyme activities and gene expression levels in MIG1- and RAG5-disrupted mutants of K. marxianus 

in YPD liquid medium.
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physiological, and biochemical characteristics, as well as the nucleotide sequencing analyses 
of the 88 selected yeasts, have been established. Some predominantly abundant identified spe-
cies include Candida tropicalis, S. cerevisiae, P. kudriavzevii, and C. glabrata (Table 4). Besides, a 
number of other species was also characterized, such as Torulaspora globosa, Candida nivariensis, 
Pichia manshurica, C. lusitaniae, Hanseniaspora opuntiae, and Meyerozyma caribbica.

With the aim to pave the way for the application of useful thermotolerant ethanologenic yeasts 
toward industrial fermentation technology, ethanol production, and winemaking by using the 
selected thermotolerant yeasts, investigations at laboratory-scale and pilot-scale were performed. 
The optimum fermentation conditions at different temperatures (37, 40, and 43°C) were also 
tested in a factorial design with three factors including yeast inoculum, initial sugar concentra-
tion, and fermentation time. For wine manufacture, different kinds of fruits were employed as 
raw materials such as: pineapple, watermelon, dragon fruit, guava, jackfruit, rambutan, tangerine, 
and three-leaved wild vine. The highest ethanol concentration of the final wine product reached 
about 12% (v/v) and up to 7% (v/v) during the fermentation at 37 and 40°C, respectively. For 
ethanol production, a number of raw materials were tested including molasses, sugarcane juice, 
sugarcane waste, and pineapple waste hydrolysate. The highest ethanol concentration could be 
found at about 7% (v/v) and up to 4% (v/v) during the fermentation at 37 and 40°C, respectively.

No Isolated yeast species Vietnam Laos Indonesia

1 Blastobotrys adeninivorans 2

2 Candida glabrata 7 2

3 Candida manshurica 2

4 Candida nivariensis 4

5 Candida stellimalicola 1

6 Candida tropicalis 16 26 16

7 Clavispora lusitaniae 1

8 Cyberlindnera rhodanensis 2

9 Hanseniaspora opuntiae 1

10 Issatchenkia orientalis 1

11 Kluyveromyces marxianus 6 3

12 Meyerozyma caribbica 1

13 Meyerozyma guilliermondii 2

14 Pichia kudriavzevii 35 47 1

15 Pichia manshurica 2

16 Saccharomyces cerevisiae 19 1

17 Torulaspora globosa 2

Not identified 624 70 56

Total 712 159 79

Table 4. Isolated yeast strains from Vietnam, Laos, and Indonesia.
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The research findings on the diversified collection of thermotolerant ethanologenic yeasts iso-
lated from Vietnam and the high ethanol yields as well as and fermentation efficiencies by using 
the selected yeast isolates indicate the promising application of such newly isolated functional 
thermotolerant yeasts for the controlled ethanol production at high temperatures from agricul-
tural by-products and the winemaking manufacture from different available fruit resources in 
the region. Further advanced research on the expression levels of the selected genes and the 
metabolic pathways will be performed to explore the regulation of these genes to get maximum 
benefits of the superior thermotolerant yeasts for high-temperature ethanol production.

7. Thermotolerant and ethanologenic yeasts in Laos

Ethanol production in Lao PDR is generally used for human consumption and household use, 
rather than for small or large-scale industries. Until now, no ethanol as a substitute of energy 
in Lao PDR is produced in the industry. The raw material used to make ethanol for drinking is 
mostly sticky rice and the starter culture used for fermentation contains sticky rice and many 
other herbs. Drinking alcohol in Lao PDR is available in all provinces, mainly for consumers in 
their own province. Currently, alcoholic beverages are still very productive and the most popular 
products to customers are produced in the Saravan province in Meuangkhong district. High qual-
ity ethanol used for medicine, hospitals or laboratories are imported from neighboring countries.

The National Economic Research Institute under the Ministry of Planning and Investment 
reported that production of ethanol in 2010–2011 was increased 3.2 times compared to 2001. 
Lao government plans to develop other sources of renewable energy, which have been inves-
tigated by the private sector. Demonstration projects including a bio-diesel oil from Jatropha 
plant and biofuel (bio-gasoline and bioethanol) from Palm and Carmelina plants have been 
developed. In 2011, the Savannakhet sugar factory has been established by a Thai company 
to produce biogas and biomass energy. In 2013, a Vietnam company started a biomass power 
and ethanol production plant in Phouwong District, Attapeu Province.

7.1. Characteristics of thermotolerant and ethanologenic yeasts

Isolation of yeasts was first attempted from fruits, vegetables, leaves and soils in four prov-
inces, Louang Phrabang, Xayaburi, Xiengkhouang, and Vientiane of Lao PDR. The attempt 
was carried out at 37°C by an enrichment culture. Samples (5–10 g) of fruits pressed in 
small pieces, leaves cut in small portions, and mashed soil were transferred into 100-mL 
Erlenmeyer flasks containing 10 mL of YPD (1% yeast extract, 2% peptone and 2% glucose) 
medium and incubated at 37°C for 3 days with occasional shaking. The cultures were then 
streaked on YPD agar plates and incubated at 37°C for 24–48 h. As a result, 43 strains were 
isolated, and their ethanol fermentation ability was characterized under various conditions 
including different sugars and different temperatures. A second isolation was attempted 
from similar kinds of samples described above in four provinces, Bolikhamxay, Champasak, 
Louang Phrabang, and Oudomxay, and 116 strains were obtained after enrichment culture as 
described above except that 4% ethanol was added in YPD medium. Of a total of 159 strains, 
89 were identified by nucleotide sequencing of D1/D2 domains and analysis on MALDI-TOF/
MS [28]. Fermentation experiments allowed to classify them into two groups: the first bears 
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an ethanol-fermenting ability at high temperature (116 strains) and the second the converting 
ability of xylose to ethanol at 37°C or more (43 strains). In fermentation of ethanol, the first 
group can use glucose, sucrose, sugar cane juice, and molasses as carbon sources, producing 
a maximum of ethanol concentrations of 7.9% (w/v), 6.7% (w/v), 7.3% (w/v), and 4.0% (w/v) 
from 16% sugar concentration, respectively. The second group produced 1.2–1.7% (w/v) etha-
nol from 4% xylose at 37°C. Species identification revealed that isolates include nine species 
including C. tropicalis, P. kudriavzevii, and K. marxianus (Table 4).

7.2. Characteristics of newly isolated K. marxianus strains

Out of six isolated K. marxianus strains, BUNL-17 was found to be the most efficient ethanol 
producer at high temperature [28]. Comparison with DMKU 3-1042, which is one of most 
thermotolerant K. marxianus strain isolates from Thailand, revealed that BUNL-17 possesses 
an efficient conversion activity of xylose to ethanol, resistance to 2-deoxyglucose and toler-
ance to various stresses including temperature, high sugar concentration, and hydrogen 
peroxide [37]. Compared to S. stipitis the fermentation activity toward xylose of BUNL-21 
is slightly lower at around 30°C and much higher at higher temperatures. BUNL-21 is thus 
a highly competent yeast for high-temperature ethanol fermentation with lignocellulosic 
biomass. Interestingly, the fermentation activity was shown to be significantly enhanced by 
over-expression of KmADH2 for alcohol dehydrogenase 2 [37].

8. Thermotolerant and ethanologenic yeasts in Indonesia

Ethanol production in Indonesia is generally performed for medical, industrial processes, 
and beverages. Several potential biomass resources for bioethanol production in Indonesia 
are (1) sugar-based materials including sugar cane (molasses), (2) starch-based including 
root (cassava and sweet potato) and grain (corn and sorghum), and (3) lignocellulosic-based 
including bagasse, straw, stalk, wood waste, corn cob, and sap of several plants or trees. The 
main biomass used for bioethanol production in Indonesia is molasses [136] probably because 
Indonesia is one of the largest sugarcane producers in the world. Annual cane production 
in Indonesia is about 32–35 million tons with an average cane productivity of 70–85 ton/ha. 
Sugar production is about 2.2–2.7 million tons, including molasses with about 1.3–1.5 million 
tons. Molasses are mainly used for monosodium glutamate production in the ethanol indus-
try and for export to other countries [137].

Bioethanol development for fuel in Indonesia was started from 2006. Its road map until 2010 
showed production of 99.5% ethanol as a fuel grade ethanol (FGE), which can be mixed with 
petroleum for gasohol E10 (10% ethanol and 90% petroleum). For the first period, biomass used 
for bioethanol production was molasses and cassava and bioethanol supply was about 1.48 mil 
kL (million kiloliters) or equal to 10% of total gasoline consumption. In the period 2011–2015, 
bioethanol supply was estimated to increase to 2.78 mil kL or equal to 15% of total gasoline 
consumption. Until 2025, bioethanol supply is predicted to be 6.28 mil kL or 20% of total gasoline 
consumption [138]. The application of bioethanol for fuel in Indonesia is E5, and only two bioeth-
anol filling stations are operating in two cities, Malang and Semarang [139]. However, because of 
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some obstacles such as limitation of fuel grade ethanol market, inconsistency supply, insufficient 
demand, and price volatility, there is almost no fuel ethanol production since 2010 [136].

8.1. Characteristics of thermotolerant and ethanologenic yeasts

In international programs including the e-ASIA Joint Research Program, yeast strains were 
isolated from various samples such as soils, waters, flowers, fruits, vegetables, and fermented 
foods. The isolation method for thermotolerant and ethanol-producing yeast was similar to 
that applied in Lao PDR. The enrichment culture was carried out in YPD medium without 
the addition of ethanol. Most of the isolates can grow at relatively high temperatures ranging 
from 37 to 48°C. Of those, 52 yeast isolates grow well at 37°C on agar plates containing differ-
ent types of sugar, such as glucose, xylose, and sucrose. Some can produce around 6% ethanol 
in a rich medium containing 16% (w/v) glucose at 40°C. These prominent characteristics are 
important for the development of bioethanol production in Indonesia.

Most yeast strains isolated from Indonesia are able to grow at relatively high temperatures 
not only in glucose medium but also in xylose and sucrose. However, their growth gradually 
decreases as temperature increases and is very weak at more than 45°C. Indonesian yeast 
isolates from fruits and fermented foods seem to be more thermotolerant than those from soils 
and waters. Most of the isolates grow very well at 40°C. These isolates include C. tropicalis, K. 

marxianus and P. kudriavzevii (Table 4).

9. High-temperature fermentation technologies with thermotolerant 

yeast

Currently, biofuel-aimed ethanol fermentation in industry is performed at around 30°C 
because the most frequently applied yeast is nonthermotolerant S. cerevisiae. In the fermenta-
tion process, the temperature in the fermenter increases close to a nonpermissible level for 
the yeast by metabolic and mechanical heat sources. A cooling system with a large amount of 
water and/or by a cooling unit is equipped for effective fermentation. The cooling cost tends 
to be higher in tropical countries or increases in summer time in other many countries, and 
the electricity problem largely affects productivity of ethanol. The HTF using a thermotoler-
ant microbe is expected to provide several advantages. First, it can reduce the cooling cost. 
Second, the amount of enzyme used for saccharification can be reduced in the simultaneous 
saccharification and fermentation at higher temperature. Third, higher temperature causes 
lower contamination by various germs. Fourth, when the distillation under reduced pressure 
is applied at around 40°C, fermentation and distillation can be performed by one tank, which 
reduces the manufacturing time and the cost of equipment. Here, we introduce a fundamen-
tal research for an energy-saving fermentation technology using thermotolerant yeast.

9.1. Temperature-noncontrolled fermentation with thermotolerant yeast

For development of the fermentation technology, K. marxianus DMKU 3-1042 was used, which 
efficiently produces ethanol at high temperatures as mentioned above [32, 33]. The utilization 
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of the thermotolerant yeast is favorable to fermentation in a tropical country because it can be 
performed under temperature-noncontrolled conditions. When a bench-scale fermentation, 
2 L of 9% glucose medium, was tested, DMKU 3-1042 produced ethanol equivalent to that 
under the temperature-controlled condition at 30°C [39]. In a fermenter-scale fermentation 
with 4000 L of 18% sugarcane, 7% ethanol production was achieved [39].

9.2. Distillation-connected fermentation with thermotolerant yeast

As an additional challenge, distillation-connected fermentation was attempted. Because the 
saturated vapor pressure of ethanol is 177.8 mbar at 41°C, where a thermotolerant microbe 
can grow well, ethanol can be collected from the fermenting culture when pressure is reduced 
to less than the saturated vapor pressure. The system shown in Figure 5 was constructed and 
tested, which consists of a fermentation and a distillation tank, the primary and secondary 
ethanol recovery units, a vacuum pump, and a drain unit. In this system, ethanol is concen-
trated as the process proceeds from the primary to secondary ethanol recovery units. Due 
to the set-up of this system, the air in the tank was discharged outside during the vacuum 
distillation, and some ethanol was trapped in the drain unit. When fermentation with K. 

marxianus DMKU 3-1042 and distillation at 70 mbar and 41°C was applied, about 35 and 60% 
were recovered in the primary and secondary bottles [39]. The process of the simultaneous 
fermentation and distillation under a low pressure was continuously repeated three times, 
with 12% rice-hydrolysate [39]. Similar performance was achieved with a thermo-adopted 
strain of Zymomonas mobilis TISTR548, an ethanologenic bacterium [39].

That system provides some benefits: (i) microbes avoid exposure to high concentrations of eth-
anol or acetic acid or strong oxidative stress and (ii) fermentation can be continued during dis-
tillation increasing ethanol yields. Although further experiments for its evaluation are required, 
the system including HTF is expected to be one of next-generation fermentation technologies.

Figure 5. Apparatus for fermentation and distillation under a low pressure. This apparatus consists of a fermentation 
and distillation tank, primary and secondary recovery bottles, a drain unit, and a vacuum pump.
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