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Abstract

We are not going to present the classical results on linear parametric systems, since they
are widely discussed in literature. Instead, we shall consider nonlinear parametric systems
and discuss the conditions of new motion existence in the resonance zones: the regular
ones (on an invariant torus) and the irregular ones (on a quasi-attractor). On the basis of
the self-oscillatory shortened system which determines the topology of resonance zones,
we study the transition from a resonance to a non-resonance case under a change of the
detuning. We then apply our results to some concrete examples. It is interesting to study
the behavior of a parametric system when the ring-like resonance zone is contracted into a
point, i.e., to describe the bifurcations which occur in the course of transition from the
plain nonlinear resonance to the parametric one. We are based on article, and we follow a
material from the book.

Keywords: resonances, quasi-attractor, periodic solves, parametric perturbations

1. Introduction

Consider the following system:

dx

dt
¼

∂H x; yð Þ

∂y
þ εg x; y; νtð Þ,

dy

dt
¼ �

∂H x; yð Þ

∂x
þ εf x; y; νtð Þ,

(1)

where ε > 0 is a small parameter, ν is perturbation frequency, and g, f are continuous periodic

functions of period 2π with respect to φ ¼ νt. The Hamiltonian H as well as f and g will be

assumed to be sufficiently smooth in a domain G⊂R2 � S1 (or G⊂R1 � S1 � S1 ¼ R1 � T2).
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Also, we shall assume that the unperturbed (ε ¼ 0) Hamiltonian system is nonlinear and has at

least one cell D filled with closed phase curves.

We especially emphasize the following condition.

Condition A. ∂g
∂x þ

∂f
∂y =� 0.

This implies that system (1) is nonconservative.

Along with (1), we shall consider the autonomous system:

dx

dt
¼ ∂H x; yð Þ

∂y
þ εg0 x; yð Þ

dy

dt
¼ � ∂H x; yð Þ

∂x
þ εf 0 x; yð Þ,

(2)

where g0 ¼< g>φ and f 0 ¼< f>φ.

We also assume the following condition.

Condition B. System (2) has a finite set of rough limit cycles (LCs) in cell D.

Changing the variables x, y to the action I and angle θ, we obtain the system in the form

_I ¼ εF1 I;θ;φð Þ
_θ ¼ ω Ið Þ þ εF2 I;θ;φð Þ
_φ ¼ ν,

(3)

where

F1 � f x0θ � gy0θ, F2 � �f x0I þ gy0I (4)

are periodic of period 2π with respect to θ and φ. System (3) is defined on the direct product

Δ� S1 � S1 ¼ Δ� T2, where T2 is two-dimensional torus, Δ ¼ I�; Iþ
� �

, I� ¼ I h�
� �

.

The definition of resonance. We say that in system (3) a resonance takes place if

ω Ipq
� �

¼ q=pð Þν, (5)

where p, q are relatively prime integer numbers.

The energy level I ¼ Ipq (H x; yð Þ ¼ hpq) of the unperturbed system is called the resonance.

The behavior of solutions in the neighborhoods

Uμ ¼ I;θð Þ : Ipq � Cμ < I < Ipq þ Cμ; 0 ≤θ ≤ 2π;C ¼ const
� �

, μ ¼
ffiffiffi

ε
p

of individual resonance levels I ¼ Ipq H x; yð Þ ¼ hpq
� �

can be derived, up to the terms O μ2
� �

,

from the pendulum-type equation [1, 2]

Perturbation Methods with Applications in Science and Engineering82



d2v

dτ2
� bA0 v; Ipq

� �

¼ μσ v; Ipq
� � dv

dτ
, (6)

b ¼ dω Ipq
� �

=dI, τ ¼ μt, A0 v; Ipq
� �

¼
1

2πp

ð2πp

0

F Ipq; vþ qφ=p;φ
� �

dφ,

σ v; Ipq
� �

¼
1

2πp

ð2π

0

∂g x; y;φð Þ

∂x
þ

∂f x; y;φð Þ

∂y

� �

dφ,

(7)

where X ¼ X Ipq; vþ qφ=p
� �

, Y ¼ Y Ipq; vþ qφ=p
� �

is the unperturbed solution on the level

I ¼ Ipq. For nondegenerate resonance zones we consider here, it holds that b 6¼ 0. Functions

A0 v; Ipq
� �

, σ v; Ipq
� �

are periodic of period 2π=p with respect to v.

From Eq. (7) follows.

Theorem 1

If the divergence of the vector field of Eq. (6) depends on v, then the divergence of the vector field of the

original system (1) contains terms which depend on both the time t and the spatial coordinates.

In many cases the converse is also true. For example, it holds for the system

dx=dt ¼ y, dy=dt ¼ �x� x3 þ P1 þ P2x
2 þ P3xsin νtð Þ

� �

yþ P4sin νtð Þ: (8)

The terms mentioned in Theorem 1 are called nonlinear parametric terms. Our goal is to study

systems of the form (1) with such terms. The existence of those leads to new motions in

resonance zones [1–3]. We shall demonstrate these motions on examples.

2. Investigation of Eq. (6)

The following representations hold:

A0 v; Ipq
� �

¼ A∗ v; Ipq
� �

þ B Ipq
� �

, B ¼< A0>v,

σ v; Ipq
� �

¼ σ∗ v; Ipq
� �

þ B1 Ipq
� �

, B1 ¼< σ>v,
(9)

where B Ið Þ is the generating function of the autonomous system (2) and B1 Ið Þ is the derivative

of B Ið Þ. We shall focus on the case when σ is sign-alternating. In this case, from Eq. (9) follows

the inequality:

∣B1 Ipq
� �

∣ < maxv∣σ∗ v; Ipq
� �

∣: (10)

When studying the pendulum Eq. (6), we shall distinguish two cases: (I) B Ipq
� �

6¼ 0 and (II)

B Ipq
� �

¼ 0.

In case II system (2) has a rough limit cycle (LC) in a neighborhood of the level H x; yð Þ ¼ hpq.

There is no such cycle in case I.
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Case I. Neglecting terms of order μ in Eq. (6), we arrive at the integrable equation

d2v=dτ2 � bA0 v; Ipq
� �

¼ 0 (11)

If ∣B Ipq
� �

∣ > maxv∣A∗ v; Ipq
� �

∣, then Eq. (11) has no equilibrium states. The resonance level I ¼ Ipq

is then referred to as passable. Note that the term “passable” has its origin in the topology of

the resonance zone, as opposed to the same term used in physics, where “passing” stands for a

change in perturbation frequency ν. In the case under consideration, there are no periodic

solutions in the vicinity of the resonance level. The most interesting case is when Eq. (11) has

equilibrium states, i.e., when the condition

∣B Ipq
� �

∣ < maxv∣A∗ v; Ipq
� �

∣ (12)

is satisfied. The resonance level I ¼ Ipq is then said to be partly passable.

Under condition (10), Eq. (6) may have limit cycles. In order to find them, one must construct

the Poincaré-Pontryagin generating function.

Figure 1(a) shows the phase portrait of Eq. (6) under conditions (10) and (12), and p ¼ 3. On

the period 2π=3, there is a single limit cycle (note that on the period 2π (which is the period of

the unperturbed solution) there are three limit cycles). If the cycle lies outside the neighbor-

hood of the separatrix loop of Eq. (11), then there is a corresponding two-dimensional invari-

ant torus in the original system. Since the period of the limit cycle of Eq. (11) is of orderO 1=μ
� �

,

we then have a long-periodic beating regime in the original system (6) (the generatrices of the

torus are of different order).

However, if the limit cycle lies in the neighborhood of the separatrix loop, then the two-

dimensional invariant torus in the original system (1) is destroyed. The bifurcation scene in

which the cycle is caught into the separatrix loop is shown in Figure 1(b). Taking into account

the nonautonomous terms, which were discarded in deriving Eq. (6), leads to the homoclinic

structure. Such a structure is shown in Figure 1(c) for the Poincaré map with p ¼ 3. Because of

Figure 1. (a) Phase portrait of Eq. (6), (b) bifurcational case, and (c) Poincaré map for the initial system in case (b).
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the presence of non-compact separatrices, in this case we merely have an irregular transition

process.

Case II. Now, Eq. (6) always possesses equilibrium states, and we have the third kind of

resonance zone, namely, an impassable zone. In order to better understand the structure of

such a zone, we introduce in Eq. (6) the detuning γ between the level I ¼ Ipq and the level

I ¼ I0, near which the autonomous system (2) has a limit cycle:

B Ipq
� �

¼ dB I0ð Þ=dIð Þ Ipq � I0
� �

þO Ipq � I0
� �2

	 


≃γμ (13)

Then, Eq. (6) can be rewritten as

du=dτ ¼ A∗ v; Ipq
� �

þ μ σ v; Ipq
� �

uþ γ
� �

,

dv=dτ ¼ bu:
(14)

In Eq. (14) we change the variables from u; vð Þ to the action J and the angle L (in both the

oscillatory and the rotational zones) and average the resulting system over the “fast” angular

variable L. As a result, we arrive at the equation

dJ

dτ
¼ μbΦ Jð Þ=2π,

where Φ Jð Þ is the Poincaré-Pontryagin generating function [2] and it is discontinuous at J ¼ Jc
when γ 6¼ 0. Here, Jc corresponds to the contour in the “unperturbed” system

du=dτ ¼ A∗ v; Ipq
� �

,

dv=dτ ¼ bu:
(15)

formed by the saddle and two separatrix loops embracing the phase cylinder.

We shall therefore use Melnikov’s formula [4] to determine the relative position of the

separatrices which in the shortened system (15) constitute the contour formed by the outer

separatrix loops:

Δ ¼ μΔ∓
1 þO μ2

� �

Δ
∓
1 ¼ b

Ð

∞

�∞ σ∗ v0; Ipq
� �

þ B1 Ipq
� �� �

u20dτ∓ 2πγ:

Here, v0, u0 is the solution of Eq. (15) on the contour consisting of the saddle and the outer

separatrix loops. Setting d ¼ maxv∣σ∗ v; Ipq
� �

∣ ¼ ∥σ∗∥, a ¼ ∣B1 Ipq
� �

∣=d we find from the formula

for Δ�
1 that Δ�

1 ¼ d αþ βa
� �

� 2πγ, where

α ¼ b

ð

∞

0

σ v0; Ipqð Þu20dτ, β ¼ b

ð

∞

0

u20dτ, σ ¼
σ∗

∥σ∗∥
:

From the condition Δ
�
1 ¼ 0, we get
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γ ¼ γ� ¼ ∓ d αþ βa
� �

=2π: (16)

In system (14) the upper contour exists when γ ¼ γþ, and the lower contour when γ ¼ γ�.

Eq. (16) defines two straight lines in the a;γð Þ plane. They intersect each other at a∗; 0ð Þ, where

a∗ ¼ �α=β. When ∣a∣ > 1 the function σ v; Ipq
� �

is sign-preserving, and when ∣a∣ < 1 it is sign-

alternating.

In virtue of Eq. (10), the second case is the most interesting. The case ∣a∣ < 1 is somewhat

special since system (14) may then have limit cycles in both the oscillatory and rotational

domains, which have no generating counterparts in system (2). Limit cycles in Eq. (14) can

result from the following phenomena [5]: (a) from a degenerate focus, (b) from a separatrix

loop (contour), and (c) from a condensation of trajectories. However, if the number of limit

cycles does not matter, it suffices to consider the case when there is no more than one limit

cycle in the oscillatory domain. Then, we can make a general conclusion on the change of

qualitative dynamics of Eq. (14) under variation of the detuning. However, beforehand, we

should study the problem for the case when f and g are trigonometric polynomials of degreeN

in φ. Then, A∗ and σ∗ are also trigonometric polynomials of degree N1 ≤N:

�bA∗ v; Ipq
� �

¼
X

N1

i¼1

aicos ipvð Þ þ bisin ipvð Þð Þ

σ∗ v; Ipq
� �

¼
X

N1

i¼1

dicos ipvð Þ þ cisin ipvð Þð Þ:
(17)

From the definition of functions A∗ vð Þ and σ vð Þ (see Eq. (7)), it follows that, in general, different

harmonics in the perturbation contribute to A∗ and σ. This means that different harmonics can

dominate in Eq. (17). We count only these main harmonics in Eq. (17) (for A∗ ) 1 and σ∗ ) n).

We then derive from Eq. (6) the equation

z
00 þ sin zð Þ ¼ μ cos nzð Þ þ að Þz0 þ γ

h i

, (18)

where z ¼ pvþ ψ, ψ ¼ arctan b1=a1ð Þ.

The generating function Φ Jð Þ for Eq. (18) can be presented as [3]

Φ J rð Þð Þ ¼ Φ
sð Þ
rð Þ ¼ aF sð Þ

n rð Þ þ F
sð Þ
0 rð Þ � δ2s2πγ

F
1ð Þ
0 rð Þ ¼ 16 r � 1ð ÞKþ E½ �, F 1ð Þ

1 rð Þ ¼ 16 1� rð ÞKþ 2r � 1ð ÞE½ �=3,
F

2ð Þ
0 rð Þ ¼ 8E=

ffiffiffi

r
p

, F
2ð Þ
1 rð Þ ¼ 8 2 r � 1ð ÞKþ 2� rð ÞE½ �=3r3=2

(19)

where s ¼ 1 corresponds to the oscillatory domain and s ¼ 2 to the rotational domain. K,E are

the complete elliptic integrals with modulus k (r ¼ k2). Note that r ¼ ð1þ ~hÞ=2 in the oscillatory

domain and r ¼ 2=ð1þ ~hÞ in the rotational domain, and ~h ¼ ~h J rð Þð Þ is the value of the energy

integral of the equation z
00 þ sin zð Þ ¼ 0. Function F

sð Þ
j rð Þ is the generating function defined by the
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perturbation term z
0
cos jzð Þ. The plus in Eq. (19) corresponds to the upper half of the cylinder,

the minus to the lower half, and δ is the Kronecker delta. This enables us to find all the

bifurcation sets (except the one corresponding to a contractable separatrix loop) explicitly [6].

We shall first consider the case when γ ¼ 0. In this case Eq. (18) is identical to the standard

equation [2], and Φ rð Þ is continuous at r ¼ 1. Thus, it determines the limit cycles up to the

separatrix. This case was considered in Figure 2(a–e) that the rough topological structures are

shown for n ¼ 1. Note that the limit cycles can “disappear at infinity” only when B1 ¼ 0. This is

impossible when Condition B is satisfied. Figure 2(e) shows the bifurcation when the limit

cycle “clings” to the separatrix contour (Φ rð Þ has the simple root r ¼ 1). Figure 2(f) shows the

corresponding behavior of the invariant curves (separatrices) of the Poincaré map for the

original system with p ¼ 3. The neighborhood of the homoclinic contour is attracting. More-

over, a complicated structure exists in the neighborhood [7], and, consequently, we have a

quasi-attractor, i.e., a nontrivial hyperbolic set, and stable points can exist in it.

Figure 2. Phase portraits of Eq. (18) (a–e) and the Poincare map (f) for the case (e) and p ¼ 3.
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When γ 6¼ 0 the generating function Φ rð Þ is discontinuous at r ¼ 1. The bifurcation of the cycle

clinging to the separatrix must, therefore, be considered separately.

Using Melnikov’s formula, we compute Δ
�
1 , which measures the split of the unperturbed

separatrix for Eq. (18). One can see that equation Δ
�
1 ¼ 0 is equivalent to Φ

2ð Þ 1ð Þ ¼ 0. Then,

using Eq. (19) and assuming (for concreteness) n ¼ 1, we find the bifurcational values

γ� ¼ ∓ 4 aþ 1=3ð Þ=π. When γ ¼ γþ þO μ
� �

, we have a non-contractable separatrix loop lying

in the domain z0 ≥ 0, and when γ ¼ γ� þO μ
� �

, we have a loop in the domain z0 ≤ 0. From

Eq. (19) we obtain the asymptotic formula, Φ 2ð Þ
rð Þ≃π 8a=

ffiffiffi

r
p þ ffiffiffi

r
p � 4γ

� �

=2, as r ! 0. This

implies that the straight line a ¼ 0 in the plane a;γð Þ is singular. Furthermore, from Eq. (19) we

find in the parametric form the line of the double cycles:

a ¼ a0 rð Þ ¼ � F 2ð Þ
	 
0

= F 2ð Þ
	 
0

, γ ¼ γ0 rð Þ ¼ ∓ F 2ð Þ F 2ð Þ
n

	 
0
� F 2ð Þ
	 
0

F 2ð Þ
	 


=2π � F 2ð Þ
	 
0

,

r∈ 0; 1½ �, or γ ¼ γ�
0 að Þ:

It is observed that the transformation of the phase portrait of Eq. (18) for r ffi 1 involves the

creation of a contractable separatrix loop. By Condition B, we have a 6¼ 0, which implies that

the saddle number is nonzero. The separatrix loop can, therefore, give rise to one limit cycle

only [5]. The corresponding bifurcational set γ�
1 að Þ in the parameter plane can be found

numerically.

We thus obtain a partition of the parameter plane a;γð Þ into domains corresponding to differ-

ent topological structures for Eq. (18), as well as the structures themselves (they are shown in

Figure 3) for n ¼ 1. The structures corresponding to cases 8–12 are not shown in Figure 3, since

they can be obtained from structures 5, 6, 3, 2, and 14, respectively, by the directions of the

coordinate axes.

Note that, along with a non-contractable separatrix loop, Eq. (18) has either a stable limit cycle,

or a stable equilibrium state, or the stable “point at infinity.” This means that no quasi-attractor

can exist in the original nonautonomous system when γ 6¼ 0. Remark that the homoclinic

structure exists for a small range of γ values jγ� γ�j≃ exp �1=μ
� �� �

.

Those limit cycles of Eq. (18) which do not lie in the neighborhood of the unperturbed

separatrix contour correspond to the two-dimensional invariant tori in the original system

(like in the case B 6¼ 0). Unlike when B 6¼ 0, two kinds of such tori may exist in Eq. (18)

corresponding to the limit cycles in the oscillatory and rotational domains. The tori

corresponding to the cycles in the rotational domain (with one exception) have no generating

“Kolmogorov torus” in the perturbed Hamiltonian system, while the (asymptotically stable)

tori corresponding to the limit cycles in the oscillatory domain are images of the tori occupying

the next level in the hierarchy of resonances.

Remark The cases of odd and even n should be considered separately. When n is even, an

unstable cycle clings to the separatrix loop. For odd n the same thing happens to a stable cycle.

Only the case of odd n is therefore interesting when one studies the problem of existence of a

quasi-attractor.
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According to the bifurcation diagram (Figure 3), it is convenient to break the case ∣a∣ < 1 into

three sub-cases: (a) �1 < a < a∗, (b) a∗ < a < 0, and (c) 0 < a < 1, a∗ ¼ 1= 1� 4n2
� �

. Let n be

odd. Then considering the solutions on the original cylinder v mod2πð Þ; uf g, we derive the

following theorem.

Theorem 2

There are μ
∗
, γ� að Þ, γ�

0 að Þ, γ�
1 að Þ, and a∗ such that, if ∣μ∣ < μ

∗
and n are odd, the following three

intervals of a (in Eq. (18)) can be chosen: 1 ∘ : a∈ �1; a∗ð Þ; 2 ∘ : a∈ a∗; 0ð Þ; and 3 ∘ : a∈ 0; 1ð Þ.

1. Let a∈ �1; a∗ð Þ. Then, (1) when γ > γ
þ
1 > 0, Eq. (14) has exactly one stable limit cycle (LC) in the

rotational domain and no more than p n� 1ð Þ LCs in the oscillatory domain (OD); (2) when

γ
þ
1 < γ < γþ, there are p additional LCs in the OD, which are born from the separatrix loops at

γ ¼ γ
þ
1 ; (3) when γ ¼ γþ, the stable LC in the rotational domain clings to the separatrix contour

Γ
þ
p consisting of p saddles and their outer separatrices going from one saddle to another, while the

“free” unstable separatrices approach an LC in the OD; (4) when γ� < γ < γþ, there are no LCs in

the rotational domain and no more than pn LCs in the OD; (5) when γ ¼ γ�, there appears a

separatrix contour Γ�
p which consists of p saddles and their outer separatrices but has orientation

and location different from those of Γþ
p ; (6) when γ�

1 < γ < γ�, there are no more than pn LCs in

Figure 3. Bifurcation diagram and the corresponding rough phase portraits of Eq. (18).
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the OD and one stable non-contractible LC; and (7) when γ < γ�
1 , Eq. (14) has one stable non-

contractible LC which lies in the lower half-cylinder u < 0 and no more than p n� 1ð Þ in the OD.

2. Let a∈ a∗; 0ð Þ. Then, in the OD there are p n� 1ð Þ LCs, and in the rotational domain, (1) when

γ > γ�, Eq. (14) has one stable LC for u > 0; (2) when γ ¼ γ�, a contour Γ�
p appears; (3) when

γþ < γ < γ�, one stable LC exists on the upper half-cylinder u > 0ð Þ and one stable LC on the

lower half-cylinder u < 0ð Þ; (4) when γ ¼ γþ, a contour Γþ
p appears; and (5) when γ < γþ, one

stable LC exists for u < 0.

3. Let a∈ 0; 1ð Þ. Then, there are at most p n� 1ð Þ LCs in the OD, and in the rotational domain, (1)

when γ > γ� and u < 0, Eq. (14) has one stable LC; (2) when γ ¼ γ�, a contour Γ�
p appears; (3)

when γ�
0 < γ < γ� and u < 0, there is a stable LC born from Γ

�
p and an unstable LC; (4) when

γ ¼ γ�
0 , the stable and unstable LCs merge together; (5) when γ

þ
0 < γ < γ�

0 , no LCs exist; (6)

when γ ¼ γ
þ
0 , a semi-stable LC is formed for u > 0; (7) when γþ < γ < γ

þ
0 , one stable and one

unstable LCs exist for u > 0; (8) when γ ¼ γþ, a contour Γþ
p is formed; and (9) when γ < γþ, one

unstable LC exists for u > 0.

3. Example 1

Consider system (8) which is equivalent to the equation [3]

€x þ xþ x3 ¼ P1 þ P2x
2 þ P3xsin νtð Þ

� �

_x þ P4sin νtð Þ, (20)

where Pi, i ¼ 1; 2; 3; 4ð Þ are parameters. Here, we focus only on the effects which are due to the

nonlinear parametric term x _xsin νtð Þ. Let us assume ν ¼ 4. Then, for small Pi i ¼ 1; 2; 3; 4ð Þ

system (20) can have only two “splittable” resonance levels: H x; yð Þ ¼ h11, H x; yð Þ ¼ h31 and

h31 < h11. The corresponding autonomous system (P3 ¼ P4 ¼ 0) has at most one LC. The

passage of this LC through the resonances under a change of parameter P2 was considered in

[2]. If this LC lies outside the neighborhoods of resonance levels H x; yð Þ ¼ h11, H x; yð Þ ¼ h31,

then in the original nonautonomous system (20), there is a two-dimensional invariant torus T2

corresponding to the cycle. There is a generating “Kolmogorov torus” in the Hamiltonian

system P1 ¼ P2 ¼ P3 ¼ 0ð Þ.

A computer program was developed by the author for a simulation of Eq. (20). The results

of such simulation are presented in Figures 4–6. In the numerical integration, the Runge-Kutta-

type formulae are used with an error of order O h6
� �

per integration step h. In Figure 4(a) we

present the Poincaré map for P1 ¼ 0:0472, P2 ¼ �0:008, and P3 ¼ 0:018, which determines

the structure of the main resonance zone p ¼ 1; q ¼ 1ð Þ. Along with the separatrices of the

saddle fixed point S, a closed invariant curve encircling the unstable fixed point O is shown,

which corresponds to a stable LC in the oscillatory domain of Eq. (6). This closed invariant

curve appears for P3 ≈ 0:014 when the fixed point O loses its stability. As P3 increases, so does

the size of the closed invariant curve, and for P3 ≈ 0:0487 the curve clings to the separatrix of
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the saddle point S, forming a contour (see Figure 4(b)). As P3 increases further, two closed

invariant curves appear, shown in Figure 5 for P3 ¼ 0:15. The structural changes of the reso-

nance zone observed in the experiment are in good agreement with the theoretical results for

γ ¼ 0. The observations for γ 6¼ 0 are consistent with the theory, too.

Figure 4. Poincaré map for Eq. (20) with P1 ¼ 0:0472, P2 ¼ �0:008, P4 ¼ 2, and ν ¼ 4 and (a) P3 ¼ 0:018 and (b)

P3 ¼ 0:0489755.

Figure 5. Poincaré map for Eq. (20) with P1 ¼ 0:0472, P2 ¼ �0:008, P3 ¼ 0:15, P4 ¼ 2, and ν ¼ 4.
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In the case presented in Figure 6, the transversal intersection of the separatrices of S cannot be

detected visually. We, therefore, increased P4 to obtain a better picture of the homoclinic

structure. When P4 ¼ 8, the structure can be seen clearly (Figure 6(a)). The corresponding

quasi-attractor is the only attracting set (Figure 6(b)). Stable periodic points with long periods

can exist inside the quasi-attractor itself. However, they are extremely difficult to detect

numerically.

4. Example 2

As opposed to Example 1, this one pursues a different goal, namely, to study the transition

from the classical parametric resonance to the nonlinear resonance. One of the problems for

which this can be done is that of the pendulum with a vibrating suspension.

The pendulum with vibrating suspension is a classical example of a problem in which a

parametric resonance can be observed. A large number of publications (see, e.g., [8, 9]) are

devoted to this problem. Other problems of this sort include the bending oscillations of

straight rod under a periodic longitudinal force [10], the motion of a charged particle (electron)

in the field of two running waves [11], etc. The parametric resonance in this kind of systems

appears when a fixed point of the corresponding Poincaré map loses its stability and is,

therefore, usually described by the linearization near this point.

It is interesting to study the behavior of a parametric system when the ring-like resonance zone

is contracted into a point, i.e., to describe the bifurcations which occur in the course of

transition from the plain nonlinear resonance to the parametric one. This paragraph is devoted

to the solution of this problem in the case of a nonconservative pendulum with a vertically

oscillating suspension.

Figure 6. Poincaré map for Eq. (20) with P1 ¼ 0:0472, P2 ¼ �0:008, P3 ¼ 0:0487, P4 ¼ 8, and ν ¼ 4 (a) and quasi-attractor (b).
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The motion of the pendulum with vertically oscillating suspension (under some simplifying

assumptions) is described by the equation [13]

€x þ sinxþ p1cosβtsinxþ p2 _x ¼ 0, (21)

where p1, p2, β are parameters.

Let us now complicate the model even more and consider the equation

€x þ sinxþ p1cosβtsinxþ p2 þ p3cosx
� �

_x ¼ 0, (22)

with the phase space R
1 � S

1 � S
1. The term p3 _xcosx appears, for example, in the case of the

pendulum in which the force of resistance is created by a vertical plate perpendicular to the

plane of oscillations. Consider Eq. (22) when it is close to integrable, i.e., for small values of

parameters pi i ¼ 1; 2; 3ð Þ. Denote pi ¼ εCi, where ε is a small parameter. Then, the original

Eq. (22) takes the form

€x þ sinx ¼ ε C1cosβtsinxþ C2 þ C3cosxð Þ _x
� �

, (23)

Eq. (23) in the conservative case, when C2 ¼ C3 ¼ 0, is considered in many publications. For

instance, for small angles of the deviation x, the case β ffi 2 is studied in [8]. The criterion of

resonance overlap is applied in [11] to estimating the width of the “ergodic layer.” The

existence of homoclinic solutions is discussed in [12] without the assumption on smallness of

parameter ε.

Phase curves of the unperturbed mathematical pendulum equation are determined by the

integral H x; _xð Þ � _x2 � cosx ¼ h, where h∈ �1; 1ð Þ in the oscillatory domain and h > 1 in the

rotational domain. The peculiarity lies in the way period τ depends on h in the oscillatory

domain.

We have

τ hð Þ ¼ 2π=ω ¼ 4K kð Þ, k2 ¼ 1þ hð Þ=2, � 1 < h < 1,

τ hð Þ ¼ 2kK, k2 ¼ 1= 1þ hð Þ, h > 1:
(24)

Here, K ¼ K kð Þ is the complete elliptic integral of the first kind, k being its modulus. From

Eq. (24) it follows that the period τ changes noticeably only for h close to 1, i.e., in the

neighborhood of the separatrix. Therefore, small intervals of period τ, which determines the

width of resonance zones, correspond to fairly large intervals of variable x.

4.1. Structure of resonant zones

In the investigation of the perturbed equation, we first focus on the structure of resonance

zones in domains G1 ¼ x; _xð Þ : �1 < h� ≤H x; yð Þ ≤ hþ < 1f g and G2 ¼ x; _xð Þ :f H x; yð Þ ≥ h∗ > 1g.

The resonance condition τ hpq
� �

¼ p=qð Þ 2π=β
� �

, where p, q are relatively prime integers, deter-

mines the resonance levels of energy H x; yð Þ ¼ hpq.
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The structure of individual resonance zones Uμ is described (up to the terms O ε3=2
� �

) by the

pendulum-type Eq. (6). Since functions A0 and σ have different forms in the oscillatory and

rotational domains, we introduce the notations A
sð Þ
0 v; hpq
� �

and σ sð Þ v; hpq
� �

, where s ¼ 1 corre-

sponds to the oscillatory domain and s ¼ 2 to the rotational one.

In our case the divergence of the vector field of Eq. (23) contains no terms explicitly depending

on t; hence, σ does not depend on v, i.e., σ ¼ const.

The functions A
sð Þ
0 and σ sð Þ in an explicit form were obtained in [13]. It is also found that the

width of the resonance zone decreases rapidly with the increase of p when q ¼ 1.

A computer-generated picture of invariant curves of the Poincaré map for Eq. (22), with

β ¼ 1:6, is shown in Figure 7. In Eq. 21(a) a case of synchronization of oscillations in the

subharmonic with p ¼ 2, q ¼ 1 (p1 ¼ 0, 1, p2 ¼ 0, 07, p3 ¼ �0, 1Þ is shown, and in Figure 7(b),

a partly passable resonance with p ¼ 2, q ¼ 1 p1 ¼ 0, 1
�

, p2 ¼ 1=30, p3 ¼ �0, 1Þ is shown. In the

domain G2 the synchronization of oscillations on the main resonance (p ¼ q ¼ 1) takes place.

4.2. Neighborhood of the origin

Denote Un ¼ x; yð Þ : 0 ≤H x; yð Þ ≤Cε2=n
� �

and substitute in Eq. (23):

x ¼ ε1=nξ, y ¼ _x ¼ ε1=nη

As a result, we arrive at the system

_ξ ¼ η, _η ¼ �ξþ ε C1ξcos βt
� �

þ C2 þ C3ð Þη
� �

þ ε2=nξ3=6�

�ε1þ2=n C1ξ
3cos βt

� �

=6þ ξ2η
� �

þ…
(25)

Figure 7. Invariant curves (separatrices) of Poincaré map for Eq. (22) with p1 ¼ �0, 1, p3 ¼ 0, 1, β ¼ 1:6, and p2 ¼ �0, 07

(a) with p2 ≃ � 1=30 (b).
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System (25) is defined in D� S
1 where D is a certain domain in R

2. In the neighborhood

U1 n ¼ 1ð Þ, system (25) assumes the form

_ξ ¼ η, _η ¼ �ξþ ε C1 � ξ � cos βt
� �

þ C2 þ C3ð Þη
� �

þO ε2
� �

: (26)

By discarding in Eq. (26) the terms O ε2
� �

, we arrive at the Mathieu equation with the extra

term resulting from the viscous friction. It is clear that in the framework of a linear equation

one cannot observe the (nonlinear) effects which accompany the transition from the nonlinear

resonance to the parametric one. So, let us consider a wider neighborhood U2 n ¼ 2ð Þ of the
origin. In Eq. (25) we discard the terms O ε2

� �

and, for the resulting system, consider the

resonance cases when ω ¼ 1 ¼ qβ=p (p and q being relatively prime integers). We then study

the bifurcations pertaining to the transition from the parametric resonance to the ordinary one.

We once again introduce the detuning 1� qβ=p ¼ γ1ε. As a result, the system in question will

be rewritten as

_ξ ¼ qβ=p
� �

ηþ γ1ε

_η ¼ � qβ=p
� �

ξþ ε C1ξcosβtþ C2 þ C3ð Þη� γ1ξþ ξ3=6
� �

:
(27)

Now, we introduce the action (I) – angle (ϑ) variables. Since the unperturbed system is linear,

the substitution has the simple form ξ ¼
ffiffiffiffiffi

2I
p

sinϑ and η ¼
ffiffiffiffiffi

2I
p

cosϑ. In terms of this variables,

system (27) will be written as

_I ¼ εF I;ϑ;φð Þ, _ϑ ¼ qβ=p� εR I;ϑ;φð Þ, _φ ¼ β, (28)

where F ¼ 2IGcosϑ� γ1

ffiffiffiffiffi

2I
p

sinϑ, R ¼ Gsinϑþ γ1cosϑ=
ffiffiffiffiffi

2I
p

G ¼ C1sinϑcosφþ C2 þ C3ð Þcosϑ� γ1sinϑþ I=3ð Þsin3ϑ:

Let us introduce in Eq. (28) the “resonance phase” ψ ¼ ϑ� qφ=p and average the resulting

system over the “fast” variable φ. As a result, we arrive at the two-dimensional autonomous

system

_u ¼ ε C1=2½ Þusin2vþ C2 þ C3ð Þu�
_v ¼ ε C1=4ð Þcos2v� u=8� γ1=2

� � (29)

when p ¼ 2 and q ¼ 1 and to the system

_u ¼ ε C2 þ C3ð Þ
_v ¼ ε �u=8� γ1=2

� � (30)

when p 6¼ 2 and/or q > 1. As we know, u ¼ I þO εð Þ, v ¼ ψþO ε2
� �

. From Eq. (29) and (30),

it follows that (in our approximation) only one resonance with p ¼ 2, q ¼ 1 appears in the

neighborhood U2.
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The investigation of system (29) when C2
2 þ C2

3 6¼ 0 for different values of detuning γ1 presents

no difficulty, because, according to the Bendixson criterion, there are no limit cycles. The most

typical rough phase portraits are presented in Figure 8where, parallel with the phase portraits

in the u; vð Þ plane, the corresponding phase portraits in Cartesian coordinates x; y ¼ _xð Þ

are shown. Figure 8(a) corresponds to the case when we have γ1 > γ∗ > 0, γ∗ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C2
1 � 4 C2 þ C3ð Þ2

q

=2, Figure 8(b) when ∣γ1∣ ≤γ∗, and Figure 8(c) when ∣γ1∣ > γ∗ and γ1 < 0.

In addition, in all three cases, we assume C2 þ C3 < 0.

4.3. Conclusion

The number of splittable resonances is bounded, when C2
2 þ C2

3 6¼ 0. For the actual pendulum

(Eq. (22)), when the small nonconservative forces are present, we, most likely, have one

Figure 8. Phase portraits of system (29) with C2
2 þ C2

3 6¼ 0.
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resonance regime with p ¼ 2, q ¼ 1 in the oscillatory domain and the one with p ¼ 1, q ¼ 1 in

the rotational domain.

In conclusion we make the following remarks on Eqs. (22) and (23).

1. The transition from Figure 8(a)–(c) corresponds to two period-doubling bifurcations, while

the passage from the parametric resonance (Figure 8(b)) to the ordinary nonlinear reso-

nance (Figure 8(c)) corresponds to the birth of two periodic (of period 2) saddle points and

a node (focus) from a multiple saddle fixed point.

2. The bifurcation which involves the birth of a quasi-attractor (Figure 7(b)) in the neighbor-

hood of the unperturbed separatrix is the most interesting one. It may take place at any

magnitude of the external force (parameter C1). It suffices to have B sð Þ 1ð Þ ¼ 0, C2 ¼ð

�C3=3Þ, ε C2 � C3ð Þ < 0, for example, C2 ¼ �1=30, C3 ¼ 0:1, ε > 0:.

3. In the quasi-integrable nonconservative case, there appear no resonances with q > 1 and

odd p in the oscillatory domain and no resonances with q > 1 and even p in the rotational

domain.
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