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Abstract

An approach is presented that allows getting detailed information on the behavior of
streaming instabilities (SI) from the dispersion relation (DR). The approach is based on
general assumptions and does not refer to any particular model and/or type of the stream
interaction with background system (Cherenkov, cyclotron, etc.). The basis of the
approach is transformation of the DR to an equation for slowly varying amplitude of the
developing waveform. The solution of the equation actually presents results of the impor-
tant problem of time evolution of initial perturbation and gives detailed information on
the instability behavior. Most of the information is unavailable by other methods. For
particular SI, only two parameters should be specified. The expression for the fields’
structure shows that with increase in level of dissipation, SI gradually turns to dissipative
streaming instability (DSI). Two new, previously unknown types of DSI are presented:
DSI of overlimiting electron beam and DSI under weak beam-plasma coupling. Growth
rates of these DSI depend on dissipation more critically than usual. Presented approach is
valid for a large class of SI: beam-plasma instabilities of various types (Cherenkov, cyclo-
tron, etc.) including over-limiting e-beam instabilities, the instability in spatially separated
beam-plasma systems, Buneman instability, etc.

Keywords: streaming instability, dissipative instability, space–time evolution, slowly
varying amplitude, transformation to dissipative instability

1. Introduction

Plasma is rich in instabilities. Many of them are a result of relative motion of plasma compo-

nents. These, streaming instabilities (SI) are the most common in space and laboratory plasmas.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



A well-known example is the beam-plasma instability [1], in which the directed motion of a

small group of fast electrons passing through the background plasma excites potential oscilla-

tions with high growth rate near the plasma frequency. Close attention to this instability is due

mainly to design of high power sources of electromagnetic radiation based on this instability.

The sources have many advantages as compared to well-known vacuum devices [2, 3].

Another example (we mention these two only) is the Buneman instability [4], in which plasma

electrons move with respect to ions. The instability plays an important role in many scenarios

in space physics and geophysics. A striking example of plasma with relative electron-ion

motion is current-carrying plasma. This object is often considered in plasma physics. The

instabilities which are due to relative electron-ion motion play an important role in physics of

controlled fusion also.

A clear understanding of physical nature of the SI, their role and influence on various pro-

cesses in plasma requires substantial efforts. Physics of interaction of plasma components

moving relatively to each other is essentially based on the concept of negative energy wave

(NEW) [5]. This requires account of all factors which lead to NEW growth. Among them,

dissipation plays an important role. Dissipation leads to energy losses for the growth of

NEW. Influence of dissipation on the instabilities of streaming type is unique. Dissipation

never suppresses the instabilities completely regardless on its level. Dissipation of high-level

transforms the SI to dissipative streaming instability (DSI) [1]. These instabilities have a

number of features: comparatively low growth rate, comparatively low level of excited oscil-

lations, etc. For a few decades, DSI have been widely discussed, and it is supposed that they

can be applied to explain various phenomena in space and laboratory plasma. Up to recently

only one type of DSI was known, and it was believed that all types of electron stream

instabilities (e.g., Cherenkov type, cyclotron type etc.) transform to the single known type of

DSI. However, it turned out that other types of DSI also exist [6–8]. Changes in some basic

physical parameters and/or system geometry lead to significant changes in physical nature of

e-stream interaction with plasma. This changes result in two new, previously unknown types

of DSI: DSI of over-limiting electron beam and DSI under weak coupling of the stream with the

plasma. In both cases, the growth rate depends on dissipation more critically: 1=ν instead of

conventional 1=
ffiffiffi

ν

p

(here ν is the frequency of the collisions).

The transformation of the SI to dissipative typemakes their behavior in the presence of dissipation

of particular interest. In order to understand how instability turns to another type, it is necessary

to investigate the evolution of its fields in space and time [9, 10]. Simultaneously, the expressions

for fields’ evolution give all available information on the SI: growth rates (spatial and temporal)

under arbitrary level of dissipation, character of the instability (absolute/convective), range of

unstable perturbations’ velocities, influence of dissipation on the instability, etc. These details help

to understand how the instability turns to DSI, how it transforms given equilibrium of back-

ground plasma, predict the level and/or scale of the changes, how nonlinear phenomena arise as

well as predict possible saturation mechanisms, etc. In general, the character of the fields’ devel-

opment in space and time is one of the most important aspects of every instability.
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The character of space–time evolution of given instability is an important issue in many

branches of physics. In plasma physics, we firstly note theory of amplifiers and oscillators in

the microwave range based on interaction of e-beam with wave, where obvious progress is

achieved [2, 3]. These studies are also important for research on plasma instabilities associated

with research on nuclear fusion, astrophysics, etc.

The mathematical solution of the problem of initial perturbation evolution reduces to calcula-

tion of the integral with a complete dispersion relation (DR) in the denominator of the inte-

grand. An overall view on the character of the instability may be obtained by investigation of

the asymptotic behavior of the Green’s function. In order to derive analytical expression for the

fields’ space–time distribution, the DR should be specified and solved before integration. In

this way, essential difficulties appear which usually cannot be overcome. One must apply

approximate methods to obtain results. Presented here (see also [11]) approach is similar to

traditional approach in many respects, but, in the same time, advantageously differs from it.

Representation of the fields in form of wave train with slowly varying amplitude (SVA)

allowed to overcome the difficulties and to obtain the space–time structure of the fields

without reference on any particular model. Thereby, the approach singles out intrinsic pecu-

liarities of various types of SI. The results show that all types of the beam-plasma instabilities

(Cherenkov, cyclotron, etc.) have similar dynamics of development. By specifying only two

parameters in the unified expression one can investigate given particular case of beam insta-

bility. With increase in level of dissipation all SI gradually turn to DSI.

This review considers all these aspects: getting detailed information on SI, their space–time

evolution and transformation to DSI. Presented approach shows that the DR which usually

describes given SI can serve not only for solution of the well-known (and very simplified)

initial and boundary problems. Its application is much wider. It can give much more informa-

tion on the instability. Namely, it actually gives the solution of the well-known (and very

important [9]) problem of time evolution of initial perturbation. The DR can give space–time

structure of the fields at the instability development. In its turn, the fields’ structure contains

complete information on the instability. Most of this information is unavailable by other

methods. The expressions for fields’ evolution also show in detail the transformation of SI to

dissipative type. Two new, previously unknown types of DSI are presented.

Large variety of SI characterize by various types of the interaction with background systems

(plasma-filled or not), various values of streaming currents, etc. From this follows various

types of their DR and ensuing equation for SVA. They are considered separately. In Section 2,

the evolution of various types of beam instabilities (Cherenkov, cyclotron, and the instability in

periodical structure) are considered. All they characterize by small contribution of the beam in

DR and this fact allowed generalizing the consideration. Section 3 gives the evolution of over-

limiting e-beam instability. Due to influence of the beam space charge, the instability of such

beams has other physical nature as compared to instability of conventional e-beams. In Sec-

tions 4 and 5, the instability in spatially separated beam-plasma system and the Buneman

instability are considered. The peculiarity of last case is in the role of plasma ions.

The Behavior of Streaming Instabilities in Dissipative Plasma
http://dx.doi.org/10.5772/intechopen.79247

23



2. The behavior beam-plasma instabilities in dissipative plasma

2.1. Equation for slowly varying amplitude

Consider an electrodynamical system of arbitrary geometry (plasma filling is not obligatory)

and let a monoenergetic relativistic electron beam penetrate it. The general form of the disper-

sion relation (DR) of such system is

D0 ω;kð Þ þDb ω;kð Þ ¼ 0 (1)

where ω is the frequency of perturbations and k is the wave vector. D0 ω;kð Þ ¼ 0 is the “cold”

DR describing proper frequencies of the systems in the absence of the beam (its main part), and

Db ω;kð Þ is the beam contribution. We also assume that the beam density is small enough to

satisfy the condition Db ω;kð Þj j << D0 ω;kð Þj j. In following consideration, we will not specify

the form of D0 ω;kð Þ. Beam electrons interact with proper oscillations of background system

and this interaction leads to instability. The interaction may be of various types: Cherenkov,

cyclotron, interaction with periodical structure, etc. The general form of Db ω;kð Þ may be

written as

Db ω;kð Þ ¼ �
ω2

bA ω;kð Þ

γ3 ω� ku� fð Þ2
(2)

where u is the velocity of the beam electrons, ωb is the Langmuir frequency of streaming

electrons, γ is the relativistic factor of the beam electrons, and A ω;kð Þ is a polynomial with

respect to ω and k of degree no higher than two. The expression for f depends on the type of

the beam interaction with plasma:

f ¼

0, if the interaction is of Cherenkov type

nΩ=γ, if the interaction is of cyclotron type

kcoru, if the beam interacts with periodical structure

,

8

>

>

>

<

>

>

>

:

(3)

where Ω is the cyclotron frequency, n ¼ 1, 2, 3…, kcor ¼ 2π=l0 l0 is the spatial period of the

structure. Below, we will show that properties of the instabilities follow from the general form

(2) and do not depend on the expression for f .

Let an initial perturbation arises in point z ¼ 0 (electron stream propagates in the direction

z > 0) at instant t ¼ 0 and the instability begins developing. Our aim is to obtain shape of the

perturbation (i.e., space–time structure of the fields) at arbitrary instant t and based on the

expression, investigate the behavior of the instability. In following consideration, we interest in

longitudinal structure of the field (their dependence on z and t only). We single out two

arguments: the frequency ω and longitudinal wavelength k. Other arguments play no part in

following. To avoid overburdening of the formulas below, they are omitted. The transversal

structure of the fields may be obtained in regular way by expansion on series of eigenfunctions

of given system.
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The development of wave pulse in its linear stage obeys the DR (1). The beam instability

reveals itself most effectively on frequencies, closely approximating to roots of the main part

of Eq. (1) and simultaneously to the beam proper oscillations (e.g., space charge wave). This

means that following two conditions must be satisfied:

D0 ω; kð Þ ¼ 0 ; ω� ku� f ¼ 0: (4)

Therefore, it would appear reasonable to assume that developing fields form a wave train of

following type

E z; tð Þ ¼ E0 z; tð Þ exp �iω0tþ ik0zf g, (5)

where the carrier frequency ω0 and k0 satisfy the conditions (4). We also assume that the

amplitude E0 z; tð Þ is slowly varying as compared to ω0 and k0 that is,

∂E0

∂t

�

�

�

�

�

�

�

�

<< ω0E0 ;
∂E0

∂z

�

�

�

�

�

�

�

�

<< k0E0 (6)

In such formulation, the problem of the instability evolution reduces to determination of the

slowly varying amplitude (SVA) E0 z; tð Þ. As the fields vary near ω0 and k0, one can use

following formal substitutions to derive an equation for SVA

ω ! ω0 þ i
∂

∂t
; k ! k0 � i

∂

∂z
, (7)

Expanding the DR (1) in power series near ω0 and k0, one can obtain the equation for SVA

∂

∂t
þ u

∂

∂z

� �2
∂

∂t
þ v0

∂

∂z
þ ν

� �

E0 z; tð Þ ¼ i δ0j j3E0 z; tð Þ (8)

where

δ0 ¼
ω

2
bA ω; kð Þ

∂D0=∂ω

� �1=3

ω ¼ ω0

k ¼ k0

; ν ¼
ImD0

∂D0 ω;kð Þ=∂ω

� �

ω ¼ ω0

k ¼ k0

; v0 ¼ �
∂D0 ω;kð Þ=∂k
∂D0 ω;kð Þ=∂ω

� �

ω ¼ ω0

k ¼ k0

Im δ0 is the maximal growth rate of the beam instability, ν describes dissipation in the system

(its coincidence to collision frequency is not obligatory), and v0 is the group velocity of

resonant wave in the “cold” system.

The Eq. (8) describes the evolution of SVA E0 (z, t) in space and time for all systems those may

be described by the DR in form (1). Eq. (8) may be solved by using Fourier transformation with

respect to spatial coordinate z and Laplace transformation with respect to time t. The

corresponding equation for the transform E0 ω; kð Þ is

ω� kuð Þ2 ω� kv0 þ iνð Þ � δ0j j3
n o

E0 ω; kð Þ ¼ J ω; kð Þ (9)
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E0 ω; kð Þ ¼
ð

∞

0

dt

ð

∞

�∞

dz E0 z; tð Þ exp iωt� ikzð Þ : (10)

where the function J ω; kð Þ is determined by initial conditions. Its power with respect to ω and k

is no higher than the power of the origin equation. The specific form of this function is not

essential for following. It is only necessary that J ω; kð Þ be smooth and not equal to zero

identically. The amplitude of the wave train can be obtained by inverse transformation

E0 z; tð Þ ¼ 1

2πð Þ2
ð

C ωð Þ

dω

ð

∞

�∞

dkJ ω; kð Þ exp �iωtþ ikzð Þ
ω� kuð Þ2 ω� kv0 þ iνð Þ � δBnj j3

(11)

Here, C ωð Þ is the contour of integration over ω. For given case, it is a straight line that lies in the

upper half plane of the complex plane ω ¼ Reωþ i Imω and passes above all singularities of

the integrand. Thus, the problem has been reduced to the integration in Eq. (11). It is conve-

nient to transform the variables ω and k to another pair ω and ω
0 ¼ ω� ku. The first integration

(over ω) may be carried out by residue method and the integration contour must be closed in

the lower half plane. The pole is

ω1 ω
0

� 	

¼ 1� v0

u

� ��1
δ0j j3
ω02 � ω

0 v0

u
� iν

 !

(12)

The second integration (over ω
0
) cannot be carried out exactly, and we are forced to restrict

ourselves by approximate, steepest descend method. That is, Eq. (11) will be worked out in

asymptotic limit of comparatively large t. In this case, the integration contour should be

deformed in order to pass through the saddle point in needed direction. The saddle point is

ω
0

s ¼ δ0
2 ut� zð Þ
z� v0tð Þ

� �1=3

exp 2πi=3ð Þ (13)

As a result of the integration, we obtain following expression for the SVA [11].

E0 z; tð Þ ¼ J0
2
ffiffiffiffi

π
p

exp χ
undð Þ
ν z; tð Þ

n o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u� v0ð Þf z; tð Þ
p exp iφ z; tð Þf g (14)

χ undð Þ
ν z; tð Þ ¼ χ

undð Þ
0 z; tð Þ � ν

z� v0t

u� v0
; χ

undð Þ
0 z; tð Þ ¼ 3

ffiffiffi

3
p

4

δ0
u� v0

2 ut� zð Þ z� v0tð Þ2
n o1=3

f z; tð Þ ¼ 3δ30 ut� zð Þ ; φ z; tð Þ ¼ χ z; tð Þ
ffiffiffi

3
p þ π

4

and J0 is the value of J ω;ω
0
 �

at the points. ω ¼ ω1 ω
0
s


 �

, ω
0 ¼ ω

0
s.
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2.2. Analysis of the fields’ dynamics

We have arrived to very complex expressions (14). However, the field’s structure (i.e., the

instability behavior) may be determined by analyzing the factor

expχ undð Þ
ν z; tð Þ (15)

The information, which are available from the analysis are much more detailed and complete

as compared to results of well-known initial and boundary problems. The analysis gives:

growth rate(s), the velocities of unstable perturbations, the character of the instability and

influence of the dissipation on it, etc. The expression (15) shows that along with exponential

increasing the field covers more and more space. In the absence of dissipation, the velocities of

unstable perturbations range from v0 to u. The length of the wave train increases depending on

time l � u� v0ð Þt. One can easily see convective character of streaming instabilities in labora-

tory frame, as well as in other frames moving at velocities v < v0 and v > u. If the observer’s

velocity is within the range v0 < v < u, the instability is absolute (see Figure 1, where the

dependence of the SVA on z at various instants t1, t2 and t3 is presented; the leading edge

moves at velocity u, but the back edge moves at velocity v0 < u).

The peak (and the field’s properties in it) may be determined from the equation

∂

∂z
χ undð Þ
ν ¼ 0 (16)

Its solution in the absence of dissipation gives z ¼ wgt, where

wg ¼ 1=3ð Þ 2uþ v0ð Þ (17)

That is, the peak places on 1/3 of the train’s length from the front and moves at the velocity wg.

Actually, wg represents group velocity of the generated wave, with account of the beam

contribution in the DR. The field’s value in the peak exponentially increases and the growth

Figure 1. Asymptotic shapes of beam instability ε ¼ expχ
undð Þ
0 z; tð Þ depending on longitudinal coordinate ζ ¼ zδ0=u at

various instants τ1 ¼ δ0t1 < τ2 ¼ δ0t2 < τ3 ¼ δ0t3.

The Behavior of Streaming Instabilities in Dissipative Plasma
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rate is equal to δm ¼
ffiffiffi

3
p

=2

 �

δ0j j that is, coincides to solution of the initial problem. However,

the initial problem can not specify the point, where the maximal growth occurs. The advantage

of this approach is evident.

In a fixed point z, the field first increases and attains maximum at instant t ¼ z=wa where

wa ¼
3uv0

uþ 2v0
(18)

Then, the field falls off and at the time t ≥ z=v0 the train passes the considered point. The

velocity wa is the group velocity of the resonant wave upon amplification with account of the

beam contribution in the DR. For given z, the field’s maximum is

E0 � exp δmz= u2v0


 �1=3
(19)

The exponent δm= u2v0


 �1=3
coincides to solution of the boundary problem as it is the maximal

spatial growth rate. The coincidence to the results of well-known initial and boundary prob-

lems testifies presented approach. It may appear that this way of instability analysis is a bit

more complicate. However, it must be admitted that along with growth rates we have

obtained much other information. The information obviously clarifies the picture of the insta-

bility and makes it realistic. One can easily see the merits of presented approach.

The relations between characteristic velocities are

v0 < wa < wg < u (20)

At fixed instant t, perturbations exist only at distances v0t ≤ z ≤ut. The wave train passes given

point z during the time z=u ≤ t ≤ z=v0. In a fixed point, the amplitude attains maximum at the

instant, when the peak has already passed it (see Figure 1). The reason is that the perturbations

with smaller velocities reach considered point in longer time, and they grow more efficiently.

Perturbations with velocity wa are the most efficiently enhanced perturbations.

Generally, the dependence of the perturbations’ amplitudes on their velocity v has a form

E � expΓ vð Þt, where

Γ vð Þ ¼ 3

22=3
δm

u� v0
v� v0ð Þ2 u� vð Þ

n o1=3
(21)

The character of spatial growth depending on v is

E � expΓ vð Þz=v (22)

Presented above analysis is true if we neglect dissipation. Dissipation essentially changes the

instability behavior. It suppresses slow perturbations. The threshold velocity is

V thr ¼
λuþ v0

1þ λð Þ ; λ ¼ 25=2

39=4
ν

δ0j j

� �2
3

(23)

Plasma Science and Technology - Basic Fundamentals and Modern Applications28



Only perturbations moving at higher velocities v > V thr develop. The wave train shortens.

Dissipation decreases the field growth

Γ vð Þ ! Γν vð Þ ¼ Γ vð Þ � ν
u� v

u� v0
(24)

The dynamics of the field in the peak may be obtained by analyzing the Eq. (16). It takes

following form

z� v0tð Þ ut� zð Þ2 ¼ 1=λ2

 �

z� wgt

 �3

(25)

If ν << δ0, this equation leads to small corrections to the expressions (17) and (18) for charac-

teristic velocities and for the maximal growth rate in the peak. In the opposite case of high-

level dissipation, only the perturbations are unstable, whose velocity is close to the beam

velocity u. In this approximation, the solution of Eq. (25) is z ¼ u� Δu where

Δu ¼ 3�3=2
λ
�1 u� v0ð Þ, (26)

and the expression for maximal growth rate takes the form Γν!∞ ¼ δ
3
m=ν


 �1=2
. Obviously, this

case corresponds to dissipative streaming instability (DSI). The same expression for Γν!∞ can

be obtained from Eq. (1) by direct usage of the initial problem [1]. If one specifies δm, he can

obtain the growth rate of DSI in unbound beam-plasma system, in magnetized beam-plasma

waveguide, etc.

In general, by substitution of two parameters only: growth rate and the group velocity of

resonant wave in “cold” system one can obtain the behavior of specific e-beam instability.

It is not superfluous to repeat once again that the expression (14) and resulting analysis is valid

for all types of e-beam instabilities: Cherenkov, cyclotron, beam instability in periodical struc-

tures, etc. Also, the analysis does not depend on specific geometry, external fields, etc.

3. The behavior of overlimiting electron beam instability

The picture described above is valid for e-beams, instability of which is due to induced

radiation of the system proper waves by the beam electrons. However, it is known that with

increase in beam current the physical nature of e-beam instabilities changes [6, 7, 12–14]. This

is a result of influence of the beam space charge. It sets a limit for the beam current in vacuum

systems. The limit may be overcome, for example, in plasma filled waveguide. The instability

of over-limiting e-beams (OB) is due either to aperiodical modulation of the beam density in

media with negative dielectric constant or to excitation of the NEW. In this section, we consider

behavior of the first type of OB instability. It develops, for example, in uniform cross-section

magnetized beam-plasma waveguide. It is clear that the change of the physical nature of the

instability affects on its behavior. This instability sharply differs from the instability of conven-

tional (underlimiting) e-beams: (1) its growth rate attains maximum at the point of exact

The Behavior of Streaming Instabilities in Dissipative Plasma
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Cherenkov resonance, (2) it is of nonradiative type, and (3) with increase in dissipation, it turns

to a new type of DSI [6, 14].

3.1. Statement of the problem: analysis of the DR

Mathematical description of OB is not so well-known as for underlimiting beams, and in order

to catch the differences, we consider both cases simultaneously. Consider a cylindrical wave-

guide, fully filled by cold plasma. A monoenergetic relativistic electron beam penetrates it. The

external longitudinal magnetic field is assumed to be strong enough to freeze transversal

motion of the beam and the plasma electrons. For simplicity, we assume that the beam and

plasma radii coincide to the waveguide’s radius and consider only the symmetrical E-modes

with nonzero components Er, Ez, and Bφ. It is known [1] that the system under consideration is

described by the following DR

k2
⊥
þ k2 �

ω2

c2

� �

1�
ω2

p

ω ωþ iνð Þ
�

ω2
b

γ3 ω� kuð Þ2

 !

¼ 0 (27)

ω and k are the frequency and the longitudinal (along z axis) wave vector, k⊥ ¼ μ0s=R. R is the

waveguide’s radius, μ0s are the roots of Bessel function J0:J0 μ0s


 �

¼ 0, s = 1,2,3…, ωp,b are the

respective Langmuir frequencies for the beam and the plasma, u is the velocity of the beam,

γ ¼ 1� u2=c2

 ��1=2

, c is speed of light. The DR (27) determines the growth rates of the beam-

plasma instability. As we have mentioned earlier, the character of the beam-plasma interaction

changes depending on the beam current value. This change must reveal itself in the solutions

of the DR (27). In order to consider the solutions, we look them in the form ω ¼ kuþ δ,

δ << ku. The DR (27) reduces to [1, 6].

x3 þ i
ν

ω0

ω2
pv0

uγ2ω2
⊥

x2 þ
αv0u

γ2c2
x ¼

α

2γ4

v0

u
(28)

where x ¼ δ=ku, α ¼ ω2
b=k

2
⊥
u2γ3, β ¼ u=c, ω2

⊥
¼ k2

⊥
u2γ2, and v0 ¼ uμ= 1þ μ


 �

is the group

velocity of the resonant wave in “cold” system, μ ¼ γ2ω2
⊥
=ω2

0; ω0 ¼ ω2
p � ω2

⊥

� 	1=2
is the reso-

nant frequency of the plasma waveguide that is, ω0 satisfies following conditions

D0 ω; kð Þ ¼ 0 ; ω ¼ ku (29)

The solutions of Eq. (28) depend on the value of parameter α. This parameter actually serves as

a parameter that determines the beam current value and the character of beam-plasma inter-

action. It corresponds (correct to the factor γ�2) to the ratio of the beam current to the limiting

current in vacuum waveguide [14] I0 ¼ mu3γ=4e, that is, α ¼ Ib=I0ð Þγ�2 (Ib is the beam current).

The values α << γ�2, correspond to underlimiting beam current I << I0 and the instability in

this case is caused by induced radiation of system proper waves by the beam electrons.

Neglecting the second and third terms one can obtain the well-known growth rate of resonant

beam instability in plasma waveguide
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δund ¼
ffiffiffi

3
p

2

ω0

γ

ω2
b

2ω2
0 1þ μ

 �

 !1=3

(30)

However, if dissipation exceeds growth rate, the instability turns to DSI with the growth rate

δ
νð Þ
und ¼ ωbω0

2γ3=2ωp

ω0

ν

� 	1=2
(31)

If the beam current increases and became higher than the limiting vacuum current that is,

γ�2 << α << 1, (32)

the instability has the same nature as the instability in medium with negative dielectric

constant. If the beam is underlimiting, this effect is slight and is not observed. But now, this

effect is dominant. Its distinctive peculiarity is that this effect attains its maximum in the point

of exact Cherenkov resonance. The growth rate differs from Eq. (30) and is equal [13].

δovl ¼
ωbβ

γ1=2 1þ μ

 �1=2

(33)

Thedifferentdependence of the growth rates ofEqs. (30) and (33) on beamdensity shouldbenoted.

If, along with the beam current, dissipation also increases the instability turns to DSI of

overlimiting e-beam with the growth rate [6].

δ
νð Þ
ovl ¼

β2

γ

ω2
b

ω2
p

ω2
0

ν
(34)

We emphasize new dependence on ν, that is, actually we have new type of DSI. More critical

dependence on ν is due to superposition of two factors those lead to NEW excitation.

Higher values of parameter α (that is, α >> 1) correspond to very high currents. For example, in

the case of a cylindrical waveguide this condition leads to Ib ≥ 1, 4 mc3=e

 �

β3γ3 and means that

the beam current is more than the limiting Pierce current. Until now such high currents beams

have not been used in beam-plasma interaction experiments.

3.2. Equation for SVA and its solution: transition to the new type of DSI

In order to consider the evolution of an initial perturbation in a magnetized plasma waveguide

penetrated by an OB, we proceed from the DR (27). Our steps coincide to those for the case of

underlimiting e-beams: expand the DR (27) in series near ω0 and k0 (see (29) and derive an

equation for SVA. Making use the condition of OB 2β2γ2δ=k0u ≥ 1 [13], one can obtain [6, 12].

∂

∂t
þ u

∂

∂z

� �

∂

∂t
þ v0

∂

∂z
þ ν

� �

E0 z; tð Þ ¼ δ2ovlE0 z; tð Þ, (35)
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(the denotations coincide to those in (8)). The Eq. (35) for SVA may be solved by analogy to

solution of Eq. (8). Without delving into details, we present here the results [6, 12].

E0ðz, tÞ ¼ � J0
2

ffiffiffiffi

π
p expχðovlÞðz, tÞ

ðu� v0Þ1=2δ
1=2

ovlðut� zÞ1=2
(36)

χðovlÞðz, tÞ ¼ χ
ðovlÞ
0 ðz, tÞ � ν

ut� z

u� v0
; χ

ðovlÞ
0 ðz, tÞ ¼ 2δovl

u� v0
fðz� v0tÞðut� zÞg1=2

The analysis of the expression (36) is similar to previous case. It again reduces to the analysis of

the exponent χ ovlð Þ z; tð Þ. The analysis shows that unstable perturbations vary through the same

range from v0 to u. The analysis of the instability character (absolute/convective) fully coin-

cides to that for underlimiting e-beams. However, in this case, the waveform is symmetric with

respect to its peak. The peak places in the middle at all instants and moves at average velocity

wgo ¼ 1=2 uþ v0ð Þ (37)

The field’s value in the peak exponentially increases and the growth rate is equal to maximal

growth rate for OB δovl (33) (or, the same, to solution of the initial problem).

At fixed point z the SVA attains its maximum� exp δovlz= uv0ð Þ1=2 at the instant t ¼ z=wao, where

wao ¼
2uv0

uþ v0
(38)

The expression δovl= uv0ð Þ1=2 is the maximal spatial growth rate at wave amplification by OB,

and coincides to result of the boundary problem. The SVA depends on the perturbations’

velocity v as

E0 z ¼ vt; tð Þ � exp Γ0 vð Þtf g ; Γ0 vð Þ ¼ 2δovl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u� vð Þ v� v0ð Þ
p

u� v0
(39)

The character of the space growth depending on perturbations’ velocity is� expΓ0 vð Þz= uv0ð Þ1=2.

Dissipation fundamentally changes this picture of the instability. For given velocity v the

dependence of the SVA on the dissipation level becomes

Γ0 vð Þ ! Γν vð Þ ¼ Γ0 vð Þ � ν
u� v

u� v0
(40)

Dissipation suppresses slow perturbations. Only high-velocity perturbations can develop. The

threshold velocity is

V
ovlð Þ
th ¼ λuþ v0

1þ λ
; λ ¼ ν2=4δ2ovl (41)
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The dynamics of the peak in the presence of dissipation may be obtained by analyzing the

equation

z� wgot

 �2

� λ ut� zð Þ z� v0tð Þ ¼ 0 (42)

The solution of Eq. (42) presents the peak’s coordinate zm

zm ¼ wgot 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ

1þ λ
1�

uv0

w2
go

 !

v

u

u

t

8

<

:

9

=

;

(43)

Substitution of zm into χ ovlð Þ gives the maximal growth rate under arbitrary ν=δovl

E0 z ¼ zm; tð Þ � exp δovlt � f λð Þð Þ ; f xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
p

� x (44)

In limit of high-level dissipation, we have

E � exp δ
νð Þ
ovlt (45)

where δ
νð Þ
ovl is given by Eq. (34). That is, with increase in level of dissipation the instability of OB

transforms to the new type of DSI. The shapes of the waveform for OB instability for various

level of dissipation are plotted in Figure 2. Figure 3 presents the curve f xð Þ.

Figure 2. Shapes of the waveform versus longitudinal coordinate at fixed instant t ¼ 3=δovl for various values of param-

eter k ¼ ν=δovl k1 ¼ 0, k2 ¼ 1, k3 ¼ 2, k4 ¼ 4.
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4. The behavior of the instability in spatially separated beam-plasma

system

4.1. Statement of the problem: the dispersion relation

There is a factor which significantly influences on the physics of beam-plasma interaction. The

factor is the level of overlap of the beam and the plasma fields. The well-known beam-plasma

instability corresponds to full overlap of the beam and the plasma fields (strong beam-plasma

coupling). In this case, physical nature of developing instability is due to induced radiation of

the system’s normal mode oscillations by the beam electrons. The oscillations are determined

by plasma alone, as its density is assumed much higher than the beam density. The beam

oscillations are actually suppressed and do not reveal themselves. Excited fields are actually

detached from the beam in that they exist in beam absence.

The opposite case when the beam and plasma fields are overlapped slightly is the case of weak

beam-plasma coupling. It may be realized, for instance, if the beam and the plasma are spatially

separated in transverse direction. This transverse geometry provides conditions for increasing

the role of the beam’s normal mode oscillations. In this case, the beam-plasma interaction has

other physical nature. Electron beam is actually left to its own. Its oscillations come into play.

Account of the beam’s normal mode oscillation leads to substantially new effects. Moreover,

there is NEWamong beam proper waves. Its growth causes instability due to the sign of energy.

The growth rate of this instability attains maximum in resonance of plasma wave with NEW.

Resonance of this (wave–wave) type comes instead of wave-particle resonance (conventional

Cherenkov Effect) and was named “Collective Cherenkov Effect” [14, 15].

Consider weak interaction of monoenergetic electron beam and plasma in waveguide in

general form [8, 14]. The only assumption is following. The beam and plasma are separated

spatially, which implies weak coupling of the beam and the plasma fields. For a start, we do

not particularize the cross sections. The beam current is assumed to be less than the limiting

Figure 3. The function f xð Þgives the dependence of maximal growth rate on dissipation level.
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vacuum current. Dissipation in the system is taken into account by introducing collisions in

plasma. We restrict ourselves by the case of strong external longitudinal magnetic field that

prevents transversal motion of beam and plasma particles.

In strong external magnetic field, perturbations in plasma and beam have longitudinal com-

ponents only. In such system, it is expedient to describe perturbations by using polarization

potential ψ [14]. This actually is a single nonzero component of well-known Hertz vector.

We proceed from equations for ψ and for the beam and the plasma currents jp,b.

∂

∂t
Δ⊥ þ

∂
2

∂z2
�

1

c2
∂
2

∂t2

� �

ψ ¼ �4π jbz þ jpz

� 	

; Ez ¼
∂
2ψ

∂z2
�

1

c2
∂
2ψ

∂t2
(46)

∂

∂t
þ u

∂

∂t

� �2

jb ¼
ω2

bγ
�3

4π

∂

∂t
Ez ;

∂

∂t
þ ν

� �

jp ¼
ω2

p

4π
Ez:

Here jbz r⊥; z; tð Þ ¼ pb r⊥ð Þjb z; tð Þ and jpz r⊥; z; tð Þ ¼ pp r⊥ð Þjp z; tð Þ are perturbations of the longitu-

dinal current densities of the beam and the plasma. Functions pb,p r⊥ð Þdescribe transverse

density profiles for beam and plasma. For homogeneous beam/plasma pb,p � 1, for infinitesi-

mal thin beam/plasma pb,p � δ r� rb,p

 �

(δ is Dirac function). Δ⊥ is the Laplace operator over

transverse coordinates, z is longitudinal coordinate, t is the time, c is speed of light, ωp,b are the

Langmuir frequencies for plasma and beam respectively, ν – is the collision frequency in

plasma, γ is the relativistic factors of the beam electrons, u is the beam velocity.

In general, the analytical treatment of the problem may be developed in different ways. The

traditional way is to consider a multilayer structure of given geometry. With increase in

number of layers this way leads to a very cumbersome DR. However, in the case of weak

coupling (namely when the integral describing the overlap of the beam and the plasma fields

(see below) is small), the interaction may be considered by another approach. The approach is

perturbation theory over wave coupling [14]. Parameter of weak beam-plasma coupling serves

as a small parameter that underlies this approach. This way leads to a DR of much simpler

form, which, in addition, clearly shows the interaction of the beam and the plasma waves.

Also, the procedure is not associated with a specific shape/geometry; that is, obtained results

may be easily adapted to systems of any cross-section.

The set of Eq. (46) reduces to following eigenvalue problem

Δ⊥ψ� κ2 1� pp r⊥ð Þδεp � pb r⊥ð Þδεb

h i

ψ ¼ 0 ; ψj
Σ
¼ 0 (47)

where ψ is the proper function of the problem, Σ means the surface of the waveguide (it is not

specified yet).

κ2 ¼ k2 �
ω2

c2
; δεp ¼

ω2
p

ω ωþ iνð Þ
; δεb ¼

ω2
b

γ3 ω� kuð Þ
: (48)

ω and kare the frequency and longitudinal wave vector, ν is the frequency of plasma collisions.

As we have mentioned earlier, direct solution of the problem (47) presents considerable
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difficulties. However, in case of spatially separated beam and plasma that is, when

pb r⊥ð Þpp r⊥ð Þ ¼ 0 and the integral describing the overlap of the fields (see below) is small, it is

possible to apply perturbation theory. It assumes that in zero order approximation the beam

and the plasma are independent and they may be described by two independent eigenvalue

problems for plasma and beam respectively [14].

Δ⊥ψα � κ2 1� pα r⊥ð Þδεα
� 

ψα ¼ 0 ; ψα

�

�

Σ
¼ 0 ; α ¼ p, b (49)

Proper functions ψp and ψbof these zero-order problems as well as the zero-order DR for the

beam and the plasma are assumed to be known. If one applies perturbation theory to the zero-

order problems those are described by the DR

Dp ω; kð Þ
� �

ω ¼ ω0

k ¼ k0

¼ 0 ; Db ω; kð Þf gω ¼ ω0

k ¼ k0

¼ 0 (50)

(the point ω0; k0f g is the intersection point of the plasma and the beam curves) and search the

solution of Eq. (47) in the form ψ ¼ Aψp þ Bψb, A, B ¼ const, he can obtain in first order

approximation the following DR

Dp ω; kð ÞDb ω; kð Þ ¼ G κ4δεpδεb

 �

ω ¼ ω0

k ¼ k0

, (51)

where

Dp,b ω; kð Þ ¼ k2
⊥p,b � κ2δεp,b ¼ 0: (52)

G is the coupling coefficient. It shows the efficiency of beam-plasma interaction, k⊥p,b are the

actual transverse wavenumbers for the beam and the plasma respectively (see also [8])

G ¼

ðð

Sw

ppψpψbdr⊥

0

B

@

1

C

A

ðð

Sw

pbψpψbdr⊥

0

B

@

1

C

A

ðð

Sw

ppψ
2
pdr⊥

0

B

@

1

C

A

ðð

Sw

pbψ
2
bdr⊥

0

B

@

1

C

A

> 0 (53)

k2
⊥p,b ¼

ðð

Sw

ð∇⊥ψp,bÞ
2 þ κ2ψ2

p,b

� 	

dr⊥

0

B

@

1

C

A

ðð

Sw

pp,bðr⊥Þψ
2
p,bdr⊥

0

B

@

1

C

A

�1

Mathematically, G is expressed in terms of integrals those represent the overlap of the beam

and the plasma fields. Physically, it determines as far the field of plasma wave penetrates into

beam and vice versa. According to our consideration, G is small G < <1. One more condition of

validity of presented consideration is homogeneity of the beam and the plasma inside the cross

sections.
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4.2. The growth rates

The spectra of the beam waves are given by Db Eq. (52) and have following form

ω� ¼ ku 1þ x�ð Þ ; x� ¼
ffiffiffi

α
p

γ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β4γ2αþ 1
q

� β2γ
ffiffiffi

α
p� �

(54)

where α ¼ ω2
b=k

2
⊥bu

2γ3 is the parameter that determines the beam current value (see previous

section) β ¼ u=c. The beam-plasma interaction in the absence of dissipation leads to conven-

tional beam instability that is caused by excitation of the system normal mode waves by the

beam electrons. Its maximal growth rate depends on beam density as n
1=3
b . With increase in level

of dissipation the conventional beam instability is gradually converted to that of dissipative

type. Its maximal growth rate depends on dissipation as � 1=
ffiffiffi

ν
p

. For these instabilities the

normal mode oscillations of the beam are neglected. The concept of the NEW is invoked only

to explain the physical meaning of DSI. These results are valid only for the case of strong

beam-plasma coupling. The decrease in beam-plasma coupling leads to exhibition of the

beam’s normal mode oscillation. In this case, the instability is caused by the excitation of the

NEW. Specific features of weak beam-plasma interaction should appear themselves in solu-

tions of Eq. (51). If one looks them in the formω ¼ ku 1þ xð Þ, then Eq. (51) becomes

xþ qþ iν=kuð Þ x� xþð Þ x� x�ð Þ ¼ Gα=2γ4 (55)

where q ¼ 1=2γ2

 �

k2
⊥pu

2γ2=ω2
p � 1

� 	

. The usual Cherenkov resonance of the beam electrons

with plasmawave corresponds to the condition q ¼ 0; however, the resonance between the beam

slow wave and plasma wave (collective Cherenkov effect) corresponds to q ¼ �x�.The interac-

tion of the beam and plasma waves leads to instability. Mathematically, it is due to corrections to

the expression for NEW. Using the condition of collective Cherenkov resonance one can obtain

x
0 þ i

ν

2γ2ku

� �

x
0 ¼ �G

ffiffiffi

α
p

4γ3
: (56)

where x
0 ¼ x� x�. In the absence of dissipation the growth rate of instability caused by NEW

growth is

δ ν¼0ð Þ
new ¼ ku

2γ

ffiffiffiffiffiffiffiffiffiffiffi

G
ffiffiffi

α
p

γ

s

: (57)

It depends on beam density as n
1=4
b . Under conventional Cherenkov resonance the system is

stable. Dissipation exhibits itself as additional factor that intensifies growth of the NEW.

Eq. (56) gives following expression for the growth rate upon arbitrary level of the dissipation [8].

δ λð Þ ¼ δ ν¼0ð Þ
new

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ λ2=4

q

� λ=2

� �

(58)

where λ ¼ ν= 2δ ν¼0ð Þ
new γ2

� 	

. The expression (58) shows gradual transition of no dissipative insta-

bility to that of dissipative type with increase in level of dissipation. This dependence on
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dissipation coincides to that depicted in Figure 3. In the limit of strong dissipationλ >> 1,

Eq. (58) becomes

δ ν >> δ
ν¼0ð Þ
NEW

� 	

¼ δ
ν!∞ð Þ
NEW 1� Gγ

ffiffiffi

α
p

kuð Þ2
ν2

" #

, (59)

where

δ
ν!∞ð Þ
NEW ¼

2γ2 δ
ν¼0ð Þ
NEW

� 	2

ν
¼ G

ffiffiffi

α
p

2γ

kuð Þ2
ν

(60)

δ
ν!∞ð Þ
NEW presents the maximal growth rate of the new type of dissipative instability, shown up in

[8]. It also follows from Eq. (56) by neglecting first term in parentheses. The new type of

dissipative beam-plasma instability is now substantiated for beam and plasma layers in wave-

guide. The cross-sections of the layers and the waveguide are arbitrary. The instability of new

type results from the superposition of dissipation on the instability that is already caused by the

growth of the NEW. The instability comes instead of the conventional DSI (with growth rate

� 1=
ffiffiffi

ν
p

) when beam-plasma coupling becomes small. The dependence on dissipation becomes

more critical. The same instability can be substantiated in finite external magnetic field also [18].

4.3. The space–time dynamics of the instability in spatially separated beam and plasma

We have already obtained some properties of the instability in system with spatially separated

beam and plasma. Consider now the behavior of this instability in detail. In so doing, we

consider the evolution of an initial perturbation in system with spatially separated e-beam and

plasma. We proceed from the DR (51). The successive steps are known: to derive the equation

for SVA, solve it and analyze the solution. As a result, we have following equation for SVA:

∂

∂t
þ vb

∂

∂z

� �

∂

∂t
þ vp

∂

∂z
þ ν∗

� �

E0 z; tð Þ ¼ δ20E0 z; tð Þ: (61)

where δ0 � δ
ν¼0ð Þ
NEW (57), vp,b are group velocities of the plasma wave and the NEW of the beam,

respectively, and ν∗ ¼ ImDp ∂Dp=∂ω

 ��1

is proportional to collision frequency ν∗ ¼ const � ν.

The Eq. (61) is actually the same Eq. (35). This implies that the fields’ space–time evolution at

the instability development in spatially separated beam-plasma system qualitatively coincides

to that of over-limiting e-beam instability. It remains to repeat briefly the milestones of the

analysis above for behavior of OB instability in new terms (assuming vb > vp) and, where it is

needed, to interpret results according new denotations. For this, we first rewrite the analyzing

expression in new denotations

χ ovlð Þ
ν ! χ ssð Þ

ν ¼ 2δ0
vb � vp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z� vpt

 �

vbt� zð Þ
q

� ν∗
vbt� z

vb � vp
: (62)
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For the instability under weak beam-plasma coupling the velocities of unstable perturbation vary

through the range vp ≤ v ≤ vb, The character of the instability is determined by group velocities of

plasma wave and the NEW. The statements on the character of the instability (convective or

absolute) remain valid with account of replacements v0 ! vp and u ! vb. The place and the

velocity of the peak of the wave train can be obtained, as earlier, by solving the equation

∂

∂z
expχ ssð Þ

ν ¼ 0: (63)

In the absence of dissipation, the peak places in the middle of the train at all instants that is, it

moves at the average velocity wgs ¼ 1=2ð Þ vb þ vp


 �

. The field value in the peak exponentially

increases and the growth rate is equal to δ
ν¼0ð Þ
NEW (57). In the absence of dissipation, the waveform

is symmetric with respect to its peak at all instants.

Dissipation suppresses slow perturbations. The threshold velocity is (compare to previous

subsection)

V
ssð Þ
th ¼

λ
0

vb þ vp

1þ λ
0 ; λ

0

¼
ν∗

2δ0

� �2

(64)

The wave train shortens. Only high velocity perturbations (at velocities in the range

V th < v < vb) develop. Herewith the behavior of the fields in the peak (and the place/velocity

of the peak) may be obtained by analyzing Eq. (63). If one takes into account the dissipation,

the solution of (63) yields z ¼ w0t, where

w0 ¼
1

2
vb þ vp þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

λ
0

1þ λ
0

s

vb � vp


 �

8

<

:

9

=

;

> wgs (65)

The peak shifts to the front of wave train. For high-level dissipation, we have w0, V
ssð Þ
th ! vb

that is, one can conclude: the group velocity of perturbation of the new DSI is equal to the

group velocity of the NEW. This distinguishes the DSI under weak coupling from the DSI of

OB (where the velocity of perturbations was equal to the beam velocity).

Substitution of Eq. (65) into χ
ssð Þ
ν gives us the dependence of the growth rate on dissipation of

arbitrary level. The field value in the peak depends on dissipation as

E0 � exp δ0t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ λ02=4
p

� λ
0

=2
� 	

(66)

This result agrees to Eq. (58). This coincidence actually serves as an additional proof of the

correctness of the approach based on analysis of developing wave train (i.e., correctness of the

initial assumptions, derived equation for SVA, its solution etc.). Analogous coincidence exists

in case of underlimiting e-beams (see Section 2), but very cumbersome expressions (solutions

of third-order algebraic equation) prevent showing it obviously.
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In conclusion to present section, we can state that two various types of e-beam instabilities: (1)

the OB instability and (2) the instability under weak beam-plasma coupling have similar

behavior. Both these instabilities transform to dissipative instabilities with the maximal growth

rate � 1=ν. In spite of their different physical nature, these instabilities have similar mathemat-

ical description. The contribution of the OB in the DR is given by expression having first order

pole. The DR of the systems with spatially separated beam and plasma also may be reduced to

analogous form. For comparison: the contribution of underlimiting e-beam is given by an

expression with second-order pole for all types beam instabilities (Cherenkov, cyclotron etc.).

This leads to their similar behavior. However, a difference between these two DSI also exists.

In system with OB dissipation shifts the velocities of unstable modes to the beam velocity u.

In the second case, the velocities are approximately equal to group velocity of NEW.

5. The behavior of the Buneman instability in dissipative plasma

5.1. Statement of the problem: the equation for SVA

The physical essence of the Buneman instability (BI) [4] is in the fact that the proper space

charge oscillations of moving electrons due to the Doppler Effect experience red shift, and this

greatly reduced frequency becomes close to the proper frequency of ions. Actually, the BI is

due to resonance of the negative energy wave with the ion oscillations. For future interpreta-

tions and comparisons, we present the well-known [1, 4] DR and the maximal growth rate for

the simplest case of the BI (cold e-stream, heavy ions, and accounting for collisions)

1� ω
2
Le

ω� kuð Þ ωþ iνBn � kuð Þ �
ω

2
Li

ω2
¼ 0 ; δ

mð Þ
Bn ¼

ffiffiffi

3
p

2
ωLe

m

2M

� 	1=3
(67)

(u is the velocity of streaming electrons, ωLe and ωLi are Langmuir frequencies for electrons and.

ions respectively, νBnis the frequency of collisions). The BI develops if ωLe ≥ku, and the growth

rate attains its maximum under ωLe ≈ku.

Now consider a plasma system, the DR of which may be written as

D0 ω;kð Þ þ ΔD ¼ 0 (68)

where ΔD ¼ �ω
2
Li=ω

2 describes the contribution of ions in the DR, while D0 ω;kð Þ describes
contribution of moving electrons as well as collisions/dissipation in the system. In following

consideration, we do not specify the form of D0 ω;kð Þ. As ωLi << ωLe we have ΔDj j << D0j j
and the ions in Eq. (68) play a role under small ω that is, ωLi >> ω ! 0. One can at once see

imaginary roots of the Eq. (68). The system becomes unstable (low frequency instability) and

the growth rate may be obtained from

ω kð Þj j3 ¼ ω
2
Li

∂D0 ω; kð Þ
∂ω

� �

ω!0

� ��1

(69)
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An initial perturbation arises and the instability begins to develop in point z ¼ 0 (electron

stream propagates in the direction z > 0) at instant t ¼ 0. Our aim is to obtain the shape of the

perturbation and investigate in detail the behavior of the BI. The procedure for obtaining the

equation for SVA is known. Applying this procedure, we arrive to following Eq. [16]

∂
2

∂t2
∂

∂t
þ v0

∂

∂z
þ ν

� �

E0 z; tð Þ ¼ i δBnj j3E0 z; tð Þ (70)

δBnj j3 ¼ ω2
Li

∂D0=∂ω

� 	

ω ! 0

k ¼ k0

; v0 ¼ � ∂D0=∂k
∂D0=∂ω

� 	

ω ! 0

k ¼ k0

; ν ¼ ImD0

∂D0=∂ω

� 	

ω ! 0

k ¼ k0

þ ik0v0 � ν
0 þ ik0v0

Im δBn is the general form of the resonant growth rate of the low-frequency BI [1, 4] (compare

to Eq. (67)); v0 is the group velocity of the resonant wave in the system. Here, it is equal to

velocity of streaming electrons; ν
0
actually presents dissipation. In unbound plasma, the main

cause of dissipation is collisions of plasma particles. Equality of the ν
0
in this form to collision

frequency is not obligatory.

Eq. (70) may be solved in known manner: that is, by using the Fourier and Laplace trans-

formations. The problem reduces to integration in the inverse transformation. All these steps

are known. So as not to repeat, we at once present resulting expression for the SVA [16]

E0 z; tð Þ ¼ J0
ffiffiffiffiffiffi

2π
p

exp χBn z; tð Þ � ν
0 z
v0

n o

e
i

χBnþ
ffiffi

3
p

k0z
ffiffi

3
p �π

6

� 	

6v0z δBnj j3
� 	1=2

(71)

χBn z; tð Þ ¼ 3
ffiffiffi

3
p

4
δBnj j 2zτ2

v0

� �
1
3

; τ ¼ t� z=v0,

5.2. Analysis of the Buneman instability behavior

As earlier, the structure of the fields is basically determined by the factor [16].

exp
3

ffiffiffi

3
p

4
δBnj j 2zτ2

v0

� �1=3

� ν
0 z

v0

( )

: (72)

In the absence of dissipation the velocities of unstable perturbations range from 0 to the group

velocity v0. The length of the induced wave train increases as l ≈ v0t. The condition

∂

∂z
χBn � ν

0 z

v0

� �

¼ 0 (73)

(compare to Eq. (16)) determines the peak’s movement. In the absence of dissipation the peak

disposes on 2/3 of the train’s length from its front and moves at velocity v0=3. Substitution of

z ¼ v0t=3 into Eq. (72) gives the field’s behavior in the peak. It grows exponentially
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E0 � exp
ffiffiffi

3
p

=2

 �

δBnj jt
� 

and the growth rate is equal to the maximal growth rate of the BI

obtained earlier as a result of initial problem (e.g., see [1, 4] and Eq. (67)). However, in contrary

to this approach, the initial problem does not give the point of the maximal growth. This

approach gives the point. In addition, it gives the rates of the field growth in every point of

the wave train (in the presence of dissipation also).

Dissipation changes the fields’ dynamics and mode structure. It is easily seen from Eq. (72) that

dissipation suppresses fast perturbations. The threshold velocity vth can be obtained from the

equation χBn z; tð Þ ¼ νz=v0 and is equal

vth ¼
v0

1þ λ
3=2
0

; λ0 ¼
25=3

3�3=2

ν
0

δBnj j (74)

The wave train shortens. Actually the pulse slows down. Dissipation influences on the peak

location/movement. Its place z ¼ zmax can be obtained from the equation

v0t� 3zð Þ3 ¼ 3λ0ð Þ3z2 v0t� zð Þ (75)

The solution of this third-order algebraic equation gives location and velocity of the peak

under arbitrary ratio ν
0
=δBn. To avoid cumbersome expressions, we present here the solution

only in the most interesting limit of high dissipation λ0 ! ∞.

z ¼ zmax ¼
33=4

25=2

 !

δBnj j
ν
0

� �3

v0t (76)

Substitution of this expression into χBn z; tð Þ gives the field’s behavior in the peak under high-

level dissipation. The field’s value increases exponentially

E0 � exp δν tf g (77)

Figure 4. The shapes of initial perturbation for various level of dissipation. The dimensionless distance ζ ¼ zδBn=v0, and

the dimensionless field ε ¼ E0= J0= v0δBnð Þð Þ are marked along the axes. Curve 1 corresponds to λ
0 ¼ ν= δBnj j ¼ 0; curve 2 –

To λ
0 ¼ 0:5; curve 3 – To λ

0 ¼ 1:5; curve 4 – To λ
0 ¼ 3.
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where the growth rate δν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δBnj j3=2ν
q

0

is nothing else, as the growth rate of DSI of conventional

type [1, 16, 17]. This once again justifies that high-level dissipation transforms the BI to DSI.

In addition, the expression for χBn z; tð Þ gives much other information on the character of BI

development. For example, by substituting z ¼ vt one can investigate the behavior of the

perturbation, moving at given velocity v and determine the rate of their growth

E0 z ¼ vt; tð Þ � expG vð Þt ; G vð Þ ¼ 3
ffiffiffi

3
p

v0
δBnj j 2v v0 � vð Þ2

n o1=3
� ν

0 v

v0
(78)

Figure 4 presents shapes of induced wave train for various levels of dissipation.

6. Conclusion

Now, we can generalize the properties of the SI. Originated perturbations form a wave train,

carrier frequency and wave vector of which are determined by resonant conditions. The

expression for space–time distribution of the fields gives much information on the behavior of

the instability in limit of comparatively large times. The solutions of conventional initial and

boundary problems follow from the expression by itself. The growth rate in the peak is equal

to maximal growth rate of resonant instability δ, which usually describes given instability. The

initial value problem gives the same growth rate without specifying where the growth takes

place. That is, the approach gives realistic picture of the SI development. Dissipation leads to

shortening of the wave train. With increase in level of dissipation the SI gradually turns to

dissipative type. In the limit ν >> δ (ν is the collision frequency) the growth of the fields takes

place according to dissipative instability. The approach gives also information on the growth

rate for arbitrary δ=ν. Obvious expression may be obtained by solving algebraic equation of

second/third order.

The approach justifies existence of two new, previously unknown types of DSI. For these DSI,

the role of the beam’s space charge and/or proper oscillation becomes decisive. For both DSI,

the growth rates have more critical dependence on dissipation as compared to conventional.

Presented approach obviously shows the transition to the new types of DSI.

Actually the approach presents solution of the well-known problem of time evolution of initial

perturbation in systems those undergo the instabilities of streaming type. The importance of

the problem is doubtless. Its traditional solution is restricted by mathematical difficulties.

Presented methods allows without any difficulties obtain result for various SI in spite of their

different mathematical description (e.g., the description of Buneman instability differs from the

instability in spatially separated beam-plasma system and from beam-plasma instabilities;

herewith, the description various types of beam-plasma instabilities (Cherenkov, cyclotron,

and other) also differs from each other). The approach by itself unified the differences. For

beam-plasma instabilities results of the approach are unified even more and their usage is not
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more difficult than usage of the result of the initial and boundary problems (in spite of

presented approach gives incomparably more data). In this sense, the approach can be used

instead of the problems. It could seem that the procedure is a bit more difficult. However, this

difficulty only seems.

The general character of presented approach should be emphasized once more. It is based on

very general assumptions and does not refer on any particular model. The approach trans-

forms the general form of the DR to an equation for SVA of the developing wave train. For a

large class of beam-plasma instabilities (Cherenkov, cyclotron, etc.), the equation for SVA is

actually the same. Its solution gives analytical expression describing evolution of initial per-

turbation. Various SI evolve in similar manner. This emphasizes identity of their physical

nature (induced radiation of the system proper waves by the beam electrons). For given

instability, one should specify two parameters only: the resonant growth rate and the group

velocity of the resonant wave. Obtained expression gives detailed information on the instabil-

ity. The information is: the shape of developing wave train (envelope), velocities of unstable

perturbations, the type of given instability (absolute or convective), location of the peak and

the character of its movement, the rate of field’s growth in the peak, temporal and spatial

growth rates, the rate of growth for perturbation moving at given velocity. Most of these data

are unavailable by other methods.

Validity limitations also should be mentioned. Obtained results may not be applied to the

systems where beam instability is caused by finite longitudinal dimension, for example, Pierce

instability.

Presented approach has neither inner contradictions, no contradictions to previous results of

the beam-plasma interaction theory. Its results fully coincide to those obtained by direct

analysis of the DR. In some cases, (e.g., for overlimiting e-beam instability and the instability

in spatially separated beam-plasma system) obvious analysis is possible due to comparatively

simple contribution of the beam in the DR (namely when the contribution has first (but not

second) order pole).

The results of presented approach actually are continuation and further development of the

results of the initial and boundary problems. In its turn, the results of the problems have been

repeatedly tested and rechecked experimentally. This actually can serve as confirmation of

validity of the approach.

In [19, 20] the nonlinear dynamics of the beam-plasma instability was investigated numerically

at no stationary beam injection into plasma-filled systems. The results show that at the initial

stage of instability development the field has a shape matching reasonably to presented

results.

Obtained results on SI evolution help to understand how the instability transforms given

equilibrium of background plasma, estimate the level and/or scale of originated irregularities

clear up how the nonlinear stage arises and predict saturation mechanisms. The systems, to

which this may be applied are numerous, as the SI are the most common instabilities: from the

Earth ionosphere to current carrying plasma (where the Buneman instability plays important

role). Not to mention relativistic microwave electronics etc.
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