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Abstract

Melatonin actions are so numerous that a naive reader might become suspicious at such 
wonders. In a systematic way, we would like to summarize the various approaches that 
led to what is scientifically sounded in terms of molecular pharmacology: where and 
how melatonin is acting as a molecule, what can be its action as an antioxidant per se, 
and its side effects at a molecular level not as a drug or in vivo. Finally, the nature of 
the relationship between melatonin and mitochondria should be decrypted as well. The 
road we took from 1987 up to now, and particularly after 1995, will be mentioned with 
special considerations to the receptors from various species and our goals beyond that; 
the synthesis and catabolism of melatonin and their link to other enzymes; the discovery 
of the MT

3
 binding sites, and what’s left to understand on this particularly interesting 

target; and the search for agonists that occulted part of the potential discovery of true 
and potent antagonists, a situation quite unique among the G-protein-coupled receptors.

Keywords: melatonin, molecular pharmacology, MT1, MT
2
, catabolism

1. Introduction

Melatonin is a neurohormone synthesized by the pineal gland at night. The longer the night, 

the higher the concentration of melatonin in the blood. Even if new information is modulating 
this basic principle, this rhythmicity has been the basis of many published observations link-

ing melatonin to many physiological features of animals, including human. This comprises 
the daily changes in light and the way the body understands the successions of dark and clear 
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periods but also the circannual rhythmicity, during which animals prepare for the harsher 
winter period during which access to food is more difficult. By “measuring” the length of 
melatonin synthesis periods (directly proportional to the length of the nights), animals start to 
modify their physiology in order to prepare the time to come: accumulation of fat (fat storing) 
for some, food storing for others, and preparing the bodies to reproduction for all animals 
at the best period to avoid the exposure of the newborns to cold and difficult conditions. 
Apparently, humans have lost this advanced capacity in our ever lit-up society.

New evidences recently caught our attention and challenge our ways of understanding 
the melatonin actions and pathways, whether because it seems that light can be “seen” by 
the body without the relay of melatonin or because one finds that melatonin is synthesized 
in mitochondria in all parts of the brain, as opposed to the pivotal and ancient statement: 
melatonin is synthesized by the pineal gland only. Nowadays, one can also see many pub-

lications claiming that melatonin helps cure cancer as well as so many other diseases (see a 

non-exhaustive selection of such actions since 2015 in Table 1). All these information should 
be treated with respect, integrated inside our decade-old knowledge and carefully evaluated 
as a contribution to a bigger picture. The basics on melatonin can be found in some recent 
reviews [1–5]. The present chapter concentrates on the molecular pharmacology of melatonin. 
This small molecule, derived from tryptophan, has a limited number of recognized targets. 
It is synthesized and catabolized by a limited and well-known number of enzymes that have 
been described in the past (see Figure 1 for a simplistic summary). The core of the discussion 
seems always to be the same: how this molecule can be active on so many pathological events? 

Figure 1. A simplistic summary of melatonin-related proteins. Melatonin is synthesized from tryptophan by a series 
of enzyme the the limiting step of which is catalyzed by Arylalkylamine N-acetyl transferase (green box); melatonin 
is excreted mainly unchanged from mammalian bodies or conjugated either by UDP-glucuronosyltranserases or by 
sulfotranferases, but it is also catabolized by indoleamine-2,3-dioxygenase, myeloperoxidase or cytochrome c (yellow 
box). At the molecular level, the targets of melatonin are mainly: Its two melatonin receptors, MT1 and MT

2
, QR2 

(formerly known as MT
3
). Furthermore, putative targets might exist such as nuclear receptors and particularly Nrf2 that 

might explain some of the anti-oxidant capacities of melatonin (red box).
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How antioxidant this molecule is and why? What makes it so special? Some of these points 
are reviewed in the present chapter based on two decades of research in this area.

Beyond these biochemical features, melatonin has two unique features: it is very soluble but 
seems to travel freely through biological membranes, and its possible toxicity is extremely 
low (although some human cases of undesirable effects were reported), permitting scientists 
to give on many models very large amounts of the compound in cellulo and in vivo without 
apparent associated major toxicity. It was thus obvious that in many cases, the activity at 
those “pharmacological” dosages led to surprisingly numerous therapeutic properties of this 
molecule. Furthermore, the discovery that melatonin had, in cellulo and in vivo, antioxidant 
properties added to the multiple possibilities of use of melatonin, leading to this apparent 
paramount of therapeutic properties.

2. Melatonin synthesis

Melatonin is mostly synthesized starting from tryptophan in the pineal gland by a series of 
enzymes, the limiting one being arylalkylamine N-acetyltransferase (AANAT) also known as 
the timezyme [6]. Many studies have been performed on this enzyme and its requirements 
in terms of substrate specificity and inhibitor research, in particular in human [7, 8]. Over 

the years, several groups hypothesized and reported the possibility that melatonin was also 

synthesized in mitochondria (see also below, Section 6.4), suggesting that the antioxidant 
properties of the molecule would confer a strong resistance of mitochondria to the generation 
of ROS, a common feature of those subcellular organelles. Indeed, if the dogma was, in the 
1950s and later on, that melatonin was mainly synthesized in the pineal gland, a fact that 
was clearly confirmed by surgical removing of the gland would lead to a major reduction of 
circulating melatonin and to the loss of some of the circadian and circannual rhythms; several 
papers co-indicated that such local synthesis that does exist should be taken into consideration 

(see, for instance, Stehle et al. [9]). What is more troubling is the recent precise description of 
melatonin synthesis in mitochondria, at least in brain-derived organelles [10] as well as the 

presence of a functional GPCR (MT1). Intuitively, many previous strong knowledge would go 
against the finding that melatonin is synthesized in mitochondria, even if that was recently 
restricted to brain-derived mitochondria [11]. But melatonin is also known to “travel” freely 
inside membranes. Thus in order to stay inside mitochondria, it should be sequestered inside 

them in order to prevent the damages of ROS production—a common and key feature of the 
respiratory chain—thanks to the antioxidant properties of melatonin (see below, Section 6.1.2, 
for further discussion).

No revolution, nevertheless, occurred in the way melatonin is synthesized. It comes from several 
steps. All those enzymes have been cloned and studied, including from human origin. The par-
ticular case of AANAT catalyzing the limiting step of the synthesis has been at the source of the 
seminal work of David Klein’s laboratory (see, for instance [6, 7]). This enzyme is destroyed dur-

ing the day and active only at night. The way it is regulated is different according to species, but 
it seems a formidable waste of energy to handle it that way (synthesis and immediate destruction 
for “nothing”) [12, 13], strongly suggesting by the way this pathway is regulated that it is of major 
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importance for physiology. The enzyme was cloned in our laboratory, and a thorough study of its 
substrate and co-substrate specificities was reported [8]. It was attempting, at one stage, to try to 
find specific inhibitors of the enzyme, in order to better understand in in situ situations the roles of 
melatonin at various locations. Several publications including ours reported those efforts [14–18]. 

If one particular point should be stressed, it is the elegant ways analogues of an intermediary 
state of the substrate/co-substrate complex permitted to turn molecules into powerful inhibitors, 
although overall fragile ones [19], as well as the way that the incorporation of an exotic amino acid 
in place of a serine permitted to stabilize the enzyme, rendered insensitive to proteolysis [20–22].

3. Melatonin receptor molecular pharmacology

3.1. Melatonin receptors

To somewhat summarize the situation, there were two GPCRs (MT1 and MT
2
) found through-

out the animal kingdom, an elusive binding site (MT
3
) that turned out to be an enzyme— 

quinone reductase 2 (QR2) [23] (see below, Section 6.3), another receptor (Mel1c) that was 
present in fishes, birds, and reptilians and that evolved to a GPR50 in mammals [24], with 

the curious property to have lost the recognition of melatonin, with a single exception (in 
platypus [25]), and finally the elusive nuclear receptovr, first described by Becker-André et al. 
[26] and then retracted [27]. Several other research papers [28] pointed at nuclear receptor(s) 
to explain the circadian rhythm of some key metabolism enzymes that could logically be 
dependent on the circadian rhythm of melatonin (see discussion in Jan et al. [29]).

What are the most characterized in the melatonin field, besides the multiple functions of 
the molecule itself (see below), are the binding characteristics at its receptors. The receptors 
were first discovered and cloned/characterized by Reppert’s group [30] from both hamster 
and human. This première was followed by a series of cloning, including the discovery that 
hamster had only one functional melatonin receptor [31], to the contrary of most of the mam-

mals that possess two (MT1 and MT
2
): human, rat, mice, sheep (although it was long believed 

to possess also a single receptor form [32]), etc. Cloning was also reported for other species, 
including birds and fishes [33, 34] and probably insects [35]. This led to the possibility to 

establish the binding pharmacology of those receptors in several laboratory species—mouse 
[36], rat [37], and sheep [32]—as well as in human [38]. For years, then, our goal has been to 
synthesize analogues of melatonin and use them to better understand the MT1 and MT

2
 roles, 

as well as to be able to somehow modulate them. It is not the place, here, to review the chem-

istry that has been explored around melatonin, but recent reviews could be looked at: Mor 
et al. [39], Garrat and Tsotinis [40], Rivara et al. [41], and Zlotos et al. [42]. The field would 
have benefit from a quest of specific and stable in vivo binders, particularly antagonists, 
permitting to explore and understand the limit of the melatonin actions, at least through 
these particular targets.

Incidentally, one must point out that there are still no antibodies against the receptors. We 
and many others tried over the last decades to produce such tools with a general negative 

endpoint. This, of course, has been an obstacle to a better understanding of those receptors. 
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Nevertheless, the repartition of the receptors in various organs, and particularly throughout 
the brain, has been nicely reviewed by Ng et al. [43] with some precisions of their respective 
functions: these seem to be as follows—improvement of neurogenesis (hippocampus with 
a memory maintenance via the inhibition of long-term potentiation by MT

2
 receptor); MT1 

would regulate the REM sleep; MT1 would also confer a protection against Huntington dis-

ease. In terms of melatonin receptor actions, those are the strongest information available. It 
seems clear, for example, that most of the protection offered by melatonin in multiple patho-

logical situations (as summarized in Table 1) are not mediated by its receptors.

It would be very complicated to be exhaustive in terms of characterization of those binding 
sites, as the data is scattered throughout the literature. What is “easy” is that we and oth-

ers using the binding assay developed around Vakkuri et al.’s 2-[125I] iodomelatonin [44] for 
establishing the basic molecular pharmacology of the MT1 and MT

2
 receptors from several key 

laboratory species and from humans, but basic data can be found in Jockers et al. [45].

In the next sections, three aspects must be covered: the binding, heterodimerization, and 
structure of the melatonin receptors.

3.2. Binding, functionality, and heterodimerization

Initially, several reports were done using [3H]melatonin, but the specific activity of the tracer 
was not sufficient to gain robust information on the receptors. It is only recently that heavily 
labeled [3H]melatonin became available. This radiotracer permitted to better understand the 
various states of the receptors and their behavior in that context [46]. Historically the binding 

studies were largely facilitated by the use of the super-agonist, 2-[125I]-iodomelatonin [44]. 

Not only this compound is easy to synthesize, but its sensitivity counteracted the very high 

affinity of melatonin for its receptors, as well as the paucity of the expression of these recep-

tors in relevant tissues. Almost all the laboratories involved in melatonin research have been 

using this radiotracer. It must be pointed out, though, that attempts to use alternative ligands 
have been reported, mainly in the spirit of using specific ligands of one or the other of mela-

tonin receptors [47]. Unfortunately, only ligands specific of MT
2
 have been reported, so far. 

MT1-specific binders have been elusive, despite the wide variety of melatonin analogues that 
have been synthesized. As stated elsewhere in the present essay, the main focus of chemistry 
research in this melatonin domain over the last decades was to find alternative ligand agonists 
at the receptors with strong stability in vivo.

Functionality of seven-transmembrane domain receptors is a complex science, providing daily 
new data. The number of coupling pathways at receptors in general is important, and more are 
discovered often. An excellent review has been published very recently [48], and the contribution 

of the same authors to the IUPHAR compendium on melatonin receptor functionality [45] should 

be considered as reference documents to understand the various pathways, at least as of today.

Nevertheless relatively few publications address the functionality of ligands in a global way. 
Indeed, if some functional data has been produced around a series of chemical analogues 
completing the classical binding displacement approach, rather few address the global and 
“standardized” characterizations of a series of ligands on MT1 and/or MT

2
. There are cases 
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where given compounds were characterized as partial agonists that turned out to be inverse 

agonists instead [49], leading to a yet another level of complexity of melatonin receptor phar-

macology. We recently embarked in such a task, by screening the agonist/antagonist behav-

ior of a series of compounds (Legros & Boutin, in preparation) after assessing the various 
methods [50]. We also extended these coupling measurements to a small series of potential 
antagonists specific of MT

2
 [51], to conclude that the compounds were not antagonists but 

rather partial agonists. As stated and described by Kenakin [52], one should further dig the 
concept of biased ligands. Indeed, it seems clear, now, that some at least of the downstream 
pathways of melatonin receptors are elicited by some agonist ligands while not by other ones. 
This concept has been a bias of the approach to melatonin research. Indeed, while seeking for 
tools to understand these pathways and their implications in various pathological models, 

we never had access to real, stable, and potent antagonists, despite past claims for such com-

pounds [53, 54]. Even when large-scale screening campaigns were attempted [55], the poor 

affinity (compared to the already existing compounds: low μM affinity in the best cases versus 
low nM already available ones) of those newly discovered compounds was not in favor of 
trying to develop series of chemicals around those hits. A similar situation occurred when we 
attempted to find peptide ligands at melatonin receptors [56].

After the first evidences that crystallogenesis of membrane proteins would be a challenge, we 
thought we would continue to search for ligands with a trial-and-error approach as we did for 
years, without the help of the visualization of the compounds in the protein as it became “mun-

dane” these last years concerning co-crystallizations of compounds in their soluble protein 
targets. By multiplying the number of ligands in attempts to better describe the topography 
of the melatonin-binding site, even using mutagenesis [57–60], we also multiplied the assays 

on the functionality of the receptors, because we more and more discovered the ways the 
receptors were transferring their message to the cell. The simplistic view that a handful of such 
pathways between the receptors and the inner cell existed became obsolete. The by-product of 
such variety was that we found biased ligands that activated one but not the other(s) signaling 
pathways downstream melatonin receptor, as it is briefly discussed elsewhere.

Then, another new aspect came up: receptors can dimerize, a feature that was known for quite 
some time (see Rodbell [61], and see seminal review by Bockaert and Pin, [62]). Even though it 
was often believed to be an artifact of the purification attempts, the reality of such structures in 
situ was evidenced when one realized and demonstrated heterodimerisation between various 

types of such receptors: heterodimers between isoforms of a receptor, GABA [63], heterodi-

mers between two unrelated GPCRs or even between GPCR, and another type of protein [64]. 

A paramount of examples were published, and their studies were made possible using the 
BRET technology [65]. In brief, engineering two receptors to make each of them fused with a 
carefully chosen fluorescent protein leads to a system in which the excitation of one of them 
results in the emission of fluorescent in the region exciting the other one. This cannot occur if 
the proteins are not physically in a very close vicinity of one another. Melatonin receptors have 
been also shown to be able to dimerize with serotonin 5HT2c receptor [66], as well as between 

MT1 and MT
2
 [67] or between MT1 and GPR50 [68], the melatonin-related receptor (evolved 

from Mel1c [24] and that has lost its property to bind melatonin [69]). More recently, the het-
erodimerisation of GPR50 and the transforming growth factor-β receptor [70] potentially open 
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interesting routes toward the role of this orphan receptor as well as its implication in cancer 
development. Obviously many control experiments should be run in these explorations, as it 

would be attempting to conclude that any receptor can dimerize—and thus regulate the sig-

naling pathway of—any other receptor (see Damian et al. [71] for a counter example, among 
some others).

3.3. Purification/structure

Attempts to crystallize GPCRs have been done for years with various successes. Beside sev-

eral reports of models of the receptors [72–74], that turned to be more or less disappointing 

because they poorly brought new information—somewhat as expected. Thus, several lines 
of strategies were further explored. One of them led to a pure, functional MT1 receptor, after 
several years of technical challenges: expression, stabilization, purification, and functional-
ity measurement [75, 76]. We embarked several years ago in an approach that attempted to 
be original: as a first step in this purification/crystallization of melatonin receptor(s) project, 
we cloned melatonin receptors from as many and as various species as possible. Many such 
melatonin receptors have been reported in the literature, such as various sheep strains, buf-
falo, fishes, and even coral, many of which has been deposited in GenBank but not described 
in a publication. The rationale behind this Noah-ark type of research was to systematically 
use melatonin receptors from those variously evolved species (birds, reptilians, mammals 
from various environments, some harsh insects, etc.) that have in common their capacity to 
recognize melatonin—by definition. We aimed at comparing their thermal stability once they 
were stably expressed in CHO cells. We would choose the most resistant one and use that as 
a model in the process of purification/reconstitution established previously by Logez et al. in 
our laboratory [75, 76]. Despite a few success [25], we terminated the program for resource 
limitation reasons.

4. Melatonin catabolism

Melatonin catabolism has been described and discussed in-depth by Hardeland throughout 

the living kingdom [77]. In short, the main route of melatonin elimination (from the body) is 
not catabolism but rather conjugation and excretion via the urine. Thus there are three ways 
to consider: (i) the unchanged melatonin that one can find in urine; (ii) the conjugates, mostly 
glucuronides and sulfates; and (iii) the catabolism itself. Catabolism means that the molecule 
is transformed into something quite different from the original molecule. For example, in mel-
atonin case, several reports demonstrated the opening of the indol ring. This opening possibly 
occurred through cytochrome c [78] or through 1,2-dioxygenase [79]. This was of importance 
because not too many compounds bear a formyl moiety such as the one produced during 
the cleavage of the indol cycle by either of these enzymes. This catabolism process would 
generate several products including N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) 
and N1-acetyl-5-methoxykynuramine (AMK) [80]. The same paper, though, pointed out the 

absence of such metabolite(s) in human urine, strongly suggesting that the main catabolic 
route of melatonin would rather be through conjugation, even after oxidative stress.
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5. The melatonin paradox

The field suffered from two paradoxes: safety and high affinity to natively poorly expressed 
receptors. First, melatonin is a very safe molecule, as far as we know; there is no report 
of human toxicity for overdose, and in mice the lethal dose is superior to 800 mg/kg [81]. 

Nevertheless, the French Agency for Food, Environmental and Occupational Health & 
Safety (www.anses.fr) emitted a report—in French—pointing at several cases of toxicity 
linked to melatonin consumption. Although they were ~100 cases in France reported dur-

ing a 30-year period survey (i.e., a relatively modest number of cases, some of which have 
not been univocally linked to melatonin intake), the literature on clinical trials of melato-

nin is large enough to consider melatonin as reasonably safe [82], with the usual cases of 
deliberate overdose. In any case, it is not unusual to find reports in the literature where 
the dosage of melatonin in vivo or in cellulo is important. It was reported at several occa-

sions—even if it probably depends on the cell type—cells treated with 1 mM of melatonin 
without apparent cell toxicity and even, in some cases, with beneficial effects [83–87]. Why 
is it a flaw? Because one can treat almost anything with this compound, at almost whatever 
dosage, and observe something, including relevant benefits for the situation (see Table 1 

and further examples in Boutin [88]). Furthermore, melatonin has a friendly behavior in 
terms of pharmacokinetics. When compared to another multi-card compound, resveratrol, 
it seems that unlike it, melatonin circulates in the blood after oral consumption at a fairly 
high concentration, while only 1 to 2% of resveratrol was found at the peak after ingestion 
of 25 mg/kg of resveratrol [89].

Finally, as stated elsewhere in the present essay, the affinity of melatonin for its receptors is 
in the low nanomolar range [45]. Many strict analogues have been synthesized with simi-

lar high affinities for the receptors. Thus, it has been complicated and sometimes impos-

sible to start new chemical programs ad initio, or at least starting from molecules issued 
from high-throughput screening campaigns, for example, from which hits are rather in the 
high micromolar range. Therefore, new compounds with unexpected structures have been 
slowly emerged in the field. As a representative example, D600 (hydroxyl-verapamil) is one 
of the few compounds showing strong specificity for MT1 [90]. No chemical program to 

date has been published to explore this observation and to deliver a specific ligand at MT1 

receptor with some pharmacological properties (and specificity) rendering it amenable to 
in cellulo or in vivo experiments.

6. Melatonin actions

6.1. Overall

Melatonin is the core master of rhythms. This part of the story is beyond any doubt. It trans-

lates the succession of days (light) and night (darkness) to the body. In the absence of light, the 
pineal gland (and more particularly the AANAT, the limiting step of melatonin biosynthesis) 
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synthesizes melatonin. Nevertheless, a report [91] shows that, at least in the European ham-

ster, the circannual rhythm could be maintained even after pinealectomy, thanks to light 
action in an accelerated photoperiodic regime, demonstrating the hypothalamic integration of 
the photoperiodic signal even in pinealectomized animals and, thus, in the absence of pineal 
gland synthesis of melatonin.

Melatonin circadian rhythm can be measured in the blood from healthy volunteers and is 
clearly linked to the successions of days and nights. The timezyme (AANAT) is the master 
key of this process: active during dark periods and inactive during day (as the enzyme is 
destroyed by the light-induced proteasome).

6.1.1. Foreword

Melatonin exerts protective actions far beyond mammals, as several reports showed the 
role of melatonin in protecting yeast [92], bacteria [93], zebrafish [94], and plants [95] from 
various types of insult. For a discussion of melatonin throughout evolution, see also Tan 
et al. [96]. For decades, melatonin has been described as a compound able to fight almost 
any pathological situations. Tekbas et al. [97] even seriously considered melatonin as an 

antibiotic and Anderson et al. as an anti-Ebola virus agent [98]. A sample of those numerous 
actions can be found in Boutin [88], up to 2015. Table 1 of the present essay is the follow-up 
of that particular list of beneficial properties. Many of those properties of melatonin seem 
to be linked to the capacity of the compound to limit reactive oxygen species (ROS) actions. 
ROS have been first documented as an “infamous” group of highly reactive molecules 
responsible for oxidative stress. In an enlightening review, Roy and coworkers [99] defined 
the field of reactive oxygen species, by starting to recall that ROS are also regulating signal-
ing pathways in physiological situations. They also emphasized the fact that treatments 
with so-called antioxidants failed to show efficacy or/and positive effects in the prevention 
of diseases or health complications coming from oxidative stress. Nevertheless, it seems 
that according to a common belief, melatonin falls outside that particular category and is 
the ultimate scavenger/antioxidant molecule that has multiple capacities to prevent almost 
any diseases.

It is sometimes complicated to find common sense in such a plethora of actions. Table 1 lists 

some of these many actions, as published between 2015 and today. There is no way to be able 
to understand why melatonin has been reported for so many years in so many pathological 
situations. And the purpose of the present essay is not to do so. It is rather to make a com-

pendium of those actions and to let the community know that such papers exist and that the 
reason why melatonin is so ubiquitously active remains a mystery.

It is attempting, though, to make a rapid survey of those publications and to conclude that the 
common factor is the production of ROS. Then, we can hypothesize that most of these benefi-

cial actions were due to a capacity of melatonin to induce antioxidant enzymatic defenses. To 
conclude on this working hypothesis, one will have to identify the nuclear receptor mediating 
this property. Nuclear factor erythroid 2-related factor 2 (Nrf2) might be a good candidate, 
but a wishful thinking is certainly not a proof of fact.
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Authors Date Protection against Targets Amount Species Ref

Abdel-Moneim et al. 2015 Naja naja venom toxicity — 10 mg/kg Rat [100]

Allagui et al. 2015 Aluminum-induced 

toxicity

/ 10 mg/kg Rat [101]

Al-Olayan et al. 2015 Aluminum-induced injury Neurons 10 mg/kg Rat [102]

Al-Rasheed et al. 2016 CCl4-induced toxicity Liver 20 mg/kg Rat [103]

Amin et al. 2015 Diabetes-induced apoptosis Heart 10 mg/kg Rat [104]

Asghari et al. 2017 Aluminum phosphide 

toxicity

Heart 20–50 mg/kg Rat [105]

Banaei et al. 2016 Ischemia–reperfusion 
injury

Kidney 10 mg/kg Rat [106]

Barberino et al. 2017 Cisplatin-induceddamage Ovaries 5–20 mg/kg Mouse [107]

Berkiks et al. 2017 Ccognitive disorders Brain 5 mg/kg Rat [108]

Cao et al. 2017 Subarachnoid hemorrhage Brain 150 mg/kg Rat [109]

Cebi et al. 2018 Radioiodine treatment Testicles 12 mg/kg/day Rat [110]

Chang et al. 2016 Ischemia–reperfusion 
injury

Kidney 90 mg Rat [111]

Chang et al. 2015 Ischemia/reperfusion injury Adipose stem 

cells

120 mg/kg Rat [112]

Chen et al. 2016 Endoplasmic reticulum 
stress

Pancreas 0.5–2 mM Rat [113]

Chen et al. 2017 Neuropathic pain / ??? Rat [114]

Czechowska et al. 2015 Thioacetamide-induced 

fibrosis
Liver 10 mg/kg Rat [115]

Das et al. 2017 Mitochondrial dysfunction Hepatocytes 10–20 mg/kg/day Mouse [116]

Ding et al. 2018 Post-traumtic cardiac 
function

Heart 100 μM Rat [117]

Ding et al. 2015 Traumatic injury-induced 
apoptosis

Brain 10 mg/kg Mouse [118]

Dos Santos et al. 2018 Lupus nephritis injury Kidney 10 mg/kg/day Mouse [119]

Drag-Kozak et al. 2018 Cadmium-induced toxicity Reproductive 

organ

4 mg/L Carp [120]

Ewida et al. 2016 Metabolic syndroma Kidney 5 mg/kg Rat [121]

Favero et al. 2017 Fibromyalgia-related 
alterations

Muscle 2.5–5 mg/kg Rat [122]

Fernandez-Gil et al. 2017 Radiotherapy-iondued 

toxicity

Intestine 45 mg/day Rat [123]

Galley et al. 2017 Paclitaxel-induced 
dysfunction

Mitochondria 5–50 mg/kg Rat [124]

Melatonin - Molecular Biology, Clinical and Pharmaceutical Approaches22



Authors Date Protection against Targets Amount Species Ref

Ghaznavi et al. 2016 Gentamicin-induced 

toxicity

Kidney 15 mg/kg/day Rat [125]

Ghosh et al. 2017 Copper ascorbate-induced 
damage

Heart 

mitochondria

1 μM Goat [126]

Goc et al. 2017 Sodium nitroprusside 
toxicity

Organs 10 mg/kg Mouse [127]

Goudarzi et al. 2017 Cyclophophamide-induced 
stress

Kidneys 5–20 mg/kg Mouse [128]

Hermoso et al. 2016 Steatosis Liver 10 mg/kg Rat [129]

Hsu et al. 2017 Trauma-induced 

hemorrhage

Liver 2 mg/kg Rat [130]

Hu et al. 2017 BBB damage BBB 15 mg/kg Rat [131]

Ji et al. 2017 Sepsis-associated 
encephalopathy

Brain 10 mg/kg Mouse [132]

Jiang et al. 2016 Diabetic-induced 
inflammation

Retina 10 mg/kg/day Rat [133]

Jin et al. 2016 Non-alcoholic fatty liver 
disease

Liver / Mouse [134]

Karaer et al. 2015 Radiation damage Inner ear 5 mg/kg Rat [135]

Karimfar et al. 2015 Cryopreservation stress Sperm 0.001–1 mM Human [136]

Khaksar et al. 2017 Fluoxetine-induced tissue 
injury

Organs 1 mg/kg Rat [137]

Khalil et al. 2015 Zonisamide-induced 

toxicity

/ 10 mg/kg Rat [138]

Koc et al. 2016 Apoptosis Olfactive 
neurons

10 mg/kg/day Rat [139]

Lebda et al. 2018 Thioacetamide-induced 

fibrosis
Liver 5 mg/kg/day Rat [140]

Lee et al. 2016 H
2
O

2
-mediated cell death Keratinocytes 2.5–10 μM Human [141]

Li et al. 2016 Cadmium-induced toxicity Testicles 1 mg Mouse [142]

Li et al. 2015 Maturation defect Oocyte 0.001–1 μM Pig [143]

Lopez et al. 2017 MPTP-toxicity Brain 10 mg/kg Mouse [144]

Lv et al. 2018 Cr(VI) toxicity Testicles 25 mg/kg Mouse [145]

Ma et al. 2018 Oxidative injury Heart 100 μM Rat [146]

Ma et al. 2017 Tripterygium glycosides 

toxicity

Ovaries 20 mg/kg/day Mouse [147]

Ma et al. 2015 Adriamicyn-toxicity Breast cancer 
cells

10 mg/kg/day Rat [148]

Mehrzadi et al. 2016 Gentamicin-induced 

toxicity

Kidney 20 mg/kg/day Rat [149]
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Authors Date Protection against Targets Amount Species Ref

Mirhoseini et al. 2017 Torsion/detorsion model Testicles 25 μg/kg Rat [150]

Montasser et al. 2017 Methotrexate-induced 

toxicity

Liver 10 mg/kg Rat [151]

Mukherjee et al. 2015 Isoproterenol-induced 

damage

Heart 

mitochondria

0.125–4 μM Goat [152]

Munoz et al. 2017 Cumene peroxide-induced 
stress

Pineal gland 10 mg/kg/day Rat [153]

Naseri et al. 2017 Irradiation-induced toxicity Brain 100 mg/kg Rat [154]

Naskar et al. 2015 MPTP-induced 
Parkinsonism

Brain 10–30 mg/kg Mouse [155]

O’Neal-Moffitt et al. 2015 Alzheimer neiuropathology / Ad libitum??? Mouse [156]

Ortiz et al. 2015 Radiation-induced 

mucositis

Mouth 45 mg/kg/day Rat [157]

Othman et al. 2016 Bisphenopl A-induced 
toxicity

Testicles 10 mg/kg Rat [158]

Ozsoy et al. 2016 Mitochondrial dysfunction Liver 10 mg/kg Rat [159]

Ozsoy et al. 2015 6-hydroxydopamine stress Neurons 10 mg/kg Rat [160]

Pal et al. 2016 Stress-induced behavior 
changes

/ 10–100 mg/kg Rat [161]

Pang et al. 2016 Frozen–thawed cycles Sperm 0.01–1 mM Bovine [162]

Patino et al. 2016 o2 & Glucose deprivation Brain slices 10–30 μM Rat [163]

Paul et al. 2018 Oxidative stress Substancia 
nigra

10–30 mg/kg Rat [164]

Rajput et al. 2017 Alcohol-induced stress Brain 20 mg/kg Mouse [165]

Sadek and Khattab 2017 Arginine-induced 

pancreatis

Pancreas 50 mg/kg Rat [166]

Sarihan et al. 2015 TCDD-induced injury Heart 5 mg/kg/day Rat [167]

Scheuer et al. 2016 UVR-induced erythrema Skin 0.5–12.5% Human [168]

Shahrokhi et al. 2016 Ischmia/reperfusion-
oxidative stress

Estomac 10 mg/kg Rat [169]

Shang et al. 2016 Colitis-induced neuron 
damage

Colon 2.5 mg/kg/day Rat [170]

Shao et al. 2015 LPS-induced mastitis Breast 5–20 mg/kg Mouse [171]

Shokri et al. 2015 Pilocarpine-induced 
epilesy

Brain 5–20 mg/kg Rat [172]

Shokrzadeh et al. 2015 Cyclophosphamide toxicity Lung 2.5–20 mg/kg Mouse [173]

Sinha et al. 2018 Hypoxy/Ischemy Brain 10 mg/kg Mouse [174]

Tanabe et al. 2015 Oxidative stress ??? 100 μg/kg Mouse [175]

Tang et al. 2017 Abdominal aortic 

aneurysm

Aorta 10 mg/kg/day Rat [176]

Tas et al. 2015 Ischemia/reperfusion injury Intestine 50 mg/kg Rat [177]
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Torabi et al. 2017 Cyclophosphamide-
induced toxicity

Testicles 10 mg/kg/day Rat [178]

Uygur et al. 2016 As-induced apoptosis Testicles 25 mg/kg/day Rat [179]

Vazan et al. 2015 Epinephrine-induced 
injury

Heart 50 μM Rat [180]

Vinod et al. 2016 Aging-induced NO rhythm 

loss

Brain 30 μg/kg/day Rat [181]

Wang et al. 2018 Intracerebral Hemorrahge Brain ??? Rat [182]

Wang et al. 2016 Smoke-induiced vascular 
injury

Blood samples 10 mg/kg Rat [183]

Wang et al. 2016 Smoke-induiced vascular 
injury

Blood samples 3 mg/day Human [183]

Xue et al. 2017 Kainic-induced cell death Brain 20 mg/kg Mouse [184]

Yang et al. 2018 Subarachnoid hemorrhage Brain 0.1–10 μM Mouse [185]

Yi et al. 2017 Stress-induced 
inflammation

Macrophages 50–100 mg/kg Mouse [186]

Yildirim et al. 2016 Ureteral obstruction-
induced injury

Kidney 10 mg/kg Rat [187]

Yu et al. 2018 Ischemia–reperfusion 
injury

Heart 10 mg/kg Rat [188]

Yu et al. 2018 MEHP-induced meiosis 
defect

Oocytes ??? Pig [189]

Yu et al. 2015 Ischemia/reperfusion injury Heart 10 mg/kg/day Rat [190]

Yu et al. 2015 Ischemia/reperfusion injury Heart 20 mg/kg/day Rat [191]

Zasada et al. 2015 Nitrobenzene-induced 

peroxidation

Thyroids 0.001–10 mM Pig [192]

Zhai et al. 2017 Pathological cardiac 
hypertrophy

Heart 20 mg/kg/day Mouse [193]

Zhang et al. 2017 Bisphenol A-induced 
toxicity

Oocytes 30 mg/kg Mouse [194]

Zhang et al. 2017 Diabetic cardiomyopathy Heart 20 mg/kg/day Mouse [195]

Zhang et al. 2017 Arsenic-induced injury Liver 5–20 mg/kg Rat [196]

Zhang et al. 2016 β-amyloid-induced 
damages

Brain 50 μM Rat [197]

Zhao et al. 2017 NaF-induced injury Embryos 50–100 μM? Mouse [198]

Zhou et al. 2017 Ischemia/reperfusion injry Heart 20 mg/kg Mouse [199]

Zhu et al. 2018 Oxidative stress Heart 

endothelium

10 μM Rat [200]

Plants

Kobylinska et al. 2017 Lead-induced cell death Tobacco cells 200 nM Plant [201]

Wang et al. 2017 Drought stress Arabidopsis ??? Plant [202]
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Xu et al. 2016 Thermotolerance Tomato plants 10 μM Plant [203]

Zheng et al. 2017 Salt-stress Plant cells — Plant [204]

Cells

Baburina et al. 2017 Aging Mitochondria 7 mg/kg/day Rat [205]

Bardak et al. 2017 2-ethylpyridine-induced 

stress

ARPE-19 cells 200 μM Human [206]

Charao et al. 2015 Paraquat-induced toxicity A549 cells 10 μg/mL Human [207]

Chen et al. 2015 Bile acid-induced oxidative 
stress

L02 cells 1 μM Human [208]

Fu et al. 2017 Chloranil-induced toxicity PC12 cells 25–200 μM Mouse [209]

Gurer-Orhan et al. 2016 b-amyloid-induced damage Cells 10–100 μM Hamster [210]

Han et al. 2017 Obesity-associated stress Oocytes 30 mg/kg/day Mouse [211]

Janjetovic et al. 2017 UVB-induced damage Melanocytes 50 μM Human [212]

Ji et al. 2016 Angiotensin-II-indued 

injury
Podocytes 0.1–1 mM Mouse [83]

Jumnongprakhon 
et al.

2015 Methamphetamine-toxicity C6 cells 1–100 nM Rat [213]

Liu et al. 2015 Hypoxia-induced N2a cells 5 μg/mL Mouse [214]

Lu et al. 2015 LPS-induced hypertrophy Myocardial 

cells

1.5–6 mg/mL Rat [215]

Maarman et al. 2017 Uric acid-induced toxicity C2C12 
myotubes

10 nM Mouse [216]

Miao et al. 2018 benzo(a)pyrene meiotic 
failure

Oocytes 1 nM–1 mM Pig [84]

Mehrzadi et al. 2017 H2O2-induced toxicity MSC 10 nM–1 mM Human [85]

Ozerkan et al. 2015 CCl4-induced cytotoxicity HepG2 & 
Hep3B

10 nM Human [217]

Pang et al. 2017 Early apoptosis Oocytes 1 nM Bovine [218]

Sagrillo-Fagundes 
et al.

2016 Hypoxia-reoxygenation 

toxicity

Trophoblasts 1 mM Human [86]

Sanchez-Bretano et al. 2017 H
2
O

2
-induced cell death 661 W cells 0.1–1 μM [219]

Song et al. 2015 LPS-induced inflammation Stem cells 100 nM Mouse [220]

Tan et al. 2016 Oxidative stress-induced 

cell death

Adipocytes 100 μM Human [221]

Waseem et al. 2017 Oxaliplatin-induced 

toxicity

SHSY-5Y cells 10 μM Human [222]

Wongprayoon et al. 2017 Methamphetamine-

induced stress

SH-SY5Y cells 0.01–1 μM Human [223]

Xie et al. 2015 Hypoxia-induced 

hypertrophy

Cardiomycyte 
cell line

1 mM Rat [87]
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6.1.2. Melatonin as an antioxidant molecule

Forman et al. in two seminal papers explained that the notion of hydroxyl radical scaven-

gers is an extreme case of wishful thinking [230, 231]. Later on, he and his coworkers clearly 
showed that a unique molecule could not be a scavenger of superoxides, hydrogen peroxides, 
or other hydroperoxides or hydroxyl radicals. Indeed, all chemicals inside a cell react chemi-

cally with radical species, that is, proteins, lipids, nucleic acids, etc. Thus, because all organic 

compounds react with radicals with rate constants approaching the diffusion limitation, no 
compound can be better than the sum of the others to scavenge those ROS [231]. This can apply 

to melatonin. Like many other chemicals, whether indol-based or not, this compound, even at 
large concentrations, cannot be, per se, a scavenger. Therefore claims that melatonin is a super 
scavenger, with many advantages over other similar naturally occurring compounds, must be 

taken with extreme caution, despite several in-depth reviews, such as the one by Galano et al. 

[232]. Even the use of “direct” detection methods of radicals (to prove this hypothesis) should 
be handled with much caution [233]. Nevertheless, melatonin sustains antioxidant properties 

(see Rodriguez et al. [234] for review). Indeed, it can increase the expression of antioxidant 
enzymes (see, e.g., Mahrzadi et al. [149] and references therein). Melatonin can also act as a 
potent antiapoptotic agent in many cells [235], maybe through an antioxidant type of activity, 
as a relationship between ROS and apoptosis and autophagy has been well documented. How 
can melatonin induce those antioxidant defenses?

6.1.3. Melatonin as a ligand of Nrf2?

At the time (2003) Rodriguez et al. wrote their review [234] on antioxidant capacities of melato-

nin, Nrf2 was not really an identified and recognized partner in this process. The relationship 
between melatonin actions and the role of nuclear factor erythroid 2-related factor 2 (Nrf2) has 
been reported more than 50 times in the literature these last years, starting around 2009 [236]. 

Authors Date Protection against Targets Amount Species Ref

Xue et al. 2017 Kainic-induced cell death N2a cells 50–100 μM Mouse [184]

Yang et al. 2017 Iron overload senescence MSCstem cells 10 nM–100 μM Mouse [224]

Yang et al. 2017 Glucocorticoid-induced 

impairment

Isolated knee 

joints
1 μM Mouse [225]

Yu et al. 2017 Ischemia–reperfusion 
injury

H9c2 10 μM Rat [226]

Zhao et al. 2018 Ab-induced neurotoxicity Primary 
neurons

0.1–100 μM Mouse [227]

Zhou et al. 2018 rotenone-induced cell 

death

SH-SY5Y cells 50–500 μM Human [228]

Zhu et al. 2015 Myocardial infarction Adipose stem 

cells

5 μM Rat [229]

Table 1. Some of the actions of melatonin observed in various pathophysiological situations.
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Nrf2 is a key factor in the induction of antioxidant protein defenses of the cell. It binds to a 
region called EpRE—also known as ARE [230]. This transcription factor (belonging to the huge 
family of Cap’n’collar transcription factors) is neutralized in cellulo by another factor, Kelch-like 
ECH-associated protein 1 (Keap1). The heterodimer is directed to the proteasome where the 
proteins are destroyed. Upon some conditions, including pharmacological ones (for instance, 
sprout-derived chemicals [237]), the dimer is open, and the free Nrf2 migrates to the nucleus 
of the cell where it associates with the EpRE region. This translates by the induction of several 
key proteins of the antioxidant cellular armada, such as heme oxygenase 1, quinone reductase 
1, glutathione S-transferase π1, etc., but also enzymes from the phase 2 drug metabolism, such 
as UDP glucuronosyltransferases. There is a large literature indicating that melatonin induces 
Nrf2 expression and/or its separation with its corepressor, Keap1 (about 50 publications reported 
at least the induction of Nrf2 by melatonin). Furthermore, it has been shown several times that 
upon melatonin treatment, the cytosolic Nrf2 migrates to the nucleus where it can exert its induc-

tive function. One question remains unanswered, though; it is the possibility that Nrf2 was the 
elusive nuclear factor described at several occasions [26]? Unfortunately, the tridimensional 
structure of Nrf2 and/or of its complex with Keap1 has not been reported. It seems that Nrf2 has 
no a priori structure and is only adopting define 3D shape either once linked to Keap1 (a com-

plex that is then directed to the proteasome) or when in complex with a ligand. Much more need 
to be done to understand this relationship that might enlighten part of the observation of Table 1.

6.2. Through MT
1
/MT

2

The specificity of actions linked to the binding of melatonin to one of its receptors, MT1 and 

MT
2
, is still a matter of debate. Indeed, a thorough survey of its action is not possible in vivo 

in wildtype animals, because we are still lacking reliable and isoform-specific antagonists (see 
discussion in Jockers et al. [45]). It is possible, though, to study the role of one or the other of the 
receptors using either natural KO animals [such as the Siberian hamster, but not the European 
hamster (Gautier & Boutin [281])] or, alternatively, MT1 or MT

2
 (or both) KO animals, which 

have been engineered [238–240], but results are slow to be issued [241–243] (see also discussion 

in Jockers et al. [45]). Nevertheless, general conclusions can be drawn from accumulated data, 
as reviewed by the same authors [45]. It is difficult, as of today, without drowning in the 3970 
available reviews on melatonin, to clearly segregate between the subtype roles. Among the clear-

est facts, mice lacking MT1 receptors exhibit higher mean blood glucose levels than wildtype 

mice [244]. Those KO animals tend to be more glucose intolerant and insulin resistant than their 
wildtype counterparts. Through many different parameters, both MT1 and MT

2
 receptors seem 

to have a role in the phase shift of circadian rhythms, as demonstrated by several lines of indica-

tions, including knockout animals, the use of specific MT
2
 antagonists (luzindole, 4P-PDOT), as 

well as ex vivo experiments. Melatonin can activate an immune response. Remarkably, that was 

proposed as early as 1926 by Berman. This activity seems to depend on the MT1 receptor [245], 

but opposite claims have also been published [246]. Liu et al. showed that it was MT
2
 that was 

the receptor implicated in axogenesis and the formation of functional synapses [247].

Nevertheless, it seems to me improbable that even only some of the actions in Table 1 were 

through the binding of melatonin onto its receptors.

Melatonin - Molecular Biology, Clinical and Pharmaceutical Approaches28



6.3. Through QR2

As stated previously, it was rapidly discovered that two melatonin-binding sites were GPCR 
in mammals and an extra one, Mel1c, in reptilians and birds. The group of Dubocovich also 
pointed at a binding site, ML2 [248, 249], with rather unconventional properties (particularly 

with very fast exchange) baptized MT
3
. In 1999 we embarked in an attempt to clone this par-

ticular receptor, after having obtained similar results for the pharmacological description of 
this particular “receptor” [250]. We had the chance to identify it by using a series of inverse 
pharmacology techniques, comprising an analogue of a specific MT

3
 ligand, MCA-NAT, on 

which affinity chromatography succeeded. The binding site was an enzyme with a peculiar 
story, quinone reductase 2 (QR2 a.k.a. NQO2) [23]. The activity of this enzyme was first 
described in the early 1960s as a reductase using unconventional donors as co-substrates, such 
as N-benzyl, N-methyl, or N-ribosyl dihydronicotinamides, and Talalay’s group established 

that the enzyme was the enzyme once described by Liao et al. [251]. Interestingly, they clearly 

established the nature of the enzyme and particularly its incapacity to recognize NADH or 
NAD(P)H as co-substrates, as well as its sensitivity to some chemical, in an orthogonal way 
to QR1. For instance, QR2 is insensitive to the reference QR1 inhibitor, dicoumarol. When 
we discovered that QR2 was indeed MT

3
, we had to reinforce this observation by generating 

KO cell lines [252], KO mouse strain [253] and various tools that would help to understand 

the potential role of this enzyme (see Vella et al. [254] and references there in). Although 
the enzyme was identified during a pure melatonin-related program, it turned out to have 
nothing in common, a priori, with the melatoninergic systems. Indeed, while able to bind 

melatonin with a rather strong affinity—in the nM range—QR2 is only poorly inhibited by 
melatonin, in the 50 μM range, suggesting that melatonin regulation was not a player in the 
QR2 game. Indeed, as often in the drug metabolism area, enzymes from both phases I and 
II, such as cytochrome P450, UGTs, or glutathione S-transferases, are often enzymes with 
enough plasticity in their catalytic sites in order to accommodate xenobiotics that are, by 

definition, molecules of various chemical structures issued from the environment at large.

Nevertheless, I suggested that QR2 inhibition at high dose of melatonin could be an explana-

tion for melatonin exerting its antioxidant capacities [88].

6.4. Through mitochondria

Incidentally, a couple of papers reported not only the synthesis of melatonin in mitochondria 
but also the presence in these organelles—at least those isolated from the brain—of a measurable 
binding, signing the presence of MT1 receptors. Again, as long as the mitochondrial DNA is not 
reported for genes encoding for these GPCRs, it seems possible to hypothesize that those binding 
sites were a leftover from the brain preparation of mitochondria, a possibility reinforced by the 
difficulty of preparing “pure” mitochondria from these lipid- and membrane-rich organs. Beyond 
these hypothetical technical considerations lays also the fact that our laboratory had experienced 
“very” often cells with no binding activity, suggesting that mitochondria would express melato-

nin receptors only in melatonin receptor-rich organs—such as the brain—an indirect suggestion 
that the presence of those receptors in these organelles might be a “simple” signature of a difficult 
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separation between all the kinds of membranes present in a neuronal cell. There were several 
reports over the last decade showing a protective effect of melatonin onto mitochondria functions 
(see Table 2). Then several reviews suggested that melatonin was synthesized by mitochondria 
(see, for instance, Manchester et al., 2015 [255], Reiter et al., 2017 [256] and 2018 [257]). Particularly 
interesting is the fact that Cellular and Molecular Life Science published a special issue in 2017 
(volume 74, issue 21) dealing with melatonin and mitochondria, emphasizing the interest of the 
community for these observations and their consequences. A reason for this hypothesis was given: 
mitochondria, like chloroplasts in plants, evolved from bacteria. Because originally cyanobacteria 
were subjected to heavy exposition to toxic free radicals, they evolved in keeping melatonin as an 
antioxidant, scavenging these radicals and thus preserving their integrity. Because this happened 
about 3 billion years ago, melatonin has been selected to protect and defend those microorganisms.

Of course, when bacteria colonized eukaryotic cells, the trait was maintained throughout evo-

lution, including in mammals. Thus, no matter how high or low the blood melatonin concen-

tration is, this particular intra-mitochondria concentration remains constant (not depending 

on the circadian rhythm), protecting mitochondria from the never ending production of free 
radicals that is the signature of sane mitochondria. An impressive series of publications were 
issued in these last few years (see Table 2) dealing with situations where toxicity was prevented 
by melatonin. This can be further extended to the protection afforded by mitochondria-synthe-

sized melatonin to oocytes [278]. Finally, one can also add the observation that mitochondria 
melatonin protects plants from drought episodes [202]. Particularly interesting was the last one 
in which Suofu et al. [10] demonstrated the presence of the main melatonin synthesis enzymes, 
arylalkylamine N-acetyltransferase (AANAT) and acetylserotonin O-methyltransferase 
(HIOMT), in mitochondria matrix, as well as the high concentration of melatonin inside those 
mitochondria matrix. Furthermore, they showed the presence of MT1 receptor and the actual 

coupling of this receptor, turning this observation into a major progress in the domain, as rare 
are the receptors signaling in the mitochondria. This observation was challenged by Ahluwalia 

et al. [279] (replied by Suofu et al. [11]) that was able to show the presence of the melatonin 
receptors in muscle fibers, but not in mitochondria thereof. It is clear that this breakthrough 
information will be better understood after the observation will be confirmed independently. 
Of course, questions remain in the skeptical reader mind: if the melatonin system evolved from 
bacteria over several billion years, then the genetic material should have evolved together with 

it, meaning that the mitochondrial DNA should encode for MT1, AANAT, and ASMT, which 
does not seem to be the case. This observation would also lead to an extra complexity involv-

ing the protein importation system (TOM, Tim, etc.) and the ad hoc addressing sequence(s) 
onto those proteins, all of which have not been seen so far. Furthermore, the discovery and 
description of an inward transport of melatonin in mitochondria [280] are not fitting an in situ 
synthesis. For those of us who have been working with subcellular organelles, it is very hard 
to assess the purity of those organelles because of the continuum that exists between all the 
membranes from cells. One should also add to this the particular complexity of the brain tissue 
that is by essence very lipid-rich, leading to an extra difficulty in preparing pure membranes 
or pure subcellular organelles. Nevertheless, the several evidences on the melatonin actions at 

the level of mitochondria cannot be doubted and change our view of its role and of the role of 
MT1, as MT

2
 seems to be absent from the organelle.
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7. Future paths?

Trying to summarize the literature on subjects like melatonin is obviously impossible. One 
will give his/her view on some of the points that are the most attractive to him/her. It was 
thus vain to attempt to solve issues with such an essay on this neurohormone. The future will 
tell if melatonin is an exceptional molecule with many capacities. What is clear, as of today, 
is that melatonin has been described on a plethora of situations with beneficial endpoints. If 
melatonin is an antioxidant—but the concept behind this word is different from one author 

Protection against Authors Year Reference

Doxorubicin Xu and Ashraf 2002 [258]

Oxidative stress Jou et al. 2004 [259]

NO synthase induced dysfunction Escames et al. 2006 [260]

Apoptosis Han et al. 2006 [261]

Ischemia-Reperfusion Petrosillo et al. 2006 [262]

Apoptosis Luchetti et al. 2007 [263]

Oxidative stress Jou et al. 2007 [264]

UV exposition Fischer et al. 2008 [265]

Aging Petrosillo et al. 2008 [266]

Oxidative stress Hibaoui et al. 2009 [267]

Permeability transition Jou et al. 2010 [268]

Permeability transition Jou et al. 2011 [269]

Bisphenol A Anjum et al. 2011 [270]

CCl4 Chechshevik et al. 2012 [271]

Isoproterenol Mukherjee et al. 2012 [272]

Ischemia-Reperfusion Yang et al. 2013 [273]

UV exposition Canonico et al. 2013 [274]

Demyelination induced stress Kashani et al. 2014 [275]

Cd Guo et al. 2014 [276]

Isoproterenol Mukherjee et al. 2015 [272]

Ischemic-Stroke Yang et al. 2015 [277]

Lipid toxicity Ozsoy et al. 2016 [159]

Aging Baburina et al. 2017 [205]

Lipid toxicity Das et al. 2017 [116]

Paclitaxel Galley et al. 2017 [124]

Copper Ghosh et al. 2017 [126]

Table 2. Melatonin protects mitochondria against various stresses.
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to another—it is not as a scavenger of radical oxygen species, but most probably through its 
capacity to induce cellular defenses against oxidative stress. Melatonin has different known 
targets; two, MT1 and MT

2
, are well described, but these receptors bring more unexpected nov-

elties over the years, an enzyme—QR2—the study of which could be part of an explanation for 
the antioxidant properties of melatonin, and, finally, a pathway, linked to Nrf2 that seems to 
be another part of the explanation for these properties. There are many routes still to explore 
to understand what is behind this molecule, and the spectacular associated with it should be 

concealed and mastered until beyond (and despite) our hopes; facts will be revealed.
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