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Abstract

The goal of this chapter is to present recent developments about Bitcoin1 price modeling
and related applications. Precisely, we consider a bivariate model in continuous time to
describe the behavior of Bitcoin price and of the investors’ attention on the overall net-
work. The attention index affects Bitcoin price through a suitable dependence on the drift
and diffusion coefficients and a possible correlation between the sources of randomness
represented by the driving Brownian motions. The model is fitted on historical data of
Bitcoin prices, by considering the total trading volume and the Google Search Volume Index

as proxies for the attention measure. Moreover, a closed formula is computed for
European-style derivatives on Bitcoin. Finally, we discuss two possible extensions of the
model. Precisely, we investigate the relation between the correlation parameter and possi-
ble bubble effects in the asset price; further, we consider a multivariate framework to
represent the special feature of Bitcoin being traded on several exchanges and we discuss
conditions to rule out arbitrage opportunities in this setting.

Keywords: Bitcoin, market attention, arbitrage, option pricing, bubbles

1. Introduction

Bitcoin is a digital currency built on a peer-to-peer network and on the blockchain, a public

ledger where all transactions are recorded and made available to all nodes. Opposite to

traditional banking transactions, based on trust for counterparty, Bitcoin relies on cryptogra-

phy and on a consensus protocol for the network. The entire system is founded on an open

source software created in 2009 by a computer scientist known under the pseudonym Satoshi

Nakamoto, whose identity is still unknown (see [1]). Hence, Bitcoin is an independent digital

1

We use the following rule throughout the paper: the term BitCoin refers to the whole system network while Bitcoin refers

to the digital currency.
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currency, not subject to the control of central authorities and without inflation; furthermore,

transactions in the network are pseudonymous and irreversible.

Bitcoin and the underlying blockchain technology have gained much attention in the last few

years. Research on Bitcoin often deals with cybersecurity and legitimacy issues such as the

analysis of double spending possibilities and other cyber-threats; recently, high returns and

volatility have attracted research toward the analysis of Bitcoin price efficiency as well as its

dynamics (see, among others, [2–4]). Moreover, many contributions claim that Bitcoin price is

driven by attention or sentiment about the Bitcoin system itself; see [5–8]. Possible driving

factors for the sentiment about the Bitcoin system are the volume of Google searches or

Wikipedia requests as in [5], or more traditional indicators as the number or volume of trans-

actions, as suggested in [6]. In [9], the author suggests a time series model in order to identify

the dynamic relation between speculation activity and price.

In this chapter, after having introduced the basic concepts underlying Bitcoin, we sum up and

describe to a broader audience the recent outcomes of the research reported in [10], by avoiding

unnecessary technicalities. Some new insights are also given by looking at possible extensions in

order to take into account thepresence of bubble effects or the special featureof Bitcoin being traded

in different online platforms (exchanges) thatwill be further investigated in our future research.

2. The Bitcoin network

We recall that Bitcoin was first introduced as an electronic payment system between peers by

Satoshi Nakamoto (pseudonym) in [1]. Opposite to traditional transactions, which are based

on the trust in financial intermediaries, this system relies on the network, on the fixed rules and

on cryptography. Bitcoins can be purchased on appropriate websites that allow to change

usual currencies in the cryptocurrency.

The Bitcoin network has several attractive properties for its users:

• No central bank authority for money supply and no regulator;

• Transactions are 24/7 and without any country border;

• Transaction cost are almost negligible with respect to traded amount;

• Transaction are anonymous;

• The security of each transaction is guaranteed by cryptography and digital signature;

• The security of the whole network is guaranteed by construction unless more than 50% of

the network nodes agree on a deceptive action.

As a digital payment system, Bitcoins may be used to pay for several online services and

goods. Special applications have been designed for smartphones and tablets for transactions

in Bitcoins and some ATMs have appeared all over the world (see Coin ATM radar) to change

traditional currencies in Bitcoins. Accepting Bitcoins as a payment method is also related to an

advertisement opportunity for companies. However, the high returns achieved in the last few

years have transformed Bitcoin in a speculative asset affecting its use as a form of payment.

Blockchain and Cryptocurrencies4



The Bitcoin system has been subject to many cracks but has proven to be very resilient as the

value of the cryptocurrency was able to rise again after all the falls. Nevertheless, at the time of

writing, Bitcoin was experiencing a fall in its exchange rate with main fiat currencies.

Two of the main crackdowns were China enforcement in December 2013 and Mt. Gox bank-

ruptcy in February 2014.

Besides technical and regulation issues, the Bitcoin system also faces reputational concerns.

In fact, the ambiguity of anonymous transactions has blamed the network of allowing several

criminal activities such as buying illegal goods, money laundering or the financing of terrorism

actions. As a representative example, we recall that The Silk Road was a website that started

selling narcotics and illegal drugs in 2011, payable in Bitcoins. The website was finally shut-

down by 2013 and the owner was arrested and sentenced to life in prison. Again, anonymous

transactions make it possible to use huge quantities of money, exchanged in Bitcoins, without

declaring its origin, hence allowing for possible money laundering. However, according to a

research performed by the UK government, the highest score related to money laundering is

still cash, followed by the bank, accountancy and legal service providers (see https://www.gov.

uk/government/publications/uk-national-risk-assessment-of-money-laundering-and-terrorist-

financing).

It is worth noticing that while counterparties are represented by secret addresses and are

anonymous, all transactions are recorded and might be traced. Investigation is hence favored

by this feature of the network.

Despite the flaws in the system, Bitcoin has achieved a notwithstanding rise in recent years.

In Figure 1, we report Bitcoin price and returns from January 2012 to December 2017 (source

https://blockchain.info/en/charts).

Figure 1. Bitcoin price (top) and returns (bottom) from January 2012 to December 2017.
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3. An attention-based model

The model we suggest in what follows is motivated by findings in [5, 6, 8, 11] where it is

showed that Bitcoin price is related to investors’ attention measured by the trading volume

and/or the number of searches in engines such as Google and Wikipedia. Bitcoin is treated as a

financial stock as suggested in [12] and the suggested model may be applied in principle to

other assets that are proven to depend on market attention.

3.1. The model specification

Consider a probability space Ω;F ;Pð Þ endowed with a filtration F ¼ F t; t ≥ 0f g satisfying

usual assumptions of right continuity and completeness.

Let us denote the Bitcoin price process as S ¼ St; t ≥ 0f g and assume that it depends on an

attention factor denoted by A ¼ At; t ≥ 0f g. The dynamics of the two processes are described by

the following equation:

dSt

St
¼ μ

S
Atdtþ σS

ffiffiffiffiffi

At

p

dW t, S0 ¼ s0 ∈R
þ

dAt ¼ μ
A
Atdtþ σAAtdZt, A0 ¼ a0 ∈R

þ,

8

>

<

>

:

(1)

where μ
A
,μ

S
, σA > 0,σS > 0 are constant parameters and W ;Zð Þ ¼ W t;Ztð Þ; t ≥ 0f g is an F;Pð Þ-

standard Brownian motion in R
2. Assume that F t ¼ σ Wu;Zu; u ≤ tð Þ, for each t ≥ 0:

It is well known that the above dynamics for the attention factor is a geometric Brownian

motion, the solution of which is given by At ¼ A0 exp μ
A
� σA

2

2

� �

tþ σAZt

� �

for t ≥ 0 which has

a log-normal distribution; integrating the price process is straightforward to get

St ¼ S0exp μ
S
�
σS

2

2

� �
ð

t

0

Auduþ σS

ð

t

0

ffiffiffiffiffiffi

Au

p

dWu

0

@

1

A, t ≥ 0: (2)

3.2. Statistical properties and model fitting

We collect in this subsection the properties of the logarithmic returns obtained by the price

process defined in Eq. (1).

Consider the discrete process AiΔ; SiΔð Þ; i ¼ 1; 2;…; nf g obtained by sampling the price process

and the attention factor at times ti ¼ iΔ, i ¼ 1, 2,…nwith constant observation step Δ; denote the

logarithmic changes of the process by Ri ¼ log SiΔ
S i�1ð ÞΔ

, Pi ¼ log AiΔ

A i�1ð ÞΔ
and define Xi ≔

Ð

iΔ

i�1ð ÞΔ

Audu.

Note that Ri, i ¼ 1, 2,…n represent the logarithmic returns of asset S for the sampling dates and

that Xi, i ¼ 1, 2,…n the cumulative attention in the time interval i� 1ð ÞΔ, iΔ½ �. Then it is straight-

forward to prove the following:
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Theorem 2.1. The random vector R ¼ R1;R2;…Rnð Þ, given X ¼ X1;X2;…Xnð Þ, is normally distrib-

uted with mean m and covariance matrix Σ where

mi ¼ μS �
σS

2

2

� �

Xi, for i ¼ 1, 2,…n,

Σ ¼ Diag σS
2X1; σS

2X2; ::; σS
2Xn

� �

:

(3)

Proof. In order to prove the theorem it suffices to remind that, for i = 1, 2, …, n, the random

variable
Ð iΔ
i�1ð ÞΔ

ffiffiffiffiffiffi

Au

p
dWu, conditional on knowing Xi, is normally distributed with zero mean

and variance Xi, and that the increments of the Brownian motion W are independent.

As for the unconditional distribution, it is easy to obtain, for i ¼ 1, 2,…, n,

E Ri½ � ¼ μS �
σS

2

2

� �

E Xi½ �,

Var Ri½ � ¼ μS � σS
2

2

� �2
Var Xi½ � þ σS

2E Xi½ �,
(4)

where E Xi½ �, Var Xi½ � can be computed in closed form as a function of μA, σA,Δ (see for example

[10]). The above outcomes are applied in order to derive the likelihood of the vector R;Xð Þ.
Indeed, by simply applying Bayes’ rule, we get the following result:

Proposition 2.2. The joint probability density of the vector R;Xð Þ is given by g : R� R
þ ! Rwith

g r; xð Þ ¼ f X1
x1ð Þ
Y

n

i¼2

f Xi ∣Xi�1
xið Þ
Y

n

i¼1

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πσ2Sxi

q exp �
ri � μS �

σ2
S

2

� �

xi

2σ2Sxi

8

<

:

9

=

;

, (5)

where f X1
�ð Þ and f Xi ∣Xi�1

�ð Þ are the probability density function of X1 and Xi given Xi�1,

respectively.

The proof follows from Bayes’ rule and application of Theorem 2.1.

It is worth to remark that the probability density g �ð Þ in Eq. (5) depends on suitable choices for

f X1
�ð Þ and f Xi ∣Xi�1

�ð Þ. Under our assumptions, such densities are not given within known

distribution; however, by applying outcomes in [13], we can approximate them as log-normals

with means and variances given as closed expressions of μA; σA
� �

.

Precisely, we have that f X1
�ð Þ ¼ LN α; νð Þ and, for i ¼ 2, 3,…n, f Xi ∣Xi�1

�ð Þ ¼ LN αi; νið Þ, with

α1 ¼ log
E X1½ �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E X1
2

	 


q

0

B

@

1

C

A
, ν21 ¼ log

E X1
2

	 


E X1½ �2

 !

,

αi ¼ log Xi�1ð Þ þ μA � σ2A
2

� �

Δ, ν2i ¼ σ2AΔ:

(6)
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We apply the outcomes above in order to estimate model parameters according to the

maximum-likelihood method (see for example [14, 15]) where the likelihood is approximated

by applying the Levy approximation [13].

Parameter estimates are obtained as

bμ
A
; bμ

S
; bσA; bσS

� �
¼ argmaxμ

A
,μ

S
,σA ,σS logℓ μ

A
;μ

S
; σA; σS; r; x

� �
, (7)

where

logℓ μ
A
;μ

S
; σA; σS; r; x

� �
¼

Xn

i¼1

log
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πxiσ2S

q �
ri � μ

S
�

σ2
S

2

� �
xi

� �2

2xiσ2S

þ
Xn

i¼1

log
1

xi
ffiffiffiffiffiffiffiffiffiffiffiffi
2πvi2

p �
logxi � αið Þ2

2vi2

(8)

3.3. Empirical application on Bitcoin prices

The first step in our procedure is to identify possible measures of investors’ attention. As

already mentioned in the introduction, we consider the total trading volume on Bitcoin avail-

able from https://blockchain.info as well as the search volume index (SVI) for Google searches

on the topic “bitcoin” provided by https://trends.google.it/trends/.

The trading volume of exchange is a classical measure of the attractiveness of a traded asset for

an investor; besides, in [16], the authors find evidence that the latter captures the attention of

retail/uniformed investors.

We consider daily data from January 1, 2015, to June 30, 2017, for the total volume and the SVI

Index. As for the daily value of the Bitcoin, we have considered the average mean across main

exchanges represented by the Index in https://blockchain.info.

In Table 1, the outcomes for parameter estimates, obtained by maximizing the approximate

likelihood given the observed time series, are summed up.

4. A closed formula for Bitcoin option prices

In this section, we show how to characterize the price of European call options on Bitcoins in

the underlying market model. Let us fix a finite time horizon T > 0 and assume the existence

bμ
A

bσA bμ
S

bσS

A = Vol 0.9571 1.1346 0.0218 0.0829

A = SVI 1.3584 1.0687 0.0743 0.1559

Table 1. Parameter estimates for the model in Eq. (1) fitted on daily observations from January 2015 to June 2017.
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of a riskless asset (also called the savings account), whose price process B ¼ Bt; t∈ 0;T½ �f g is

given by

Bt ¼ exp

ðt

0

r sð Þds
� �

, t∈ 0;T½ �, (9)

where r : 0;T½ � ! R is a bounded, deterministic function representing the instantaneous risk-

free interest rate. To be reasonable, the market model must avoid arbitrage opportunities, that

is, investment strategies that do not require an initial investment and that do not expose to any

risk and lead to a positive value with positive probability. From a mathematical point of view,

this means to check that the set of equivalent martingale measures for the Bitcoin price process

S is nonempty. Precisely, it is possible to prove that it contains more than a single element.

Lemma 3.1. Every equivalent martingale measure Q for S is characterized by its density process with

respect to the initial probability measure P as follows:

dQ

dP

����
F t

¼ exp �
ðt

0

μSAu � r uð Þ
σS

ffiffiffiffiffiffi
Au

p dWu �
ðt

0

γudZu �
1

2

ðt

0

μSAu � r uð Þ
σS

ffiffiffiffiffiffi
Au

p
� �2

du� 1

2

ðt

0

γu
2du

 !

, (10)

where γ ¼ γt; t∈ 0;T½ �f g is an F-adapted process such that
Ð T
0 γu

2du < þ∞, P-a.s.

The proof can be deduced from that of Lemma 1.4 in [10], where they also account for a

possible delay between the attention factor and its effect on Bitcoin prices trend. The process

γ can be interpreted as the risk perception associated to the future direction or future possible

movements of the Bitcoin market. Since S is the only tradable asset, the risk perception is not

fixed and this explains the nonuniqueness of the martingale measure Q in this market frame-

work that turns out to be incomplete. Consequently, given any European-type contingent

claim, it is not possible in general to find a self-financing strategy whose terminal value exactly

replicates the payoff of the claim. We recall that the notion of completeness is related to the

uniqueness of the martingale measure. Indeed, in complete markets, the no-arbitrage price of

any derivative is uniquely determined by the unique martingale measure. On the other hand,

in incomplete markets, we deal with a family of martingale measures and have at our disposal

a set of possible prices, which are all compatible with the “no-arbitrage condition.” One

common approach to option pricing in incomplete markets in the mathematical financial

literature is to select one specific martingale measure (which can be also called pricing measure)

under which the discounted traded assets are martingales and to compute option prices via

expectation under this measure via risk-neutral evaluation formulas. One simple example of a

candidate equivalent martingale measure is the so-called minimal martingale measure (see

[17, 18]), which minimizes the relative entropy, of the objective measure P, with respect to any

risk-neutral measure. In this setting, its economic interpretation is that agents do not wish to be

compensated for the risk associated with the fluctuations of the stochastic attention factor,

which corresponds to the hypothesis of [19] in the stochastic volatility framework. This is the

probability measure which corresponds to the choice γ � 0 in Eq. (10). Intuitively, under the

minimal martingale measure, say bP, the drift of the Brownian motion driving the Bitcoin price

Modeling Bitcoin Price and Bubbles
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process is modified to make S an F-martingale, while the drift of the Brownian motion which is

strongly orthogonal to S is not affected by the change measure from P to bP. More precisely, by

Girsanov’s theorem, the R2-valued process cW ;
bZ

� �
¼ cW t;

bZt

� �
; t∈ 0;T½ �

n o
defined by

cW t ≔W t þ
ðt

0

μSAu � r uð Þ
σS

ffiffiffiffiffiffi
Au

p du, bZt ≔Zt, (11)

is an F;
bP

� �
-standard Brownian motion. Under any equivalent martingale measure, the disco-

unted Bitcoin price process ~S ¼ ~St; t∈ 0;T½ �
� 


given by ~St ≔
St
Bt
, for each t∈ 0;T½ � behaves like a

martingale. Precisely, on the probability space Ω;F ;
bP

� �
, the pair ~S;A

� �
has the following

dynamics:

d~St ¼ σS
ffiffiffiffiffi
At

p
~StdcW t, ~S0 ¼ s0 ∈R

þ,

dAt ¼ μAAtdtþ σAAtdZt, A0 ¼ a0 ∈R
þ

:

8
<

: (12)

Equivalently, we can write the discounted Bitcoin price process ~S as

~St ¼ s0 exp σS

ðt

0

ffiffiffiffiffiffi
Au

p
dcW u �

σ2S

2

ðt

0

Audu

� �
, t∈ 0;T½ �: (13)

Clearly, under the minimal martingale measure bP, the Bitcoin price process S satisfies

dSt ¼ r tð ÞStdtþ σS

ffiffiffiffiffi
At

p
StdcW t, S0 ¼ s0 ∈R

þ, (14)

where r tð Þ is the risk-free interest rate at time t.

Remark 3.2. Note that, under any equivalent martingale measure that keeps the drift of the attention

factor dynamics linear in A (in particular, under the minimal martingale measure), the model proposed

in [10] nests the Hull-White stochastic volatility model, which corresponds to the particular case where

σS ¼ 1; see [19]. Indeed, the authors only referred to a risk-neutral framework without describing the

dynamics under the physical measure and consequently characterizing the existence of any equivalent

martingale measure.

Now, we compute the fair price of a Bitcoin European call option via the risk-neutral evalua-

tion approach, so it can be expressed as expected value of the terminal payoff under the

selected pricing measure, that is, the minimal martingale measure. Let CT = (ST � K)+ be the

FT-measurable random variable representing the payoff of a European call option on the

Bitcoin with price S with date of maturity T and strike price K, which can be traded on the

underlying digital market. Recall that Xt,T ¼ XT � Xt, for each t∈ 0;T½ Þ, refers to the variation

of the integrated attention process X defined over the interval t;T½ �. Then, denote by EbP �jF t½ �
the conditional expectation with respect to the σ-field F t under the probability measure bP and

so on. Define the function CBS
: 0;T½ Þ � R

þ � R
þ ! R as follows:

Blockchain and Cryptocurrencies10



CBS t; s; xð Þ≔ sN d1 t; s; xð Þð Þ � Ke
�
Ð t

0
r uð Þdu

N d2 t; s; xð Þð Þ, (15)

where

d1 t; s; xð Þ ¼ log s
K

� �
þ
Ð t
0 r uð Þduþ σ

2
S

2 x

σS

ffiffiffi
x

p (16)

and d2 t; s; xð Þ ¼ d1 t; s; xð Þ � σS

ffiffiffi
x

p
, or more explicitly

d2 t; s; xð Þ ¼ log s
K

� �
þ
Ð t
0 r uð Þdu� σ

2
S

2 x

σS

ffiffiffi
x

p : (17)

Here, N stands for the standard Gaussian cumulative distribution function, that is,

N yð Þ ¼ 1ffiffiffiffiffiffi
2π

p
ðy

�∞
e�

z2

2 dz, ∀ y∈R: (18)

The following result provides the risk-neutral price of the option under the minimal martin-

gale measure bP. The proof is straightforward and may be derived by using similar arguments

to those developed in [19].

Proposition 3.3. The risk-neutral price Ct at time t of a European call option written on the Bitcoin

with price S expiring in T and with strike price K is given by the formula

Ct ¼ EbP CBS t; St;Xt,Tð ÞjSt
	 


¼ St

ðþ∞

0

N d1 t; St; xð Þð Þf Xt,T
xð Þdx� Ke

�
Ð T

t
r uð Þdu

ðþ∞

0

N d2 t; St; xð Þð Þf Xt,T
xð Þdx,

(19)

where the function CBS is defined in Eq. (15); the functions d1 �ð Þ, d2 �ð Þ are, respectively, given in Eqs.

(16)-(17); and f Xt,T
�ð Þ denotes the density function of Xt,T , for each t∈ 0;T½ Þ, provided that it exists.

Hence, the resulting risk-neutral pricing formula when evaluated in St corresponds to the

expected value of Black & Scholes price as defined in [20] at time t∈ 0;T½ Þ of a European call

option written on S, with strike price K and maturity T, in a financial market where the

volatility is random and given by σS

ffiffiffiffiffiffiffi
Xt,T
T�t

q
.

4.1. A numerical application

In order to appreciate the performance of the pricing formula in Eq. (19), we compute model

prices for option traded on the online platform http://www.deribit.com on July, 30, 2017, by

plugging in the estimated parameters. The outcomes are compared with the Black & Scholes

benchmark (see [20]) as a reference price, computed by plugging the volatility parameter

estimated on the same time series of the trading volume/SVI index, and with the bid-ask prices

provided in the website. Best overall pricing values are obtained when market attention is

Modeling Bitcoin Price and Bubbles
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measured by volume; in the case of the SVI Google index, near-term options are very close to

the mid-value of the bid-ask, while next-term options are overpriced. One possible explanation

is that investors that get information about Bitcoin on search engines are more likely to be

uninformed/retail investors that are self-exciting and may add spurious noise to the Bitcoin

price volatility leading to an increase in call option prices (Table 2).

5. The presence of model stock bubbles

Motivated by empirical evidences (see for example [21, 22]), we discuss a generalization of the

model introduced in Section 3.1, which is capable to describe speculative bubbles in Bitcoin

markets.

Precisely, we fix a finite time horizon T > 0 and assume that the underlying Brownian motions

W and Z are correlated with constant correlation coefficient r∈ �1; 1ð Þ, that is, < W,Z>t ¼ rt

for each t∈ 0;T½ �. If V ¼ V t; t∈ 0;T½ �f g is an additional F;Pð Þ-Brownian motion that is P-

independent of Z, then we can write

T-K Market bid Market ask Model volume Model Google SVI Benchmark BS

Aug-2200 0.1662 0.2318 0.2029 0.2282 0.1967

Aug-2300 0.1670 0.2072 0.1737 0.2032 0.1655

Aug-2400 0.1390 0.1845 0.1469 0.1802 0.1369

Aug-2500 0.1142 0.1638 0.1228 0.1591 0.1112

Aug-2600 0.0922 0.1376 0.1014 0.1399 0.0887

Aug-2700 0.0749 0.1202 0.0828 0.1226 0.0695

Aug-2800 0.0572 0.1047 0.0684 0.107 0.0535

Aug-2900 0.0442 0.0983 0.0549 0.0931 0.0405

Sept-2200 0.1991 0.2648 0.2546 0.3204 0.2173

Sept-2300 0.1766 0.2432 0.2321 0.3019 0.1906

Sept-2400 0.1890 0.2230 0.2113 0.2844 0.1662

Sept-2500 0.1375 0.2042 0.1919 0.2679 0.1439

Sept-2600 0.1207 0.1828 0.1741 0.2523 0.1239

Sept-2700 0.1120 0.1668 0.1576 0.2377 0.1060

Sept-2800 0.0953 0.1504 0.1463 0.2239 0.0903

Sept-2900 0.0848 0.1422 0.1325 0.2109 0.0764

Table 2. Comparison between model prices computed according to formula in Eq. (19), Black & Scholes formula in [20],

and the bid and ask prices provided in http:\\www.deribit.comfor options traded on July, 30, 2017, and expiring on

August 25, 2017, and on September 28, 2017.

Blockchain and Cryptocurrencies12



W t ¼ rZt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
p

V t, t∈ 0;T½ �: (20)

Without loss of generality, we assume that the interest rate is fixed and equal to zero. In this

setting, the discounted Bitcoin price trend and the market attention factor dynamics are

described by

dSt ¼ μSAtStdtþ σS
ffiffiffiffiffi

At

p
St rdZt þ rdV tð Þ, S0 ¼ s0 ∈R

þ,

dAt ¼ μAAtdtþ σAAtdZt, A0 ¼ a0 ∈R
þ,

(

(21)

where we have set r≔
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
p

. The aim is to investigate the existence of asset-price bubbles in

the underlying Bitcoin market model.

By simulating trajectories for the asset price S according to the model in Eq. (1) for several

values of the correlation parameter, it seems that the latter is related to the presence of bubble

effect; in fact, in Figure 2, we plot examples of trajectories for r ¼ 0, � 0:5, 0:5, 1, respectively

where higher positive values for the correlation appear to boost the asset value.

Indeed, we will show formally that the possibility of Bitcoin speculative bubbles is related to

the sign of the correlation parameter r.

The mathematical theory of financial bubbles is developed, among others, in [23–25]. Precisely,

we introduce the following definition from [23].

Definition 4.1. The Bitcoin price process S has a bubble on the time interval 0;T½ � if S is a strict F-local

martingale under the chosen risk-neutral measure.

The term strict F-local martingale refers to the fact that S is an F-local martingale, but not a true

F-martingale under the chosen risk-neutral measure. Further, since S is nonnegative, we must

have that S is an F-supermartingale (we refer to [26] for rigorous definitions and related

concepts).

Figure 2. Simulated trajectories with n = 250 daily observations for the attention process (red) and the corresponding

Bitcoin price dynamics for r ¼ 0 (black), r ¼ 0:5(green), and r ¼ 1 (blue).
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Recall that the absence of arbitrage opportunities is “essentially” equivalent to the existence of

a probability measure Q, equivalent to the initial probability P, under which the discounted

price process satisfies the martingale property.

Remark 4.2. Note that stock bubbles arise if S has an equivalent local martingale measure but not an

equivalent martingale measure. Arbitrage appears only if no equivalent local martingale measure exists.

Then, to exclude arbitrage opportunities from the market, we define the process L ¼ Lt; t∈f
0;T½ �g by setting

Lt ≔
dQ

dP

�

�

�

�

F t

¼ exp �
ðt

0

λudVu �
1

2

ðt

0

λ2
udu�

ðt

0

γudZu �
1

2

ðt

0

γ
2
udu

� �

, t∈ 0;T½ �, (22)

where λ ¼ λt; t∈ 0;T½ �f g and γ ¼ γt; t∈ 0;T½ �f g are F-adapted processes satisfying the inte-

grability conditions
Ð T
0 λ2

udu < ∞ P-a.s. and
Ð T
0 γ

2
udu < ∞ P-a.s., respectively. The (local) martin-

gale property of the discounted Bitcoin price process S under Q implies the following condition:

μSAt ¼ σS
ffiffiffiffi

A
p

t λtr þ γtrð Þ, t∈ 0;T½ �, P� a:s:: (23)

To ensure that L provides the density process of a probability measure equivalent to P, we

require that E LT½ � ¼ 1, meaning that L is an F;Pð Þ-martingale. The processes λ and γ are

interpreted, respectively, as the risk premium and the risk perception associated to the future

direction or future possible movements of the Bitcoin market. For each choice of the process γ,

the process λ is fixed by Eq. (23), that is,

λt ¼
1

r

μS

ffiffiffiffi

A
p

t

σS
� rγt

 !

, t∈ 0;T½ �, (24)

and we can consider the corresponding family of equivalent (local) martingale measuresQγ for

S parameterized by the process γ. To check if there are stock bubbles in the underlying market

model, we study under which conditions the discounted Bitcoin price is a strict F;Pð Þ-local
martingale with respect to an equivalent local martingale measure Qγ

: By applying Girsanov’s

theorem, the dynamics of the model under Qγ is described by the following equations:

dSt ¼ σS
ffiffiffiffiffi

At

p
St rd~Zt þ rd~V t

� �

, S0 ¼ s0 ∈R
þ,

dAt ¼ μA � σAγt

� �

Atdtþ σAAtd~Zt, A0 ¼ a0 ∈R
þ,

(

(25)

where the R2-valued process ~V ; ~ZÞ ¼ ~V t;
~Zt

� �

; t∈ 0;T½ �
� 
�

defined by ~V t ≔V t þ
Ð t
0 λudu,.

~Zt ≔Zt þ
Ð t
0 γudu, is an F;Qγð Þ-standard Brownian motion.

Now, suppose that the risk perception process is zero, that is, γ � 0. Then, the change of measure

from P to Q0 is well-defined since the associated density process M ¼ Mt; t∈ 0;T½ �f g satisfying
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dMt ¼ �
μS

rσS

ffiffiffiffiffi
At

p
MtdV t, M0 ¼ 1,

dAt ¼ μAAtdtþ σAAtdZt, A0 ¼ a0:

8
<

: (26)

is a true F;Pð Þ-martingale thanks to [27]. We have the following result, which allows to detect

the presence of bubbles in this setting.

Proposition 4.3. In the model outlined in Eq. (24), the Bitcoin price process S has a bubble on 0;T½ � if

and only if r > 0.

The proof is based on the application of some of Sin’s results given in [27], where the existence

of risk-neutral measures for the Hull-White stochastic volatility model [19] and for similar

frameworks is determined by the possibility of explosion in finite time for solutions of certain

auxiliary stochastic differential equations. Precisely, it is possible to show that the martingale

property of the discounted stock price S under Q0, given in Eq. (25) with γ ¼ 0, is fulfilled if

and only if r ≤ 0: Hence, a bubble arises if and only if the correlation parameter between stock

returns and market attention is positive.

6. Toward a multiexchange generalization

Let us generalize the model introduced in Eq. (1) by assuming a possible delay τ for the

attention factor to affect the Bitcoin price dynamics. Assume that the attention factor has been

observed or is described by a deterministic function for t∈ �l; 0½ � with l ≥ τ. We get

dSt
St

¼ μSAt�τdtþ σS

ffiffiffiffiffiffiffiffiffiffi
At�τ

p
dW t, S0 ¼ s0 ∈R

þ,

dAt ¼ μPAtdtþ σAAtdZt, At ¼ φ tð Þ for t∈ �l; 0½ �,

8
<

: (27)

where φ : �l; 0½ � ! R
þ.

Analogous results as those in Section 2 can be derived by similar computations, and model

parameters, for a fixed delay, can be estimated by means of the maximum likelihood method.

In order to estimate the delay parameter, we maximize the profile likelihood as defined in

[15]. Details of this procedure can be found in [10]. The estimation results of model in Eq. (27)

on the same daily data considered in Section 2 are summed up in Table 3.

In Figure 3, we plot simulated trajectories of the price process in Eq. (27) by letting the delay

parameter vary.

τ bμ
A

bσA bμ
S

bσS

A = Vol 1 day 0.4881 1.0459 0.0282 0.0924

A = SVI 7 days 1.0964 0.9946 0.1005 0.1885

Table 3. Parameter estimates for model in Eq. (27) fitted on daily observations from January 2015 to June 2017.
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The different delays result in a shift to the south-east between the faster and slower

reacting trajectories; in the picture, this behavior is sharp since the other model parameters

are kept constant. By looking at the picture, the idea to model the price of Bitcoin in

different exchanges by the same model in Eq. (27) but allowing different parameters natu-

rally arises.

In particular, considering for instance two exchanges, we have

dS
1
t

S1t
¼ μ

1
S
At�τ1dtþ σ

1
S

ffiffiffiffiffiffiffiffiffiffiffi

At�τ1

p

dW t, S10 ¼ s10 ∈R
þ,

dS
2
t

S2t
¼ μ

2
S
At�τ2dtþ σ

2
S

ffiffiffiffiffiffiffiffiffiffiffi

At�τ2

p

dW t, S20 ¼ s20 ∈R
þ,

dAt ¼ μ
A
Atdtþ σAAtdZt, At ¼ φ tð Þ for t∈ �l; 0½ �,

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(28)

where φ : �l; 0½ � ! R
þ with l > max τ1; τ2f g and μi

A
,μi

S
, σi

A
> 0, σi

S
> 0 for i = 1, 2 are constant

parameters.

Note that within this model, prices for Bitcoin traded in different exchanges are perfectly

correlated. Indeed, this is what happens in observed data; considering daily prices from

January 2015 to June 2017 for Bitstamp, Kraken, Cex.io, Gdax, and The Rock exchanges we

get cross-correlation values larger than 0.999.

We fit model in Eq. (28) for the Bitstamp and Gdax exchanges on daily observations of Bitcoin

price from January 2015 to June 2017 obtaining the outcomes reported in Table 4, when the

Figure 3. Simulated trajectories of n = 250 daily observations of the attention factor (red) and the Bitcoin price according

to model in Eq. (27) when the delay parameter is τ ¼ 1 day (black) and τ ¼ 10 days (blue).

Exchange τ μ
A

σA μ
S

σS

Bitstamp 1 0.4994 1.0461 0.0281 0.0896

Gdax 2 0.4997 1.0420 0.0326 0.1036

Table 4. Model fitting with delay parameter: outcomes for Bitstamp and Gdax exchanges when attention is measured by

the trading volume.
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attention is measured by the trading volume, and in Table 5, when attention is measured by

the Google SVI index.

It is evident from the outcomes in Table 4 that the model parameters are not significantly

different while the delay might be quite different as if the reaction to the attention factor is

faster for some exchanges and slower for others. On the contrary, when attention is measured

by the Google SVI Index, the delay is unchanged, but the difference between estimated

parameters for the price dynamics is nonnegligible.

By analyzing the outcomes and considering the shift effect as depicted in Figure 3, it is

tempting to conjecture that the faster reaction determines the leader exchanges and that the

slower exchange will then follow. If we could forecast that the next day price of the slower

exchange will reach the price today for the faster one, we could obtain a profit by suitably

investing in the two exchanges. However, it is worth noticing that the estimation of the delay

parameter is obtained by maximizing the likelihood over a whole time series and is a product

of averaging so arbitrage cannot be achieved in a direct way.

Nevertheless, in a multivariate setting as ours, the theory guarantees that arbitrage opportuni-

ties are ruled out if the market price of risk in the market is unique. Without entering technical

details and assuming r ¼ 0 for the sake of simplicity, this is true if and only if

μ1
S

σ1
S

ffiffiffiffiffiffiffiffiffiffiffi

At�τ1

p

¼

μ2
S

σ2
S

ffiffiffiffiffiffiffiffiffiffiffi

At�τ2

p

, t ≥ 0: (29)

It is evident that these values are not equal if we plug parameter estimates in Eq. (30); hence,

arbitrage opportunities are not ruled out at least from a theoretical point of view. We will

address this issue more precisely in future research.

7. Conclusion

In this chapter, we have introduced a model in continuous time in order to describe the dynam-

ics of Bitcoin price depending on an exogenous stochastic factor, which represents market

attention on the Bitcoin system. Market attention is measured either by the total trading volume

in Bitcoins or by means of the Google Search Volume Index, which, as suggested in [16], is a

direct measure of the revealed attention for uniformed retail investors. More precisely, the

attention factor affects directly the instantaneous mean and volatility of logarithmic returns; in

addition, it may be also correlated with the price changes. An estimation procedure to fit the

Exchange τ μ
A

σA μ
S

σS

Bitstamp 7 days 1.0934 0.9946 0.0992 0.1782

Gdax 7 days 1.0964 0.9946 0.1160 0.2087

Table 5. Model fitting with delay parameter: outcomes for Bitstamp and Gdax exchanges when attention is measured by

the SVI index.
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model to observed data is also suggested and, under the assumption of no correlation, a closed

formula for standard European option prices on Bitcoin is provided.

By applying outcomes within the mathematical theory of bubbles [23–25, 27], we are able to show

that Bitcoin boosts in a bubble if and only if there is a positive correlation between changes in the

price and in the attention factor. This finding is reasonable and claims that a stronger positive

dependence between the two processes in Eq. (21) may result in an explosion of the price process.

Finally, we allow for a delay on the effect of market attention on the Bitcoin price, and, based

on this generalized model, we introduce a multivariate setting for our model (Eq. (28)) in order

to take into account the special feature of multiple exchanges where it is possible to trade in

Bitcoins. Preliminary results indicate that arbitrage opportunities may arise in two exchanges

that are characterized by different delays.
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