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Abstract

As an organ generally discarded after a normal full-term birth, the placenta is one of the 
most studied organs from the cellular standpoint. The placenta contains large numbers of 
immune cells, stem cells, and stromal cells. These cell types spurred the field of regenera-
tive medicine by catalyzing the establishment of cord blood banks and hematopoietic stem 
cell reconstitution in the treatment of many diseases including cancer. Previously, many 
scientific articles and reviews have focused on the production, phenotype, and functional 
characterization of bone marrow-derived mesenchymal stromal cells. In this chapter, the 
focus will be solely on the biology, phenotype, and functional characterization of placenta-
derived stromal cells. Modulation of the immune response, including T cell proliferation, 
dendritic cell maturation, and monocyte differentiation by placenta-derived stromal cells, 
will be discussed. This chapter will span in vitro functional analyses, animal models high-
lighting the in vitro data culminating in a summary of current clinical activity.

Keywords: placenta, stromal cells, immune modulation, inflammation, mesenchymal, 
stem cells, growth factors, cytokines

1. Introduction

The placenta is an organ that has evolved to accomplish one thing, promote fetal growth 
during gestation. This is not a new concept, but the concept has evolved with our understand-

ing of the molecular and cellular components required. The fetal allograft is maintained by 

several mechanisms including, but not limited to physical sequestration, immune modulation 

by hormones, cells, and metabolites. In fact, the function of T cells and dendritic cells changes 
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during gestation [1]. In mid gestation, there were reduced antigen-specific T cell responses, 
upregulation of inhibitory molecules, and reduced myeloid maturation toward dendritic cells 
suggesting an immune tolerance state was achieved. These changes were reversed in the third 
trimester toward immune activation that participated in completing pregnancy. In fact, the 
observation of microchimerism in mothers postpartum indicated that there was a very strong 
tolerance inductive mechanism produced by the placenta and its physiology. Maternal-fetal 

chimerism has been recently reviewed [2]. A highlight from this review discussed pregnancy-
associated progenitor cells that were proposed to be tissue resident stem cells with long-term 
survival that led to microchimerism that was detected for decades in some individuals. 
We propose that these types of tissue resident stem cells can be isolated and cultured from 

full-term postpartum placenta. After culture, we hypothesize that the immune modulatory 
properties that these cells exhibit in the placenta will be translated to in vitro and in vivo 
experiments that form the basis of many clinical development programs.

An example of the cells that can be isolated from the human placenta is the human placenta-

derived adherent cells (PDAC). PDAC are a culture expanded, plastic-adherent undifferenti-
ated MSC-like population derived from normal full-term postpartum placental tissue. PDAC 

exhibit a phenotype of CD34-, CD10+, CD105+, and CD200+. PDAC constitutively express low 
to moderate levels of HLA Class I and undetectable level of HLA Class II, and these cells do 
not express the costimulatory molecules CD80 and CD86. PDAC were isolated by mechanical 
and enzymatic digestion of human placental tissue obtained from a normal, full-term birth 

as described [3]. PDAC are currently in clinical development as two separate formulations, 
PDA-001 (infusion product) and PDA-002 (locally injected product). This chapter will focus 
on developing the connection between placental immune biology (observed microchimerism) 
and the phenotypic and functional properties of the cells isolated from placenta tissues. These 

cells regardless of placental tissue source (amnion, cord, and cord blood) can mediate at least 

some of the immune tolerance properties of the placenta.

2. Molecular and cellular mechanisms of action

2.1. T cell proliferation and differentiation

Placenta-derived mesenchymal stromal-like cells (pMSC), including PDAC, have been iso-

lated from various anatomical sites of the placenta, including the umbilical cord, chorion, 

decidua, amniotic membrane, and amniotic fluid. Like their bone marrow counterparts, these 
cells possess potent immune suppressive properties and exert their effects on T lymphocytes 
through a multitude of mechanisms that include both cell contact mediated interactions 

and through the modulation of secreted soluble factors. pMSC have been shown to inhibit 
both the proliferation and cytokine production of T lymphocytes, as well as, modulate T cell 
 differentiation [3–5].

Many investigators have demonstrated the immune suppressive effects of pMSC in vitro via 
co-cultures of pMSC with CFSE-labeled, mitogen stimulated, or allogeneic T cells, known as 
mixed lymphocyte reactions (MLR), or with CFSE-labeled T cells stimulated by anti-CD3/ 
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anti-CD28 monoclonal antibodies/beads, known as bead T cell reactions (BTR). In all cases, 
in reactions where CFSE-labeled cells were co-cultured with pMSC, significant reductions 
in both CD4+ and CD8+ T cell proliferation were observed. Reduced levels of proliferation 
were accompanied by decreased levels of Th1 cytokines (IL-2, IL-12, TNF-α, and IFN-γ) and 
increased levels of Th2 cytokines (IL-4 and IL-10) [3, 4, 6, 7]. Furthermore, when pMSC were 
co-cultured with naïve T cells under Th1 or Th17 inducing conditions, inhibition of Th1 and 
Th17 differentiation was observed [3].

Several factors secreted from pMSC have been implicated in the immune suppressive activi-

ties observed and will be summarized below. Indolamine 2, 3 dioxygenase (IDO) has been 
identified as a key mediator of pMSC anti-proliferative effects in MLRs/BTRs. IDO is a heme-
containing enzyme that catabolizes the essential amino acid tryptophan into L-kynurenine. 

IDO-induced tryptophan degradation results in T cell cycle arrest in the G1 phase and serves 
as an instrumental mechanism for maintaining immune cell homeostasis and peripheral toler-

ance [8]. IDO gene expression and activity were induced in co-cultures of pMSC with MLRs/
BTRs [6, 7, 9] and replenishment of tryptophan or treatment with IDO blocking compounds 
were shown to impair the antiproliferative abilities of pMSC [9, 10]. In addition, IDO was 
induced and subsequent suppression of T cell proliferation was intensified following stimula-

tion of pMSC with IFN-γ [9, 11].

In addition to IDO, increased production of prostaglandin E2 (PGE2) and transforming growth 
factor-β (TGF-β) by pMSC, and increased secretion of IL-10 by T lymphocytes have also been 
implicated as key soluble factors underlying pMSC’s immunosuppressive mechanism. PGE2, 
a bioactive lipid that is synthesized from arachidonic acid by the COX-1 and COX-2 enzymes, 
inhibits T cell proliferation and regulates the maturation and antigen presentation function 

of dendritic cells [3, 12]. TGF-β is a potent immunoregulatory protein that controls the dif-
ferentiation, proliferation, and activation of various immune cells [13]. IL-10 is a well-known 
anti-inflammatory cytokine that controls the growth and activation of regulatory and/or anti-
inflammatory cells [7]. All three secreted factors have been shown to be significantly increased 
in pMSC co-cultured with MLRs/BTRs [6, 7, 14]. The addition of blocking or neutralizing 

agents against PGE2, TGF-β, or IL-10 partially reversed and impaired the inhibitory effects of 
pMSC on T cell proliferation [5, 10]. Stimulation of pMSC with IFN-γ significantly upregu-

lated the release of the tolerogenic cytokines TGF-β and IL-10 [5, 11].

Moreover, the increased levels of PGE2, TGF-β, and IL-10 can also affect T cell differentiation 
and lead to selective induction of Tregs [15, 16]. Tregs are CD4 + CD25 + FoxP3+ T cells that 
specialize in inhibiting T cell responses, allergic reactions, autoimmune disease, and graft 

rejection, while maintaining immune homeostasis [4]. Numerous studies have described an 
increase in the frequency of Tregs from co-cultures of pMSC with MLRs/BTRs [5, 6, 10, 14].

The immune modulatory effects of pMSC on T cell proliferation and differentiation have 
also been shown in several animal models. We reported that PDAC suppressed T cell pro-

liferation in an OT-II T cell adoptive transfer model [3]. OT-II transgenic mice, expressing 
the T cell receptor specific for ovalbumin, were used to evaluate the effects of PDAC on 
antigen-specific CD4+ T cell proliferation. PDAC at three different doses or vehicle were 
administered along with the adoptive transfer of CD4+ T cells isolated from OT-II mice into 
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wild-type recipient mice following ovalbumin peptide immunization. PDAC treatment 
showed a dose-dependent decrease in the ovalbumin-specific CD4+ T cell proliferation in 
the spleen as compared with vehicle-treated mice. In addition, PDAC treatment resulted in 
an increase in the percentage of IL-10-producing splenic CD4+ T cells in a dose-dependent 
manner. In a rat sciatic nerve neuritis model, we showed that PDAC enhanced IL-10, but 
suppressed IFN-γ and IL-17 gene expression in draining lymph node, indicating that PDAC 
suppresses Th1 and Th17 cell differentiation [17]. We postulated that immune modulation 

of T cells in the draining lymph node is the mechanism underlying PDAC mediated neuro-

pathic pain relief. To test this hypothesis, we performed two draining lymph node adoptive 
transfer studies in rat sciatic nerve neuritis model. Neuritis was induced by surgery and 
application of 1% carrageenan around sciatic nerve [17]. As shown in Figure 1, donor rats 

were treated with PDAC or vehicle 3 days after neuritis induction. One day after treat-
ment, donor rats were sacrificed, and the draining lymph node was isolated into a single 
cell suspension and subsequently administered intravenously into the recipient rats with 
sciatic nerve neuritis.

Mechanical hyperalgesia measurement in the recipient rats showed that the draining lymph 
node cells from PDAC-treated animals reduced neuropathic pain in a dose-dependent man-

ner compared with the draining lymph node cells from vehicle-treated animals (Figure 2).

To further identify the role of PDAC-mediated T cell modulation in the reduction of neu-

ropathic pain, draining lymph node cells were separated into T cells and non-T cells using 
magnetic Pan-T microbeads, and adoptively transferred the cells to recipient rats with sciatic 
nerve neuritis. As shown in Figure 3, the whole population of draining lymph node cells 
as well as, the T cell fraction reduced neuropathic pain at days 4, 6 and 8. Interestingly, the 
non-T cell fraction also reduced neuropathic pain, with a slight time-delayed effect. These 
results from adoptive transfer studies demonstrated that immune modulation of the draining 

lymph node cells is the underlying mechanism of PDAC-mediated neuropathic pain reduc-

tion. Additional studies will be needed to sort out the differing contributions of the lymph 
node cells and how PDAC mediate these effects.

Figure 1. Schematic chart of draining lymph node cell adoptive transfer study.
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2.2. Macrophage maturation and differentiation

The migration of the monocytes to the wound site and the following maturation of monocytes 
to macrophages play key roles in the process of wound healing. Mesenchymal stem cells have 
been known to benefit the wound healing process since they have immune regulatory proper-

ties including an anti-inflammatory activity [18]. Mesenchymal stem cells derived from dif-

ferent placental tissues have been reported to modulate the maturation and differentiation 
of macrophages in both in vitro and in vivo studies. pMSC were shown to reduce the endo-

toxin induced activation of a mouse macrophage RAW264.7 cell line [19]. Human amnion 

mesenchymal cells, when co-cultured with human THP-1 macrophage cells, were shown to 

Figure 2. The effect of draining lymph node from PDAC-treated rats on mechanical hyperalgesia measured by 26 g force 
of von Frey fiber.

Figure 3. The effects of T cell, non-T cell subsets, and whole population of draining lymph node cells from PDAC-treated 
rats on mechanical hyperalgesia measured by 26 g force of von Frey fiber.

Placenta-Derived Mesenchymal Stromal Cells: Modulation of Immunity and Inflammation
http://dx.doi.org/10.5772/intechopen.79728

17



inhibit the mRNA expression and secretion of TNF-α and IL-1β by THP-1 cells in vitro [20]. In 
addition, human placental mesenchymal stem cells shifted macrophage differentiation from 
inflammatory M1 to anti-inflammatory M2 macrophages presumably mediated by soluble 
molecules acting partially via glucocorticoid and progesterone receptors [21]. In a murine 
hind limb ischemia (HLI) model, a standard preclinical model of peripheral arterial disease 
(PAD), local administration of placenta tissue-derived mesenchymal stem cells to ischemic 

hind limb significantly reduced the infiltration of neutrophils and macrophages in the injured 
tissue compared to the sham-treated group [22].

In a separate report of studying PDAC in an HLI model, we showed that intramuscular admin-

istration of PDAC improved angiogenesis in the injured limb. Histological analysis revealed 

that PDAC-treated mice had an increased level of CD68+ arginase1+ M2-like macrophages 

in ischemic tissue. Moreover, we demonstrated that the effect of PDAC on macrophage dif-
ferentiation was T cell dependent. The M2-like macrophage skewing was only observed in 
wild type and T cell reconstituted nude mice, but not in nude mice [23]. This observation 

is consistent with other reports that placental mesenchymal stem cells from amniotic mem-

branes shifted macrophage differentiation from an inflammatory M1 to an anti-inflammatory 
M2 macrophage population [21, 24].

2.3. Dendritic cell maturation and differentiation

As discussed earlier, the human placenta plays a key role in maintaining immune tolerance 

between mother and fetus during normal pregnancy and is associated with the presence of 
Treg cells. It is also apparent that dendritic cells (DC) play a critical role in adaptive immunity 
and tolerance. While the multiple mechanisms of immune tolerance are not fully understood, 

it was first reported that amniotic mesenchymal tissue cells from human placenta (AMTC) can 
inhibit dendritic cell differentiation and maturation of monocytes from both peripheral blood 
and amniotic tissue [25]. When monocytes were cultured under the differentiation inducing 
condition, the presence of AMTC inhibited the expression of CD1a and reduced the expres-

sion of HLA-DR, CD80, and CD83. This finding suggested that placenta tissue mesenchymal 
stem cells could contribute to immune tolerance during pregnancy.

Another source of placenta-derived mesenchymal stem cells was reported to induce myeloid 
DC to a tolerogenic phenotype as demonstrated by its reduced migration in response to CCR7 

and impaired ability to stimulate IFN-γ secretion from NK cells [26]. Placenta-derived mes-

enchymal stem cells were also shown to increase the secretion of IL-10 and reduce the secre-

tion of IFN-γ from DC cells [27]. Placenta chorionic villous-derived mesenchymal stem cells 

were shown to inhibit the maturation of human dendritic cells induced by LPS in co-culture 
experiments. The DC cells co-cultured with placenta MSC not only expressed lower levels of 
costimulatory surface molecules, including CD40, CD80, CD83, and CD86 but, also reduced 

expressed a reduced ability to activate T cells [28].

Placental trophoblasts express a lower level of CD200 in preeclampsia and that is associated 
with an increase in production of Th1 cytokines, TNF-α, IL-6, IL-8, and IL-10 [29]. This result 

suggested that in normal placenta with higher CD200 levels on trophoblasts immune tolerance 
is favored [29]. Since PDAC express CD200, one can postulate that PDAC can also establish 
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immune tolerance. In the rat neuropathic pain model, when PDAC was administrated via tail vein, 
it was found that PDAC alleviates mechanical hyperalgesia [17]. This anti-neuroinflammatory  
activity appeared to be mediated by the suppression of dendritic cell recruitment, maturation 

and differentiation. Rat DC cells isolated from draining lymph nodes of the PDAC-treated ani-
mals showed reduced gene expression of CD11c, CD86, and CD80, markers of DC maturation. 
The relative expression of IL-12, a key pro-inflammatory cytokine secreted by differentiated 
DCs, was also significantly reduced in PDAC treated rats. Furthermore, the inhibition of DC 
infiltration and activation was observed at the ipsilateral sciatic nerve. In an in vitro co-culture 
experiment, PDAC inhibited differentiation of mouse DC [3], providing direct evidence of 

PDAC-mediated modulation of DC maturation and differentiation in vitro. In this work, mouse 
bone marrow cells were induced with GM-CSF and LPS to induce DC maturation with or with-

out PDAC. The bone marrow DC exhibited a phenotype of CD86high and MHC I-A/I-E high, 
which was reduced in a PDAC cell dose-dependent manner. In addition, the expression of the 
tolerogenic DC marker, PD-L1, was enhanced. PDAC was further shown to affect the differen-

tiation of human immature peripheral blood DC cells in vitro. When exposed to GM-CSF and 
IL-4, immature DC (CD1a+) differentiated to mature DC (CD86 high). The inhibition of DC dif-
ferentiation and maturation by PDAC does not require cell–cell interaction since the co-culture 

was performed using a trans-well system separating mouse and human DC from PDAC. The 
conditioned medium from PDAC can also modulate DC differentiation and maturation. The 
DC modulation activity was in part mediated by PGE2 secreted by PDAC [3].

2.4. Clinical trial activity

In a recent review of advanced cell therapy clinical trials highlighting perinatal cells, the 
authors compiled data on the number of clinical trials conducted in different countries, with 
different cell types and in many different indications [30]. Since 2008, there was a more rapid 
advancement in the number of trials registered with most of the trials using cord blood or 
cord tissue. The use of perinatal mesenchymal stem cells has also increased to about 70% of 

Figure 4. A narrow search on ClinicalTrials.gov with the search terms placenta derived cells.
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the annual trials registered and many of the trials were in the early phase of development 
(phase I or II). The cells from the amniotic membrane and placental tissue seem to be in a 
growth period for clinical trials. It will be important to track the progress of these trials and 
see which cells work in which indications.

Figure 6. A search on ClinicalTrials.gov with the search terms mesenchymal stem cells illustrating the much greater 
numbers of clinical studies.

Figure 5. A narrow search on ClinicalTrials.gov with the search terms placenta derived cells illustrating the diverse 
diseases investigated.
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In Figure 4 below, the search terms on ClinicalTrials.gov included placenta-derived cells and 

were intentionally kept very narrow. The paucity of trials would suggest that the placenta 
is not an organ used to derive cells for clinical trials, however, this excluded cord tissue and 
cord blood as keywords in the search. As discussed above, these were the most cited trials 
over the last decade. The stage of development was consistent with the previous review in 
that the majority of studies were early phase clinical trials. The data depicted in Figure 5 

also corroborated the cited study above since there are many different diseases targeted in 
these trials and indicated that the search continues for the most appropriate clinical use for 

these cells. In Figure 6, the search encompassed the terms mesenchymal stem cell with no 
preference toward the source of cells and would include bone marrow-derived cells. As was 
evident, there were far more studies registered and the stage of development was slightly 
shifted to later stages, but still awaiting pivotal study readouts. As outlined in the sections 
of this review, the in vitro and in vivo data describe a broad array of immune modulation 
functions that suggest several pathways of clinical development and this is reflected in the 
number of indications pursued with these cells regardless of the biological source for the cells.

3. Conclusions

In this chapter, the observation of fetal-maternal microchimerism that can last for decades 
indicated that the placenta exhibited highly specific and strong immune tolerance to the host. 
In an attempt to explain the immune tolerance mechanisms, we highlighted several cell types 
from Tregs to dendritic cells and their interactions with placental derived cells using in vitro 
and in vivo models. There were several molecular mechanisms (examples, IDO, PGE2, T cell 
proliferation, and DC maturation) invoked to explain some of the interactions with T cells and 
dendritic cells, which included the effects of cytokine secretion on the activation and differen-

tiation status of immune cells. The in vitro and in vivo data describe a broad array of immune 

modulation functions suggesting that cells of placental origin have immune modulatory and 

immune tolerance inducing properties that are independent of tissue source.

These immune modulatory properties highlight some of the possible ways in which the 
physiology of the placental graft is maintained during pregnancy and well after for micro-

chimerism. To put these interesting results into some physiological context, a recent example 

of the immune system driving preterm labor described a pro-inflammatory environment at 
the fetal-maternal interface as a prerequisite for preterm labor [31]. In this study, the authors 
demonstrated that fetal T cells produced INF-γ and TNF-α which preceded myometrial cell 
contraction required for parturition. In addition, the authors demonstrated that fetal T cells 
(both CD4 and CD8) specifically proliferated in response to maternal antigen. It is interesting 
to speculate that the placental MSC present at the fetal-maternal interface could participate in 

suppressing the pro-inflammatory signals and the T cell proliferation that drive preterm labor.

This is a very active field of clinical and pre-clinical investigation and has generated huge 
excitement in the field of advanced cell therapy. The near future will bring us clinical results 
that allow the advancement of cell therapy to FDA approval and ultimately for the benefit of 
the patients that eagerly await these therapies.
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AMTC amniotic mesenchymal tissue cells

BTR bead T cell reactions

DC dendritic cells

HLI hind limb ischemia

IDO indolamine 2, 3 dioxygenase

MLR mixed lymphocyte reactions

PAD peripheral arterial disease

PDAC placenta-derived adherent cells

pMSC placenta-derived mesenchymal stromal-like cells

PGE2 prostaglandin E2

TGF-β transforming growth factor-β
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