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Abstract

Activation of cannabinoid receptors using systemic treatments produces analgesia in 
a variety of experimental pain models, but these effects are hindered by sedation and 
motor impairment mediated by receptors in the central nervous system. Targeting the 
endocannabinoid system in the periphery can bypass these unwanted side effects while 
still producing analgesia in both acute and chronic pain states. This chapter discusses the 
different approaches to increasing peripheral endocannabinoid activity in experimental 
models of acute and chronic pain, including inflammatory pain, neuropathic pain, and 
sickle cell disease. We also explore how these treatments alter nociceptive activity in the 
peripheral nervous system.

Keywords: pain, hyperalgesia, nociceptors, primary afferent nerve fibers, cannabinoids

1. Introduction

Although the cannabis plant (Cannabis sativa) has been used as a folk remedy to treat various 

ailments for thousands of years, it is only within the last century that its active components 

have been isolated and identified. While some of its effects are well documented, its impact 
on pain had been less clear due to confounding effects on mood, motor impairment, and 
sedation. Isolation of the psychoactive components of the cannabis plant and the develop-

ment of synthetic cannabinoid compounds enabled more rigorous testing. Identification of a 
cannabinoid receptor (CB1) in 1988 gave insight into the mechanisms of the cannabis effect, 
as did the discovery of endogenous ligands, referred to as endocannabinoids [1–4]. Studies 
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in rats showed that when applied intravenously or directly to the spinal cord, cannabinoid 

agonists attenuated responses to noxious mechanical and thermal stimulation in nocicep-

tive spinal neurons [5–7]. These early studies provided the first evidence of a direct effect of 
cannabinoids in pain inhibition and led to further investigations to identify the mechanisms 

underlying cannabinoid effects on neuronal activity.

The endogenous cannabinoid system consists of two well-characterized receptor subtypes, 

CB1 and CB2, and their endogenous ligands, from which anandamide (AEA) and 2-arachi-

donoyl glycerol (2-AG) are the most studied [8–10]. Cannabinoid receptors are G-protein 

coupled, mainly to G
i/o

, which inhibits adenylyl cyclase [3, 11], and voltage-dependent Ca2+ 

channels [12]. CB1 receptors are expressed primarily in the nervous system, but are also pres-

ent in non-neuronal tissues. CB2 receptors are mainly located peripherally, and are associated 

with modulation of immune cells [4, 13, 14]. Since CB receptors are widely distributed, their 

activation produces a wide variety of behavioral and physiological responses.

1.1. Role of the endocannabinoid system in anti-nociception and neuroprotection

Activation of cannabinoid receptors has been shown to produce anti-nociception in experi-

mental models of inflammatory pain, including formalin [15, 16], carrageenan [17–19], CFA, 

complete Freund’s adjuvant [20], and capsaicin [19, 21–24]. In addition, the administration 

of cannabinoid antagonists has been shown to enhance pain behavior in formalin and car-

rageenan models [15, 18], suggesting that tonic activation of cannabinoid receptors contributes 

to anti-nociception in response to inflammation. Systemic administration of cannabinoid ago-

nists has also been shown to attenuate neuropathic pain following peripheral nerve injury (CCI 
model [25], partial sciatic nerve ligation [26], spinal nerve injury [27], L5/L6 ligation [28, 29]), 

diabetic neuropathy (type 1 [30–32] and type 2 [32]), and chemotherapy induced peripheral 

neuropathy [33–36]. In humans, cannabinoid agonists attenuated post-operative pain [37] and 

also enhanced the analgesic efficacy of opioids [38]. Two small clinical evaluations of the effi-

cacy of (−)Δ9-tetrohydrocannabinol (THC), the main psychoactive compound of the cannabis 
plant, reported pain relief comparable to codeine [39, 40]. Unfortunately, higher doses tended 

to produce significant side effects including sedation, dizziness, ataxia and blurred vision.

In addition to anti-nociception, the endocannabinoid system has a neuroprotective function. 

In a model of cerebral ischemia, cannabinoid agonists, cannabidiol and THC attenuated toxic-

ity related to the activity of excitatory neurotransmitters in the rat cerebral cortex independent 
from CB1 and CB2 receptors [41]. Cannabidiol is known to have low affinity for cannabinoid 
receptors, and has also been shown to act as a negative allosteric modulator at the CB1 recep-

tor and a reverse agonist at the CB2 receptor [42, 43]. Another study reported the involvement 

of CB1 receptors in the reduction of neuronal loss [44]. Further, an in vitro study of hypoxic 

ischemia demonstrated a possible role for CB2 receptors [45]. The endogenous cannabinoid 

ligand, 2-AG, was shown to be neuroprotective in a model of traumatic brain injury, result-

ing in reduced edema and neuronal loss in the hippocampus [46]. Endocannabinoids have 

also been shown to protect against neurodegenerative diseases, including Alzheimer’s dis-

ease, where the inhibition of microglial activation may prevent pathological changes associ-

ated with beta amyloid [47]. There is also evidence that cannabinoids possess antioxidant 
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properties through the activity of cannabinoid receptors located on microglia, astrocytes, 

and other immune cells, where activation inhibits the release of pro-inflammatory substances  
[48–54]. Increased expression of CB2 on microglia and astrocytes has been observed in the 

area of lesion [54]. The administration of a CB2 agonist slowed the progression of amyotrophic 

lateral sclerosis in mice, and the activation of the endocannabinoid system protected against 

myelin degeneration in multiple sclerosis through a combination of immunosuppression and 

neuroprotection [55–57]. In studies of peripheral neuropathy produced by chemotherapy, 

WIN 55,212-2 prevented the development of neuropathy induced by cisplatin treatment [33], 

and when WIN 55,212-2 treatment was initiated after sciatic nerve ligation (CCI model of 

neuropathic pain), mechanical hyperalgesia failed to develop by 14 days post-injury [58].

2. Targeting the peripheral endocannabinoid system in chronic pain

A major limitation to the systemic use of cannabinoid agonists as treatment for chronic pain is 

that activation of cannabinoid receptors in the central nervous system is associated with unde-

sirable side effects, including sedation and catalepsy [59]. Targeting endocannabinoid activity 

in the peripheral nervous system bypasses these unwanted side effects while still producing 
analgesia in animal models of inflammatory pain, bone cancer pain, neuropathic pain and 
sickle cell disease. Continued research into the specific mechanisms of analgesia produced 
by activation of the endocannabinoid system in the periphery could identify new targets for 

pain which could serve as stand-alone therapies or be integrated into a multifaceted treatment 

approach. This chapter will review studies that have investigated the analgesic effects of treat-
ments that target the peripheral endocannabinoid system, whether through direct activation 

of cannabinoid receptors or through modulation of endocannabinoid metabolism.

2.1. Synthetic cannabinoids in rodent models of pain: inflammation, bone cancer 
pain, neuropathic pain and sickle cell disease

Local administration of cannabinoid receptor agonists, as opposed to systemic treatment, can 

produce analgesia without centrally-mediated side effects. Intraplantar administration of the 
non-selective cannabinoid receptor agonist WIN 55,212–2 attenuated heat and mechanical 
hyperalgesia in an acute cutaneous heat injury model in rats. This was blocked by a CB1 recep-

tor antagonist, and partially blocked by a CB2 receptor antagonist, suggesting that while both 

receptor subtypes play a role in anti-nociception during acute pain, the effect was primarily 
mediated through activation of CB1 receptors [60]. WIN 55,212–2 also decreased mechanical 

hyperalgesia in the tumor-bearing hind paw in a mouse model of bone cancer pain [61]. The 

anti-hyperalgesic effect was mediated by both CB1 and CB2 receptors. Importantly, intra-

plantar administration did not induce catalepsy, which normally occurs when cannabinoid 

agonists are injected systemically and can confound behavioral measures of nociception [62]. 

Recordings from the tibial nerve of tumor-bearing mice showed that intraplantar WIN 55,212-2 

attenuated sensitization of C-fiber nociceptors as evidenced by a decrease in spontaneous dis-

charge and reduced responses evoked by mechanical stimuli responses evoked by mechanical 

stimulation, effects which were blocked by both CB1 and CB2 antagonists [63] (Figure 1).
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In a model of inflammatory pain, intraplantar administration of the non-selective cannabi-
noid receptor agonist CP 55,940 attenuated CFA-induced hyperalgesia in mice expressing 
human sickle hemoglobin (BERK and hBERK1) as well as controls expressing normal human 

hemoglobin (HbA-BERK) [64].

Figure 1. Effect of non-selective cannabinoid receptor agonist WIN 55,212-2 on responses of C-fiber nociceptors evoked 
by suprathreshold mechanical stimulation. (A) Representative examples of nociceptor responses evoked by 147 mN 

before injection and at 15, 30, 45 and 60 min after intraplantar administration of vehicle or WIN 55,212-2 alone or 

preceded by the CB1 receptor antagonist AM281 or CB2 antagonist AM630. The time of application of the stimulus is 

shown at the bottom of each column. (B) Mean (±SEM) number of evoked impulses before and at 15, 30, 45 and 60 min 
after intraplantar administration of vehicle, WIN 55,212–2, WIN 55,212–2 + AM281, and WIN 55,212–2 + AM630. Evoked 

responses were not changed following injection of vehicle but decreased following WIN 55,212-2. This was blocked by 

pretreatment with AM281 or AM630. * p < .05, ** p ≤ .01, *** p < .001 vs. WIN 55,212–2; ### p < .001 vs. pre-injection value 
(from Uhelski et al. [63]).
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The analgesic effect of intraplantar WIN 55,212-2 showed more variability in models of neu-

ropathic pain. In a sciatic nerve ligation model, only the highest dose tested (250 μg) pro-

duced an anti-hyperalgesic effect, but the injection altered withdrawal latencies to heat and 
mechanical response thresholds in both the treated and non-treated hind paw, suggesting 

that the drug effect was not limited to the periphery [65]. This effect was also seen in rats 
with partial sciatic nerve ligation (Seltzer model of neuropathic pain); however, the effect 
was blocked by the intraplantar administration of a CB1 antagonist but not when that same 

antagonist was administered by the intrathecal route [26], indicating that the ability of WIN 

55,212-2 to produce anti-nociception in the contralateral paw is not necessarily mediated by 

activation of CB1 receptors in the central nervous system. In a rat model of chemotherapy-

induced peripheral neuropathy produced by paclitaxel treatment, intraplantar administration 

of WIN 55,212-2 had no effect on mechanical or heat hyperalgesia, whereas systemic treat-
ment produced anti-nociception [65]. In contrast, intraplantar administration of WIN 55,212-2 

attenuated mechanical allodynia associated with streptozotocin-induced diabetic neuropathy 
[31]. A non-selective cannabinoid receptor agonist naphthalen-1-yl-(4-pentyloxynaphthalen-

1-yl)methanone, a novel compound which does not appear to cross the blood–brain barrier, 

reduced mechanical hyperalgesia in a rats with partial sciatic nerve ligation when adminis-

tered orally [66], indicating that peripherally-restricted activation of cannabinoid receptors 

can produce adequate analgesia with an oral dosing regimen.

Receptor-selective synthetic cannabinoids also produce analgesic effects. In rats given an intra-

plantar injection of CFA, arachidonyl-2′-chloroethylamide (ACEA) and (R)-(+)-methanandamide 
(methAEA), stable mimics of AEA that preferentially bind CB1 receptors, reduced mechani-

cal hyperalgesia and decreased evoked responses in Aδ-fiber nociceptors. The reduction in 
mechanical hyperalgesia was blocked by a CB1 receptor antagonist, but not by a CB2 antagonist. 

Notably, neither drug had any effect on mechanical withdrawal thresholds or paw withdrawal 
frequency in naïve rats, and no changes were seen in evoked responses of Aδ-fiber nociceptors 
isolated from nerves innervating normal, non-inflamed paws [67]. The CB1 receptor agonist 

arachidonylcyclopropylamide (ACPA) attenuated hyperalgesia in a mouse model of bone can-

cer pain [68].

Intraplantar administration of AM1241, which preferentially binds to the CB2 receptor, 

reduced withdrawal responses to noxious heat in naïve rats, and no central side effects were 
observed when this compound was administered systemically [69]. Intraplantar adminis-

tration of AM1241 reduced capsaicin-evoked nocifensive behaviors and hyperalgesia [70], 

reduced hyperalgesia and edema in carrageenan-induced inflammation [71], and reduced 

hyperalgesia in a mouse model of bone cancer pain [68].

The endocannabinoids AEA and 2-AG have also been assessed for their peripheral anti-

nociceptive properties. Intraplantar administration of AEA prevented the development of 

CFA-induced hyperalgesia and inflammation, while systemic administration of AEA had no 
effect [19]. This indicates that in order for AEA to inhibit the inflammatory pain that follows 
CFA injection, high levels of the drug must be present at the site of injury, which is difficult to 
achieve under normal conditions given that AEA has a short half-life due to rapid degradation 
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by enzymes. Intraplantar AEA also inhibited capsaicin-induced edema and reduced forma-

lin-induced nociceptive behaviors via CB1 receptor activation [15, 19, 72]. Intraplantar AEA 

was far more effective at inhibiting formalin-induced behaviors than intravenous AEA [15]. 

Formalin-evoked behaviors were also inhibited by intraplantar administration of 2-AG, 

an effect blocked by a CB2 receptor antagonist but not a CB1 antagonist [73]. In rats with 

inflammation produced by carrageenan administration to the hind paw, evoked responses of 
nociceptive spinal dorsal horn neurons were reduced following intraplantar administration 

of AEA [74]. The reduction in evoked activity was blocked by a CB2 antagonist, but not a 

CB1 antagonist. Intraplantar administration of AEA did not produce any changes in evoked 

responses of spinal neurons in control rats. Intraplantar AEA decreased hyperalgesia in the 

tumor-bearing paw in a mouse model of bone cancer pain, and this was blocked by a CB1 

receptor antagonist [75]. Intraplantar 2-AG also decreased hyperalgesia in the tumor-bearing 

paw and the anti-hyperalgesia was mediated by CB2 receptors [76]. Intraplantar AEA has 

also been shown to decrease hyperalgesia following cisplatin treatment [77]. The mechanism 

of anti-nociception produced by AEA is complex, and the subtype of cannabinoid receptors 

involved in its effect seems to differ under acute and chronic pain states. AEA has strong anal-
gesic effects when applied to the site of inflammation or neuropathic pain; however, it should 
be noted that elevated levels of AEA can also increase excitability of nociceptors through 

activation of TRPV1 receptors that induces Ca2+ influx. This effect was shown in cultured 
dorsal root ganglion (DRG) neurons sensitive to heat stimulation [78]. It should also be noted 

that endocannabinoid interactions with ion channels and other binding sites separate from 

cannabinoid receptors can also produce changes in neuronal function.

In addition to direct cannabinoid receptor agonists, there are drugs which modify endocan-

nabinoid metabolism and thereby alter levels of endocannabinoids. For example, compounds 

that inhibit enzymes that break down endocannabinoids increase the amount of endocan-

nabinoids available for binding to cannabinoid receptors. URB597 ((3′-(aminocarbonyl)
[1,1′-biphenyl]-3-yl)-cyclohexylcarbamate) targets fatty acid amide hydrolase (FAAH), an 
enzyme which breaks down AEA. Intraplantar administration of URB597 decreased hyper-

algesia and C-fiber nociceptor sensitization in chemotherapy-induced peripheral neuropathy 
following cisplatin treatment, effects which were blocked by a CB1 receptor antagonist but 
not a CB2 antagonist. Biochemical analysis of skin showed that URB597 increased local levels 

of AEA without altering the levels of other endocannabinoids [79], indicating that increased 

activation of CB1 receptors by AEA was the source of decreased nociceptor excitability and 

analgesia. Intraplantar URB597 also decreased hyperalgesia and C-fiber nociceptor sensitiza-

tion in a transgenic mouse model of sickle cell disease (SCD, HbSS-BERK). These effects were 
also blocked by a CB1 receptor antagonist but not by a CB2 receptor antagonist (Figure 2). 

Importantly, intraplantar administration of URB597 still had an anti-hyperalgesic effect in 
sickle mice with CB2 receptors knocked out (HbSS-BERK-CBR2−/−, [80], confirming mediation 
by CB1 receptors.

Systemic application of URB937 (N-cyclohexyl-carbamic acid, 3′-(aminocarbonyl)-6-hydroxy 

[1,1′-biphenyl]-3-yl ester), a FAAH inhibitor that is restricted to the periphery and cannot cross 
the blood-brain barrier, produced analgesic effects in sciatic nerve ligation (Bennett model of 
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neuropathic pain) and carrageenan-induced inflammation in the affected hind paw, but did not 
alter responses on the non-affected hind paw [81, 82]. In cisplatin-treated mice, URB597 delayed 

and decreased the hyperalgesic effect of cisplatin [77]. Unfortunately, sustained pharmacologi-

cal inhibition of FAAH results in endocannabinoid catabolism by alternative pathways, which 
are not dependent upon FAAH [83], thus limiting their clinical effectiveness. FAAH knockout 
mice have elevated levels of N-acylethanolamines and N-acyl taurines, show reduced responses 

to noxious stimuli, and are hypersensitive to AEA [84].

Figure 2. (A) Intraplantar administration of the FAAH inhibitor URB597 decreased evoked responses in C-fiber 
nociceptors isolated from HbSS-BERK sickle mice. Data show the mean (±SEM) number of impulses evoked by 147 
mN before and at 30, 60, 90 and 120 min after various drug treatments. The number of evoked impulses was reduced 

following intraplantar administration of URB597 at 30, 60, 90, and 120 min post-injection, and this effect was blocked 
by the CB1 receptor antagonist AM281, but not CB2 receptor antagonist AM630. *p < .05, **p < .005, ***p ≤ .001 vs. the 
vehicle-treated group. ###p < .001 indicates significant differences from pre-injection value. (B) Representative examples 
of responses of individual C-fibers evoked by 147 mN for 5 s before (pre-injection) and at 30, 60, 90 and 120 min after 
intraplantar injection of vehicle, URB597, URB597 + AM281, and URB597 + AM630. The time of mechanical stimulation 

is illustrated at the bottom of each column. Reproduced from Uhelski et al. [80].
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Monoacylglycerol lipase (MAGL) is an enzyme that breaks down 2-AG. Inhibition of MAGL 

 produces analgesia under inflammatory conditions. Intraplantar administration of MAGL-
inhibitor URB602 (N-[1,1’-Biphenyl]-3-yl-carbamic acid, cyclohexyl ester) attenuated formalin-
evoked nociceptive behaviors [73]. Combining URB602 with 2-AG enhanced the anti-nociceptive 

effects of each [73]. The effect of URB602 was blocked by both CB1 and CB2 antagonists, whereas 
the effects of 2-AG were only blocked by a CB2 antagonist, suggesting that the URB602 does not 
behave as selective and/or potent inhibitor of MAGL [85] and that its effects are not dependent 
on only 2-AG, but may involve the inhibition of FAAH as well. In a mouse model of bone cancer 
pain, JZL184, a selective MAGL inhibitor, attenuated hyperalgesia in the tumor-bearing hind paw 
[76]. JZL184 elevates levels of 2-AG but not AEA following acute systemic administration, and the 

anti-hyperalgesic effect was shown to be dependent on CB2 (but not CB1) receptors. In contrast, 
intraplantar injection of JZL184 in cisplatin-treated mice decreased hyperalgesia by inhibiting 

both MAGL and FAAH and normalizing 2-AG and AEA levels in the plantar skin and DRG [86].

2.2. Mechanisms underlying peripheral effects of endocannabinoids

There is a large body of evidence demonstrating that activation of cannabinoid receptors in 

the periphery produces analgesia. This effect appears to be the result of decreased nocicep-

tor excitability, and there are several mechanisms that could contribute to this effect. These 
include direct activation of cannabinoid receptors that are expressed by nociceptors as well 

as activation of cannabinoid receptors expressed in the surrounding non-neuronal tissue that 

indirectly modulate neuronal excitability.

Studies of mRNA and protein expression have identified CB1 receptors on nociceptive neu-

rons, and selectively knocking out CB1 receptors in Na
v
1.8-expressing neurons increased sen-

sitivity to noxious heat, enhanced CFA-induced inflammation, and decreased the analgesic 
effect of WIN 55,212-2 [87–89]. Further, blocking either CB1 or CB2 receptors in the periphery 

inhibited the anti-nociceptive effect of systemic WIN 55,212-2 to the same degree, suggesting 
that peripheral cannabinoid receptors are a major site of action for cannabinoid receptor-

mediated analgesia [90]. The application of cannabinoid agonist WIN 55, 212–2 and CP 55,940 

to cultured primary afferent neurons reduced evoked Ca2+ influx in intermediate-diameter 
neurons, but not small-diameter neurons, though immunoreactivity for CB1 was detected in 

both cell populations [12, 91]. This indicates that reduction of calcium influx is just one of the 
inhibitory actions that can result from CB1 activation. Activation of CB1 receptors has also 

been shown to inhibit the release of calcitonin gene-related peptide (CGRP) from the nerve 

terminals of nociceptive primary afferent fibers in isolated skin from the rat hind paw [19], 

which could lead to reduced nociceptor excitability.

Expression of cannabinoid receptors can be modified in chronic pain states, which can enhance 
the effects of cannabinoid agonists. In a mouse model of bone cancer pain, the DRG ipsilat-
eral to the tumor-bearing hind paw showed increased expression of CB1 receptors. Enhanced 

CB1 receptor expression in the DRG may explain why small-diameter neurons co-cultured 

with cancer cells were responsive to CB1 receptor agonists (which attenuated evoked calcium 
influx), while small-diameter DRG neurons in naïve mice were not [75] (Figure 3).
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CB2 receptor mRNA and protein are increased in the lumbar DRG after spinal nerve liga-

tion (SNL) or CCI (Bennett model of neuropathic pain), but not CFA-induced inflammation 
[92]. The effect appears to be localized to microglia [92, 93], though there is some evidence 

of enhanced neuronal expression after SNL, including increased expression in the nerve 

proximal to the ligation [94]. In a mouse model of bone cancer pain, tumors showed high 

levels of CB2 receptor protein levels, and CB2 receptor proteins were also elevated in 

plantar skin of the tumor-bearing hind paw [76]. Taken together, these results support to 

the notion that endocannabinoid-mediated inhibition of peripheral nociceptor activity is 

necessary to prevent exaggerated responses to noxious stimuli and that tonic activation of 

endocannabinoids aids in suppressing pain, inflammation, and nociceptor sensitization 
after injury. Further evidence is shown by differences in levels of endocannabinoids in 
naïve, acute inflammation, and chronic pain conditions. In models of chronic pain from 
bone cancer and chemotherapy-induced peripheral neuropathy, the level of AEA was 

decreased in the skin of the plantar hind paw due to increased FAAH mRNA expres-

sion and AEA uptake in DRG neurons ipsilateral to a tumor-bearing hind paw [75, 95]. In 

cisplatin-treated mice, expression of 2-AG and AEA are both decreased in the plantar skin 

and DRG [86].

Figure 3. Small DRG neurons (<500 μm2) isolated from DRG L3-L5 of tumor-bearing mice and maintained in vitro 

in control medium for 20–28 h exhibited a change in sensitivity to the CB1 agonist ACEA. (A) The trace represents 

cannabinoid agonist inhibition of the Ca2+ transient evoked by brief superfusion with KCl (50 mM, 10 s, arrows). 

ACEA (1 μM) was included in the superfusate following the first test with KCl. (B) ACEA attenuated the Ca2+ transient 

evoked by KCl (50 mM) in neurons isolated from L3-L5 DRGs of tumor-bearing mice, but not in those from naïve mice. 

Involvement of CB1 receptors in the response to ACEA was confirmed by blocking the inhibitory effect by co-application 
of the CB1 receptor antagonist SR141716A (SR, 1 μM). Relative response was defined as the amplitude of the response of 
a neuron to KCl in the presence of ACEA divided by the amplitude of the response in the absence of ACEA. *Significantly 
different at p < 0.001; #significantly different at p < 0.01 (one-way ANOVA with Tukey’s multiple comparisons test). 

Reproduced from Khasabova et al. [75].
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3. Conclusions

Concerns about the safety of commonly used analgesic drugs have hindered the treatment 

of patients with chronic pain. Continued exploration of mechanisms underlying nociceptive 

processing under naïve, acute and chronic pain states has helped identify specific targets for 
the development of new treatment approaches that could solve some of the problems associ-

ated with chronic use of opiates and NSAIDs. This includes the use of drugs which target 

the endocannabinoid system. Early investigations identified problems with the systemic use 
of compounds derived from the cannabis plant, including sedation, mood alterations, and 

motor effects, a direct consequence of binding to cannabinoid receptors in the brain. By target-
ing the peripheral endocannabinoid system, the negative side effects of cannabinoids can be 
bypassed, providing analgesia without impairment of normal function. Work with animal 

models has shown that activation of cannabinoid receptors in the periphery can be useful for 

a wide variety of pain conditions, including inflammation, bone cancer pain, chemotherapy-
induced peripheral neuropathy, and sickle cell disease. Analgesia can be achieved through 

direct receptor activation or through the restoration of endocannabinoid levels, both of which 

decrease signs of sensitization in peripheral nociceptors. Thus, specific treatments could 
target known alterations in endocannabinoid levels associated with different chronic pain 
conditions. Drugs targeting the peripheral endocannabinoid system could be used as effective 
analgesics or in combination with currently available therapies to maximize pain relief while 

minimizing harmful side effects.
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