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Abstract

In order to elucidate the corrosion mechanism of Magnesium (Mg), assess its corrosion 
rate and evaluate the viability of effective corrosion protection methods, a number of dif-
ferent and complementary techniques are required. Aqueous corrosion is, in nature, an 
electrochemical process and as such electrochemical methods represent a powerful tool 
for the study of Mg corrosion. In this chapter the main electrochemical techniques used 
to study the corrosion of Mg are reviewed along with other simple non-electrochemical 
methods such as weight loss and hydrogen evolution measurements. The electrochemi-
cal techniques covered in this review include conventional DC and AC electrochemical 
techniques and the latest advances in local electrochemical methods for the evaluation 
and characterization of Mg corrosion. Each technique presented will be discussed, and 
its major advantages and drawbacks for the study of Mg corrosion will be commented. 
Applications range from studies of influence of the impurities in catalytic activity of high 
purity Mg towards hydrogen evolution, the determination of corrosion rate for Mg and 
Mg alloys by electrochemical methods and electrochemical study of sol-gel films as pre-
treatment for Mg alloys.

Keywords: magnesium alloys, corrosion resistance, hydrogen evolution, anodic 
dissolution, cathodic reaction, electrochemical impedance spectroscopy (EIS), 
polarization, local electrochemical impedance spectroscopy (LEIS), sol-gel coatings
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1. Introduction

Magnesium (Mg) and Mg alloys are materials of great technological interest. Its low density 
(approximately 1.7 g cm−3) even lower than that of aluminum, combined with good mechani-
cal properties makes them the lightest structural materials [1]. Mg and its alloys are used for 
a number of different applications such as biomaterial for biodegradable implants, electrode 
battery material for primary and secondary Mg batteries and casings for electronic devices, 
among others. Furthermore, the increasing demand of more environmentally sustainable 
transports, in particular the lightweighting of vehicles, makes Mg alloys excellent candidates 
for the automotive sector [1].

Despite the increasing technological possibilities of Mg alloys its use has been limited so far 
due to its high reactivity in aqueous solutions. Mg exhibits the lowest standard reduction 
potential among all structural metals (approximately −2.4 V vs. SHE). This results in very high 
corrosion rates when in contact with water [2].

There are a number of methods to assess the corrosion rate of Mg. As with most metals, the 
most common are weight loss measurements. This simple and well-established method is 
based in determining the difference in weight of the specimen under study before and after 
it is immersed in an aggressive electrolyte for a certain amount of time [3]. However, this 
method presents some important limitations [4]. The first one is that it only provides the 
average corrosion rate, not allowing for differences in the oxidation kinetics to be determined. 
Secondly, it can lead to inaccuracies in corrosion rate determination as a consequence of a 
poor or an excessive corrosion product removal post immersion.

Another common procedure to assess the corrosion rate of Mg alloys is the hydrogen collec-

tion method. In this method the rates associated with the HER in a quiescent electrolyte are 
determined [5]. The primary cathodic reaction in Mg dissolution in the absence of an external 
polarization is the hydrogen evolution reaction (HER). This is due to the very low corrosion 
potential (E

corr
) exhibited by Mg and its alloys in solution (between −1.3 and − 1.8 V vs. SCE), 

well below the reversible potential for the HER (Erev,H) that creates a large overpotential for 
the HER [1]. Under these circumstances the oxygen reduction reaction (normally diffusion 
limited) does not control the cathodic kinetics and the HER dominates the rates associated 
with the overall reduction process. Given that at the E

corr
 the rate of oxidation is equal to the 

rate of reduction, the corrosion rate of Mg can be easily assessed by recording the evolution 

of H2 volume with the time of immersion. Please note that in this case, in contrast with the 
weight loss measurements, the Mg dissolution kinetics is determined indirectly by assessing 
the rates associated with the main cathodic reaction.

There are two main experimental arrangements for measuring the evolution of H2 from a dis-

solving Mg specimen, as shown in Figure 1. In the traditional setup (see Figure 1a) the H2 gas 

volume is collected by a burette attached to a funnel that are placed upside down over the 
sample and filled with electrolyte. As Mg dissolves the evolved H2 travels upwards to the top 
of the burette, displacing the solution so the volume of gas can be easily monitored over time 
[6]. Even though this setup has been common for a long time it presents important limitations 
[4]. Recently, Fajardo and Frankel developed a more sensitive setup originally proposed by 
Curioni [7] in which the evolution of hydrogen is monitored by attaching the specimen to a fully 
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immersed container coupled with a high precision balance [5] (see Figure 1b). The gas that accu-

mulates at the top of the container changes the apparent weight measured by the balance due to 
a variation in the buoyant force produced by the volume of solution displaced by the evolved H2.

Besides weight loss and H2 volume collection measurements, the electrochemical methods 

continue to be the most popular in corrosion science and Mg is no exception. This is essen-

tially due to the electrochemical nature of aqueous corrosion. They represent a reliable, rapid 
and often simple way of assessing many aspects of the corrosion of metals such as kinetics, 
passivity, etc. Furthermore, the application of electrochemical techniques for the study of 
Mg corrosion can be used independently or simultaneously with the non-electrochemical 
methods previously described (among others). In this chapter the main electrochemical 
techniques that are commonly used in the study of Mg corrosion will be presented. Global 
electrochemical methods such as potentiodynamic/potentiostatic and galvanodynamic/galva-

nostatic polarization measurements will be described and critically discussed. Conventional 
electrochemical impedance spectroscopy (EIS) will be also covered. Furthermore, localized 
electrochemical methods have shown to be highly useful for the study of many aspects of 
Mg corrosion and corrosion protection. For this reason, localized electrochemical techniques 
such as the scanning electrochemical microscopy (SECM), the scanning vibrating electrode 
technique (SVET), localized electrochemical impedance Spectroscopy (LEIS) and the scanning 
Kelvin probe (SKP) will be reviewed, among others.

2. Global electrochemical techniques

Mg corrosion in aqueous solutions is in nature an electrochemical process and as such, elec-

trochemical techniques are a powerful tool to assess the corrosion rate of Mg and Mg alloys. 
In this section, the main global electrochemical techniques used in the study of Mg corro-

sion, either by the application of a direct current (DC) or an alternating current (AC), will be 
discussed.

Figure 1. Schematic of the experimental setups for hydrogen gas collection [1]: (a) volumetric method [6], and (b) 

gravimetric method [5].
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2.1. Direct current (DC) methods

In these electrochemical methods a unidirectional flow of charge is passed through the elec-
trochemical cell either by controlling the voltage and monitoring the current, or vice versa. A 
three electrode configuration is commonly used. The specimen under study acts as the work-
ing electrode, a reference electrode is used to measure the potential of the working electrode, 
and a counter or auxiliary electrode allows to close the electrical circuit. Finally, a potentio-
stat/galvanostat is employed to control the electrochemical cell.

2.1.1. Potentiodynamic polarization (PDP) and potentiostatic polarization (PSP) 

measurements

This is a voltage control technique in which the working electrode is polarized at a fixed 
rate over a range of potentials (PDP) or remains at a constant value during the entire time 
of experimentation (PSP). The current flowing through the cell in response to the generated 
electric field is then recorded. PDP allows to determine the kinetics of the total anodic and 
cathodic processes when the electrode potential is scanned at potentials above and below the 
E
corr

, respectively. This is clearly shown in Figure 2 where the PDP plots of a Mg specimen 
with 2 different purities are presented [2]. Furthermore, PDP measurements allow for any 
passive behavior to be detected. This is defined by the potential region in a V vs. log i plot 
(V being potential and I being current density) where the current remains constant with the 
increase in the applied anodic potential.

If the electrochemical system is controlled by activation (i.e. the rate limiting step is the charge 
transfer reaction), it is possible to determine the corrosion current density (analog to the cor-
rosion rate) by extrapolating the straight lines shown in the cathodic and anodic branches of 
a PDP plot to the corrosion potential. These lines are called Tafel lines and normally extend 
through a region in a range of about ±50 to ±250 mV from the E

corr
 [8]. An example of this 

protocol is shown in Figure 3. In this case the Tafel extrapolation was carried out on pure Mg 
in phosphate-buffered saline (PBS) using a rotating disc electrode (RDE) [9].

Instantaneous corrosion rate can also be determined by the linear polarization resistance 
(LPR) method [10]. In this case, the electrode potential is scanned over a much smaller range 
(normally ±10 mV vs. E

corr
) where a linear-like behavior is expected under activation con-

trolled kinetics [8]. Figure 4 shows the linear polarization resistance plots of a Mg-Y-RE Mg 
alloy where the grain size varied in a range from 70 to 0.7 μm [11]. The linear regions expected 
close to the E

corr
 are clearly shown. The slope of the linear region is defined as the polarization 

resistance (Rp) and is inversely proportional to the corrosion rate, which can be calculated 
then using the Stern-Geary equation (see Section 3.2) [8]. The major advantage of the LPR 
method is that it can be considered as non-destructive given the small polarization applied to 
the electrode in comparison to an extended PDP measurement where the Tafel regions want 
to be determined.

However, Tafel-extrapolation and the LPR method are not trivial for Mg due to the increas-
ing ohmic potential drop resulting from the continuously increasing flow of current and 
resistance associated with the HER (occurring both under anodic and cathodic polarization) 
[1]. At this point is necessary to comment that Mg and its alloys contradict standard electro-
chemical kinetics, showing increasing rates of HE with increasing anodic polarization [2]. 
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This phenomenon, historically referred to as negative difference effect (NDE), opposes the 
expected behavior for an electrochemical system. According to standard electrochemical kinet-
ics (as exemplified by the Butler-Volmer equation) the rate associated with an electrochemical 

Figure 2. PDP curves of high purity and ultra-high purity (HP and UHP, respectively) Mg in NaCl solution [2].

Figure 3. Tafel extrapolation on PDP curves of pure mg under static and rotating conditions in PBS [9].
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half reaction should decrease exponentially with the increase in polarization of the opposite 
polarity [12]. As a consequence of this anomalous HE, ohmic potential drop effects dominate 
the shape of the PDP plot, difficulting the identification of the Tafel regions to carry out the 
extrapolation or distorting the linear-like behavior expected for a LPR measurement [3].

In PSP measurements a constant potential is applied to the working electrode. This method 
is normally less common than PDP. However, it is useful in some cases like, for example, for 
the study of the cathodic activation of Mg under anodic polarization [13]. Figure 5 shows 
the evolution with time of the measured current density for high purity Mg under PSP at 
an anodic potential (i.e. more positive than its E

corr
). As observed, the electrode undergoes a 

polarity reversal, exhibiting a net cathodic behavior after about 20 min of polarization even if 
the applied potential is anodic.

2.1.2. Galvanodynamic polarization (GDP) and galvanostatic polarization (GSP) 

measurements

As opposed to the potential-controlled methods, GDP and GSP measurements are current 
control techniques. This means that current is either scanned over a certain range or applied 
at a constant value (i.e. GDP and GSP, respectively) and the potential is measured [8]. Please 
note that according to standard electrochemical kinetics potential and current are mutually 
dependent.

Even though galvanodynamic polarization is not a suitable method when the passive behav-

ior of a metallic surface wants to be assessed, GDP and GSP measurements are particularly 
useful for the study of certain aspects of Mg corrosion. One example is the investigation 
of the anomalous HE exhibited by anodically polarized Mg. Current control allows for an 
easy comparison between the current associated with the evolution of H2 and the applied 
current density [2, 14, 15]. This has been traditionally evaluated in Mg and Mg alloys using 

Figure 4. Linear polarization resistance plots of different conditions of Mg–Y–RE alloy in 3.5 wt.% NaCl [11].
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GSP, where a constant anodic current density flows through the electrochemical cell and the 
hydrogen gas volume evolving from the Mg sample is collected. Figure 6a shows the volume 
of H2 measurements as a function of time determined from gravimetric measurements on 

ultra-high purity Mg in NaCl solution using GSP under the application of different anodic 
current densities [14]. From the steady-state rates during GSP the HE current density values 
can be calculated (see Figure 6). The reason for the preferential use of GSP instead of GDP is 
that it has not been until recently that a hydrogen collection method with a suitable temporal 
resolution has been available (see Section 1) [5]. Since the development of the gravimetric 
method for HE, GDP measurements have shown to reliably monitor the real-time evolution 
of H2 from a Mg surface. Using GDP instead of GSP allows for an easy determination of the 
HE current density in a single GDP measurement by interpolation in a HE current density vs. 
applied current density plot [16] (see Figure 7). This has shown to be particularly useful when 
short timescales are needed or when limited amount of material is available and a large range 
current densities need to be applied.

Another advantage of using current control methods such as GDP and GSP instead of poten-

tial control techniques is that the sample under study can be more reliably polarized before 
ohmic effects dominate the electrochemical response of the system. Under potential control 
the large ohmic potential drop associated with the intense HE exhibited both during cathodic 
and anodic polarization difficult an accurate polarization to a particular potential value. 
Furthermore, the high reactivity of Mg in aqueous solutions makes it behave like an ideally 
non-polarizable electrode (i.e. an increase of several orders of magnitude is shown within a 
small range of applied potentials above the E

corr
), limiting the region over which the electrode 

can be effectively polarized. Consequently, if current is controlled instead of potential it is 
possible to accurately expand the study of the electrochemical behavior of Mg and Mg alloys 
over a wider range of polarization.

It is also interesting to mention that, due to the anomalous HE exhibited by Mg during anodic 
polarization, the current densities registered by the potentiostat do not resemble the true disso-

lution kinetics of Mg. This evolution of hydrogen is a cathodic process and as such, consumes 

Figure 5. Net current density measured during PSP of high purity Mg at −1.6 VSCE in NaCl solution [13].
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electrons. The source of electrons on the anodically polarized surface is the Mg specimen. 
Please note that these electrons are consumed at the electrode surface and do not flow through 
the potentiostat. Consequently, the Mg extra dissolution associated with the anomalous HE 
is not accounted in the current density measured in a simple polarization experiment. To 
accurately assess the true Mg dissolution kinetics, it is necessary to simultaneously account 

Figure 6. (a) Volume of H2 determined from gravimetric measurements as a function of time for an ultra-high purity Mg 
electrode in NaCl solution during a GSP measurement and (b) their corresponding HE current density values (right) [14].

Figure 7. H2 evolution rates for a high purity Mg electrode in 0.1 M citric acid buffer (pH 3) solution during anodic GDP 
as a function of the applied current density [16].
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for the real-time HE occurring during polarization. This way, the true current density associ-
ated with Mg oxidation will be given by the sum of the net current density measured by the 
potentiostat (electrons that flow through the electrochemical cell) and the HE current den-

sity (consequence of the anomalous HE and measured using a suitable hydrogen collection 
method) [5] (see Figure 8).

In summary, direct current electrochemical methods are a powerful technique to evaluate the 
electrochemical behavior of Mg and its alloys. They allow for the reaction kinetics and corro-

sion rate to be determined as well as to assess passivity. Furthermore, they are useful when 
the evolution of hydrogen is investigated. However, it is necessary to be particularly careful 
with the ohmic potential drop that is difficult to compensate since they may distort the shape 
of a polarization curve leading to inaccurate results.

2.2. Electrochemical impedance spectroscopy (EIS) technique

EIS is one of the most widely used technique for investigating in situ the corrosion mecha-

nisms and surface films developed on Mg and alloys specimens in corrosive environments 
[1, 3, 4, 17–20]. EIS studies are also useful to evaluate the corrosion rate of Mg [1, 3, 17] and to 

rank the corrosion protective ability of Mg alloys [20].

2.2.1. Advantages

Its most outstanding and well-known advantages are its relative ease of use, the relatively short 
time taken for measurements, the use of relatively cheap and simple equipment, quantitative 

Figure 8. GDP curve of a high purity Mg electrode in NaCl solution as a function of the measured potential [5].
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nature, high accuracy and reproducibility of the results [18]. Apart from the quantitative 
information provided by this technique, the occurrence of corrosion in Mg alloys can also be 
indicated by the emerging of EIS inductive characteristics long before visual changes can be 
observed using traditional exposure tests [21].

While polarization curve technique is destructive to the specimen and cannot serve for predic-

tion of the long-term corrosion rates of the material [4], the surface properties of the metal 
or metal alloy remain similar after each EIS measurement since signals applied have low 
amplitude (the deviation from corrosion equilibrium was ±5 to ±10 mV) and do not alter 
corrosion potential [18, 21]. The non-destructive character of the impedance technique [19] 

allows continuous monitoring of the progress of corrosion process in situ, with instantaneous 
measurements of the corrosion rate and can provide information on the changes of the mecha-

nisms of degradation for the Mg alloys during the immersion period [17–19]. EIS has been 
considered as an ideal method to evaluate the durability of these alloys [20].

2.2.2. Limitations

A major shortcoming with conventional EIS measurements is associated with the lack of 
spatial resolution, as the measured impedance results are attributed to the electrochemical 
response of the global properties of the corroding system, reflecting an averaged electrochem-

ical behavior of the whole electrode [22]. This is a major limitation in the investigation of local-
ized corrosion processes such as passivity breakdown, pitting corrosion and the breakdown 
of coated systems [22].

Equivalent circuit models using passive electrical engineering and physics circuit elements 
have commonly been used in order to convert frequency response data to corrosion proper-

ties (e.g. resistance and impedance) [4]. However, one of the major weaknesses of this ana-

lytical approach arises in how to select the equivalent circuits that not only fit the values, as 
often multiple equivalent circuits may fit the same data [4], but also provide a meaningful 
interpretation of the studied interface with quantitative parameters [4].

2.2.3. Typical spectra and equivalent circuits

In our EIS studies about the corrosion of Mg alloys, we reported Nyquist plots characterized 
by two loops (Figure 9a), a capacitive loop at high frequencies (HFs) and an inductive loop at 
low frequencies (LFs) [18] which can also be observed in corresponding Bode plots (Figure 9b 

and c). It is generally agreed that the capacitive loop at high frequencies is always related to 
the charge transfer resistance as well as the effect of ionic double layer capacitance of the elec-

trode. The equivalent circuit shown in Figure 10a was used to simulate the two-time constant 
impedance spectra in Figure 9a. In this circuit, Rs represents the electrolyte resistance, R1 is 
the charge transfer resistance, and CPE1 represents the non-ideal capacitive behavior related 
to the electrical double layer [18]. An inductor (L) and a resistance (RL) have been included to 
represent the inductive response appearing at low frequency [17–20].

Most of EIS studies about the corrosion of Mg alloys reported impedance diagrams rather 
complex, exhibiting three loops (Figure 9d), a capacitive arc in the high frequency (HFs) 
region, a capacitive arc in the middle frequency (MFs) region, and one inductive loop in 
the low frequency (LFs) region [23–26]. This behavior can be confirmed using Bode plots 
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(Figure 9e and f). In this case, an additional R2/CPE2 model element was introduced in the 
equivalent circuit (Figure 10b). Some studies suggested that the capacitive loop in the HFs 
may be ascribed to the charge transfer process at the double layer formed at the surface 
film while the capacitive loop in the MFs accounts for mass transport processes [21, 24, 25]. 
However, the interpretation of the two characteristic capacitive loops in the high and medium 
frequency ranges is controversial and unclear [23, 26].

2.2.4. Challenges

Stern and Geary [10] shown that the that the polarization resistance (Rp) is inversely propor-

tional to the corrosion current density in cases when metals behave as electrochemically active

   i  
corr

   = B /  R  p    (1)

where B is the Stern Geary coefficient that is a function of the cathodic and anodic Tafel slopes 
(β

c
 and β

a
) [17, 19].

Figure 9. (a, d) Typical Nyquist and (b, c, e, f) bode plots for Mg alloys.
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The use of the Stern-Geary equation (1) for the quantitative determination of the corrosion rate 
for Mg and its alloys presents two main challenges: the precise knowledge of the B constant 
and the value of resistance obtained from fitting of the EIS spectra selected for the estimation 
of i

corr
.

As already commented (Figure 9a and d), the impedance diagrams for Mg usually are charac-

terized by a well-marked inductive loop at LF [17]. The inductive behavior is often associated 
with the occurrence of pitting corrosion caused by anodic dissolution of the Mg and linked 
to the relaxation of adsorbed intermediates [27]. The disappearance of the inductive loop is 
caused by the formation of protective corrosion layers on Mg surface which inhibit the pitting 
corrosion [28]. However, the precise chemical species responsible for the characteristic induc-

tive loop are still unclear [17] and its interpretation remains controversial [19].

2.2.5. Using EIS to monitor corrosion rate

The Nyquist diagrams of AZ31 specimens in NaCl 0.6 M solution display one semi-circle 
followed by an inductive loop at lower frequency region (Figure 11a). After the first hour 
of immersion in 0.6 M NaCl solution, the charge transfer resistance values, R

t
, increased 

markedly, as shown in Figure 11b related to the formation of a corrosion layer with major 
protective ability. Finally, Figure 11c compares the variations of EIS-estimated corrosion 
rate with immersion time obtained by integration of the current density (i

corr
) vs. time data 

determined by the evolution of reciprocal R
t
 over time and the B´ values calculated via cor-

relation with gravimetric measurements (Table 1). It should be noted that corrosion rates 
determined from parameter R

t
 quantitatively agree with the corrosion rate calculated by 

using independent hydrogen evolution measurement over the whole duration of the mea-

surement (Figure 11c).

Figure 10. (a) Equivalent circuit used for fitting two-time and (b) three-time constants impedance spectra.

Magnesium Alloys - Selected Issue16



Figure 11. (a) Variation in Nyquist plots for AZ31 sample with immersion time in 0.6 M NaCl solution; (b) evolution of 
the resistance (R

t
) value with immersion time; and (c) variation in corrosion rate (mm.year−1) as a function of immersion 

time obtained from hydrogen evolution measurements and EIS during 14 days of immersion in 0.6 M NaCl.
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3. Localized electrochemical techniques for studying Mg and  

Mg alloys

Corroding metallic surfaces present heterogeneous surfaces and that influence their electro-

chemical activity, including highly reactive sites and/or passive regions. This is the case of Mg 
and Mg alloys. So, in order to be able to study the different processes that take place on an 
Mg corroding surface at the micrometer scale (i.e. corrosion initiation, corrosion propagation, 
corrosion inhibition by smart coatings, etc.) the use of localized electrochemical techniques 
can provide crucial information not available using solely global electrochemical methods.

Mg, as previously mentioned, is a very reactive metal that readily reacts with water, produc-

ing large amounts of H2 gas. This H2 evolution leads to a change in the natural convection of 

the electrolyte and thus in the electrochemistry of the system under study. The exposition 
time to the aggressive medium is another important factor, since the increase in pH of the 
solutions, due to the corrosion processes, causes the precipitation of Mg(OH)2, leading to a 

further change in the electrochemical activity of the material. In this section the advantages 
and challenges faced by localized electrochemical techniques to characterize Mg corrosion, 
will be highlighted, as this remains a complex task.

At present, two different methodologies are applied for local electrochemical investigation:

a. Scanning techniques, where the whole metal surface is either immersed in aqueous elec-

trolyte [Scanning Electrochemical Microscopy (SECM), Scanning Vibrating Electrode 
Technique (SVET), Localized Electrochemical Impedance Spectroscopy (LEIS)] or exposed 
at high humid atmosphere [Scanning Kelvin Probe (SKP)].

b. Methodologies where only small areas are exposed to the electrolyte using mini or micro 
capillary electrochemical cells [Scanning Droplet Cell (SDC), Flowing electrolyte type SDC 
(FT-SDC), Mini Cell System (MCS)].

The scanning techniques can perform a relatively rapid mapping of the studied areas but, 
generally, highly diluted electrolytes with low conductivity are required in order to achieve 
good local resolution. Furthermore, the scanned area cannot be locally polarized. The meth-

ods of the second group, on the other hand, have the main advantage that concentrate elec-

trolytes can be used and the current resolution is improved down to the pA to fA range, 
allowing the study of local dissolution processes in the nm-range. Moreover, any DC or AC 
electrochemical technique can be used to study the surface with localized resolution. The 
main disadvantage of these methods is, in general, the slow mapping process. Furthermore, 
the surface conductivity of the studied metallic material plays an important role in the local 
resolution achieved. Let’s continue firstly, showing the applications of these capillary electro-

chemical techniques and secondly those of the scanning techniques.

Table 1. ‘Apparent’ Stern-Geary coefficient calculated from R
t
 resistance performed in 0.6 M NaCl solutions.
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3.1. Microcapillary electrochemical techniques

These techniques basically consist in the miniaturization of a three electrode electrochemical 
cell. The SDC the electrochemical cell is formed by a micro reference electrode, micro counter 
electrode and a microcapillary filled with the electrolyte solution that will be in contact with a 
microarea of the working electrode, which is the metallic surface [29]. In certain designs, which 
are the case of the FT-SDC, the electrolyte solution can also flow through the microcapillary, 
allowing fresh solution to be brought to the substrate surface. In new configurations of the 
scanning droplet microscope (FT-SDCM) [30] the gas bubbles or reaction products formed on 
the surface of the working electrode can be removed using a constant electrolyte flow, which 
is extremely useful for the study of Mg and its alloys. This represents an improvement with 
respect to previous experimental setups, because the cell can operate with stagnant or flowing 
electrolyte. In the study of the heterogeneous microstructured AZ91 alloy, potentiodynamic 
polarization scans were recorded using microcapillaries of 5–10 μm diameter [31]. The scans 
recorded at lowest current were associated with the β phase, meaning that this phase was 
the most corrosion resistant. These results highlight the suitability of the SDC technique for 
monitoring the electrochemical activity of microstructural feature avoiding the interference 

from the bulk of the alloy. For the study of the new smart coatings developed for Mg corro-

sion protection, it is necessary increase the capillary diameter to reduce the big resistances 
(MΩ) provided by the coatings when measured in areas of 5–10 μm diameter. The Mini Cell 
System (MCS) with a geometry pencil like incorporates a three electrode cell with a capillary 
diameter of 700 μm which allows separate the kinetics of damaged and undamaged areas of 
a metal/coating system. The MCS has been proved to be extremely useful to characterize new 
electrochemically active sol-gel thin films applied onto metallic substrates [32, 33].

3.2. Scanning electrochemical techniques

The Scanning Kelvin Probe (SKP) allows the study of localized corrosion processes under-

neath insulating coatings [34] relevant for the corrosion processes at the polymer-coated 
metal interface, like swelling and ion incorporation into the coating [35]; the initiation of local-
ized corrosion in defects; and corrosion propagation, caused by anodic or cathodic reactions 
occurring on the underlying interface. The SKP measures the work-function of a sample using 
the vibrating condenser method. The major advantage of the SKP in comparison to conven-

tional electrochemical devices is the fact that the SKP measures electrode potentials without 
touching the surface under investigation across a dielectric medium of high resistance. The 
measurements are performed in humid atmosphere but in absence of aqueous electrolyte.

The Scanning Electrochemical Microscopy (SECM) uses an ultra-microelectrode (UME) 
immersed in a liquid electrolyte that bathes the entire metal surface. The UME scans the sub-

strate surface at a fixed height detecting the electrochemical activity on the electrode surface 
as a consequence of the electrochemical response that the probe experiences when in close 
proximity with the substrate surface measuring the diffusion-limited current of a redox-active 
couple (e.g., Fe2+/Fe3+). With a spatial resolution in the micrometer scale or below allows the 
discrimination between the activities of different electroactive species by polarizing the UME 
at a potential of interest [36]. The SECM has shown to be a powerful technique in the study of 
Mg alloys in simulated biological fluids [37] and the localized corrosion of Mg alloys in NaCl 
solutions [38, 39] and has been also used to study the phenomenon of anomalous HE [40].

A Critical Review of the Application of Electrochemical Techniques for Studying Corrosion of Mg…
http://dx.doi.org/10.5772/intechopen.79497

19



Another non-destructive technique is the Scanning Vibrating Electrode Technique (SVET) that 
measures the electric field generated by a sample immersed in a solution using a vibrating 
probe with a fixed amplitude, frequency and height. The scanning vibrating probe detects the 
potential gradients ohmically produced by local currents originated from actively corroding 
surfaces immersed in an electrolyte. Scanning is done with a 3D micro-stepping motorized 
micro-manipulator [41]. The probe vibration is controlled by a piezoceramic displacement 
device allowing vibration amplitudes from 1 to 30 μm (perpendicular to the sample surface). 
Calibration then enables quantification of localized cathodic and anodic activity [41, 42].

Scanning Reference Electrode Techniques have increasing their use over the last 30 years in 
studying the phenomena associated to the localized metallic corrosion. The principles of SVET 
measurement have been extensively addressed in pioneer works written by Isaacs [43–45]. A 
basic equation used by Bastos et al. [41, 40], for calculating the current density in solution, i, 

and describing the operating principle of SVET is

  i = κE = − κ ∆V / ∆r  (2)

which is a form of Ohm’s law, where κ is the solution conductivity, E is the electric field in 
solution and V is the potential difference between two points separated by the distance r in 
the direction of current flow.

Several examples of the use of SVET in studies of Mg and Mg alloys can be found in renowned 
works of Williams and McMurray [46]. They have used SVET for studying, for instance, the 
inhibition of localized corrosion occurring on unpolarized Mg samples immersed in unin-

hibited aqueous sodium chloride electrolyte [42]. These authors also have used SVET for 
studying the behavior of a range of potential anionic inhibitors, selected on the basis of their 
ability to form insoluble precipitates with aqueous Mg2+ ions [46]. Their results using SVET 
for investigating the source of hydrogen evolution from high purity Mg anodically polarized 
are also significant [14, 16, 47].

Other successful examples of the use of SVET in corrosion studies of Mg alloys are found in 
several works of Montemor and Ferreira. These authors studied the relation with corrosion 

Figure 12. Schematic representation of the LEIS apparatus [56].
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protection of pre-treatments consisting in the application of cerium and lanthanum nitrate 
solutions on AZ31 Mg alloy substrates [48]. Very important contributions of these authors 
have been their studies with SVET of modified bis-[triethoxysilylpropyl] tetrasulfide silane 
films on AZ31 alloy and, inhibitor-doped sol-gel coatings (8-Hydroxyquinoline) also on Mg 
alloy AZ31 substrates [49, 50].

Finally, it is important not to overlook in this section the contributions of the Bierwagen group 
on the application of SVET to studies of cathodic corrosion protection performance of Mg-rich 
coatings on aluminum substrates. In such studies coating characteristics were assessed not 
just using SVET but also multiple electrochemical techniques as SECM, open circuit potential 
(OCP) measurement, potentiodynamic polarization measurement (PDP) and EIS [51, 52].

Isaacs and Kendig were pioneers in the development of the local electrochemical impedance 
spectroscopy (LEIS) [53, 54]. This technique is closely related with SVET [55]. Typically, the 
LEIS method used a five-electrode configuration (Figure 12) [56]; a typical three-electrode 
arrangement (working electrode, counter electrode, and reference electrode) was used to con-

trol the dc potential and excite the interface potentiostatically with an ac signal, while two 
microreference electrodes were used to detect the local potential gradient in solution above 
the sample surface [57]. The principles of the technique are similar to those used in the con-

ventional bulk EIS; a small sinusoidal voltage perturbation is applied to a working electrode 
sample and the resulting current is measured to allow the calculation of the impedance. The 
applied voltage (ΔVapplied) is the potential difference between the working electrode and the 
reference electrode. The local impedance Z

local
 is calculated by the relationship:

   Z  
local

   =  ΔV  applied   /  i  
local

    (3)

The local AC current density (i
local

) is calculated using the Ohm’s law:

   i  
local

   =  ( ∆V  
local

   / d) κ  (4)

where ∆V
local

 is the ac potential difference measured between the two probes positioned on 
and in a conical plastic holder which are separated a distance d, and κ is the conductivity of 
the electrolyte [56].

Two measurements modes are possible:

• Full local impedance spectrum at one single location (LEIS)

• Area maps of the local impedance of the sample at one frequency (LEIM)

Baril, Galicia and co-workers applied the first measurement mode (LEIS) to study corro-

sion behavior of pure Mg and AZ91 magnesium Alloy [24, 56, 58]. More recently Barranco, 
Galvan et al. have applied the second mode (LEIM) to study the corrosion behavior of sol-gel 
thin films modified with Zr4+ and Ce3+ ions on AZ9, and doped with organic corrosion inhibi-
tors (benzotriazole and L-cysteine) on AZ31 and AZ61 magnesium alloys [59, 60]. Figure 13 

shows as an example impedance maps (LEIM) recorded around an artificial defect at a fixed 
frequency (500 Hz) and variable soaking time in 0.006 M NaCl solution for (a) undoped 
sol-gel film and (b) 0.3% wt.% benzotriazole (BTA) doped sol-gel film deposited on AZ31 
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alloy [60]. For the undoped sol-gel films no remarkable differences were observed between 
the registered impedance maps obtained initially and after longer soak time. In contrast, for 
BTA doped sol-gel films the LEIS maps showed that around the artificial defect the imped-

ance values increased with soaking time. This effect was ascribed to the gradual release of 
the BTA from the sol-gel film that caused inhibition of corrosion on the active areas of the 
magnesium substrate [60].

4. Conclusions

• Global DC methods, comprising potential and current controlled techniques, are ver-

satile tools to assess the corrosion rate of Mg and Mg alloys. They provide relevant 

Figure 13. Impedance maps recorded at constant frequency (500 Hz) and variable soaking time in 0.006 M NaCl solution 
for (a) undoped sol-gel film and (b) 0.3% wt.% BTA doped sol-gel film deposited on AZ31 alloy.
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information on the reaction kinetics and passive behavior of these materials. Furthermore, 
DC methods are particularly suitable for the study of the anomalous hydrogen evolu-

tion on anodically polarized Mg when coupled with other non-electrochemical methods 
such as hydrogen volume collection. The main limitation of the global DC techniques 
for the study of Mg is that, as a consequence of the intense evolution of hydrogen gas 
(both under anodic and cathodic polarization) large ohmic potential drops normally 
dominate the electrochemical response not far from the E

corr
. For this reason, care should 

be taken when designing, performing and analyzing the results obtained using these 
methods.

• EIS is a very powerful tool, non-destructive and sensitive electrochemical technique, to 
study corrosion processes over time, formation of corrosion products and monitor corro-

sion rates of Mg alloys. These measurements obtained in a very wide range of frequen-

cies allow us to examine the different processes that determine the corrosion behavior of 
Mg alloys, from the faster processes that are under charge transfer control, to the slower 
ones, generally of mass transport control, and inductive characteristics due to adsorption 
species.

• Localized electrochemical techniques, either that based on surface scanning; LEIS, SVET, 
SKP and SECM or those based on microcapillaries; SDC, FT-SDC, MCS, have proven to be 
valuable tools in the study of microareas with different electrochemical activity that exist 
in Mg alloys due to their microstructure.

• Complementary studies based on multiple global and localized electrochemical techniques 
are the key to face the challenge of controlling the corrosion of reactive Mg and its alloys 
for their use in technological applications.
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