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Abstract

Biopharmaceuticals are highly complex molecules and also require high quality for 
safety and efficacy in human uses. For well-characterized products, the desired level 
of quality should be monitored and controlled during the manufacturing processes. A 
series of workflow for analytical characterization should be applied for product quality 
throughout those processes. In this chapter, several analytical techniques are introduced 
for assessing characteristics of biopharmaceuticals focusing on monoclonal antibodies 
(mAbs). Analytical characterization for primary structure was performed by mass spec-
trometry (MS), and assessment of post-translational modifications (PTMs) was done by 
conventional approaches. The analytical assessments were also done by multi-attribute 
method (MAM) approach using mass spectrometer (MS), and the performance of MAM 
was compared to conventional approaches.

Keywords: biopharmaceutical, analytical characterization, primary structure, mass 
spectrometry, post-translational modification (PTM), multi-attribute method (MAM)

1. Introduction

Biopharmaceuticals can be defined as protein drugs that are produced by recombinant DNA 
technology, such as hormones, enzymes, monoclonal antibodies, and fusion proteins used for 
therapeutic or diagnostic purposes [1]. The first biopharmaceutical, insulin, was introduced 
in 1982 [2], and since then, over 250 biopharmaceutical products are authorized for marketing 
in the two major regions, United States of America (USA) and Europe (EU). Those products 
can be classified into monoclonal antibodies (mAb), hormones, growth factors, vaccines, cyto-
kines, blood factors, and others [3]. This trend with increasing number of biopharmaceuticals 
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on the market results in gaining interest for drug development industry, and biopharmaceu-
ticals are considered as fast growing and promising area for drug development [3–6].

The approval of mAb-related products is dramatically increased in the recent years [6, 7]. 
Over 90 mAb-related products are approved by European Medicines Agency (EMA) and 
US Food and Drug Administration (FDA). Those can be classified into mAb, Fc-fusion, Fab, 
antibody-drug conjugate (ADC), bispecific mAb (bsAb), and bispecific T cell engager (BiTE). 
Among them, mAbs are the major product, consisting of 77% of total. Others represent rest 
23% of total, Fc-fusion (12%), ADC (5%), Fab (3%), bsAb (2%), and BiTE (1%), respectively. 
After the first approval of full-length mAb in 1998, mAbs are major product in the biopharma-
ceutical industry. This increasing number gives high revenue for pharmaceutical companies, 
and seven mAb-related products are positioned in top 10 drugs in the world, 2017, including 
Humira, Enbrel, Rituxan, Remicade, AVASTIN, Herceptin, and Lantus [8].

Mylotarg is the first approved ADC in 2000, which combined a mAb targeting leukemic blast 
cells with a bacterial toxin (calicheamicin) [7, 9]. ADC is a complex generated between a mAb and 
small molecule or a peptide, and mAb gives the selective delivery for targeting of cytotoxic drugs 
[1, 9–11]. Since the first approval, four additional ADC products are approved in Europe and USA. 
bsAb has two different antigen binding sites recognizing two different epitopes in a single mAb, 
and this dual specificity gives more specific targeting and higher efficacy [12–14]. Currently, three 
bsAbs are approved by EMA or US FDA. The first bsAb, Removab, was approved in 2009 but 
voluntarily withdrawn in 2013. Fc-fusion proteins are fusions of the IgG Fc domain with a desired 
linked protein, enhancing pharmacokinetic properties (serum half-life) and pharmacodynamics 
properties (ADCC and CDC) [6, 15]. Following the first approval of Fc-fusion protein, Enbrel in 
1998, eight Fc-fusion proteins are authorized for the marketing in the region of Europe and USA.

Biosimilars, known as follow-on biologics, which follow termination of patent protection of 
original biopharmaceutical products, are developed and approved since 2006. Following the 
first approval from EMA, over 35 biosimilars are authorized for the European market and 
over 20 biosimilars are approved from FDA since 2015 [16–18]. A biosimilar is a biological 
product that is highly similar to and has no clinically meaningful differences from an existing 
FDA-approved reference product in terms of safety, purity, and potency (safety and effective-
ness) [19]. Structural and clinical similarities are to be proven for the biosimilar authorization.

Biopharmaceuticals are highly complex molecules compared to small molecule drugs and 

should be monitored and controlled during the manufacturing processes for well-characterized 
products [20–22]. The characterization of biopharmaceuticals is challenging, which utilize the 
state-of-the-art technology to meet the international harmonized guidelines, Q5E and Q6B [23, 
24]. For proper characterization, critical quality attributes (CQAs) have to be defined and evalu-
ated that may impact on safety, purity, and potency. CQA is defined by ICHQ8(R2) as a physi-
cal, chemical, biological, or microbiological property of characteristic that should be within an 
appropriate limit, range, or distribution to ensure the desired product quality [25].

Within this chapter, methodologies for in-depth physicochemical characterization are introduced 
for recombinant biopharmaceuticals mainly focused on mAbs. Analytical characterization for pri-
mary structure was performed by mass spectrometry, and assessment of post-translational modi-
fications (PTMs) was done with conventional and multi-attribute method (MAM) approaches. 
The performance of MAM was compared to conventional approach.
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2. Structural characterization for identity

2.1. Intact mass determination of mAb

The molecular weight of a protein is an important parameter in the physicochemical prop-
erties of the protein. MS with high resolution and accuracy, such as matrix-assisted laser 
desorption ionization time-of-flight (MALDI-TOF) or electrospray ionization quadrupole 
time-of-flight (ESI-QTOF), has become a reliable and sensitive technique for proteins and pep-
tides to determine the molecular weight [26, 27]. Other high resolution mass spectrometers, 
Fourier transform ion cyclotron resonance (FTICR) and orbitrap MS, have been recently used 
for the intact mass analysis [28–30]. The workflow of ESI was further extended to native MS, 
having the capability to investigate intact mAb for structural analysis and heterogeneities 
from PTM [31, 32]. Applying intact mass analysis, it not only gives molecular mass of the 
intact protein for comparison with the theoretical mass but also provides quick information 
about primary structure of protein or sequence variants, such as isoforms, truncation, muta-
tions, addition of signal sequences, or PTMs including glycosylations [31–33].

ESI-QTOF is widely used for measuring intact mass because of high resolution, mass accu-
racy, and easy connection to high performance liquid chromatography (HPLC) for online 
analysis [34]. ESI produces multiply charged ions, and those ions can be deconvoluted for 
molecular mass of proteins [34]. Typical results of mass determination for mAbs, bevaci-
zumab, rituximab, and trastuzumab using ESI-QTOF are shown in Figure 1. MS spectra in 
inset of Figure 1 show multiply charged ions characterized by ESI-spectrum, a number of 
peaks corresponding a statistical distribution of different charge states. The accuracy was less 
than 50 ppm, providing tools for the identification of PTMs, glycosylation, C-terminal Lysine 
deletion (ΔK), or Gln/Glu cyclization (pE) (Figure 1).

2.2. Subunit mass determination of mAb

Subunits or fragments of mAbs can be obtained by reduction of disulfide bonds or proteolysis 
to reduce complexities for large size mAbs [36, 37]. Chemical reduction of mAb’s disulfide 
bond generates free heavy chains and light chains, having ~50 kDa and ~25 kDa molecular 
mass, respectively. Recently, a new protease IdeS (Immunoglobulin G-degrading enzyme of 
Streptococcus pyogenes), specifically cleaving between the two consecutive glycine residues  
of the hinge region, has been described for mAb fragmentations [29, 37–39]. IdeS treatment of 

Figure 1. Intact mass of mAbs determined by deconvolution using ESI-QTOF. Inserts show charge envelope having 
multiply charged ions. Glycan structures (G0F, G1F, and G2F) were adapted from [35]. ΔK: C-terminal Lys deletion and 
pE: pyro-glutamate.
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mAbs with subsequent chemical reduction generates three subunits, Fd, LC, and Fc/2, having 
~25 kDa molecular mass. Those subunits can be separated by reverse phase (RP)-HPLC analy-
sis and be analyzed using online MS analysis. A typical example of IdeS treatment of mAb is 
shown in Figure 2. The subunits of rituximab were generated by IdeS digestion with subse-
quent chemical reduction and separated by RP-HPLC. The molecular masses of the subunits 
were measured by online ESI-QTOF. Three subunits from IdeS-digested rituximab, Fc/2, LC, 
and Fd, were clearly separated on the chromatogram of RP-HPLC (Figure 2). The deconvolu-
tion of ESI-QTOF spectra for subunits gives molecular mass information (Figure 3, inset). The 
molecular masses for Fc/2, LC, or Fd subunits were 25.4, 23.0, or 25.3 kDa, respectively. This 
not only provides tools for N-glycan profiling but also allows identification of PTMs such as 
C-terminal Lys deletion and cyclization of N-terminal glutamine (Figure 2).

2.3. Peptide mapping of mAb

The peptide mapping is a gold standard for biopharmaceutical characterization not only as an 
identity test but also to demonstrate the integrity of disulfide bonds [40–43]. This analytical 
method provides detailed information of primary structure for a given protein and enables 
the control of the protein sequence down to the level of single amino acids by coupling with 
mass spectrometry [44–46]. Based on the analysis of peptide mapping, it is possible to confirm 
genetic stability (correct translation), identify post-translation modification, and demonstrate 
the integrity of disulfide bonds [47–50].

Peptide mapping was carried out by digesting protein samples with endoprotease, such as 
trypsin, and subsequent separation of peptide fragments by RP-HPLC. The peptide fragments 
are then monitored by UV absorption and identified by MS. Prior to protease digestion, dena-
turation of the test protein with known concentration is needed to ensure complete digestion. 
The measured absorbance of a protein sample solution is used to calculate the concentration 
from its absorptivity at 280 nm (A280) either experimentally determined or empirically cal-
culated [22, 51]. Denaturation can be done using chaotropic reagent, urea, SDS, guanidine, or 

Figure 2. UV chromatogram of RP-HPLC for IdeS-digested Rituximab. Three subunits (Fc/2, LC, and Fd) are resolved 
on the chromatogram, and deconvoluted monoisotopic masses for each subunit are shown in insets. Glycan structures 
(G0F, G1F, and G2F) were adapted from [35]. ΔK: C-terminal Lys deletion and pE: pyro-glutamate.
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acid-labile surfactant, RapiGest [50, 51]. Denatured proteins are further reduced and alkylated. 
Reduction of disulfide bonds can be done with dithiothreitol (DTT), 2-Mercapto-ethanol, or 
tris(2-carboxyethyl)phosphine (TCEP) and alkylation with iodoacetamide or iodoacetic acid 
to prevent free cysteine groups after reduction [52, 53].

Many proteases are available for protein digestion, each having their own characteristics in 
terms of specificity, efficiency, and optimum digestion conditions [54, 55]. Trypsin is the most 
commonly used protease for peptide mapping analysis because it has a well-defined specific-
ity. It hydrolyzes only the peptide bonds in which the carbonyl group is followed either by an 
arginine (Arg) or lysine (Lys) residue and the cleavage will not occur if proline is positioned 
on the carboxyl side of Lys or Arg [56, 57].

After digestion, resulting peptides are separated by RP-HPLC, detected by UV-absorption, 
and identified by mass spectrometry. The identity of the samples was confirmed by compar-
ing the peak profile taking into account the number of detected peaks, retention times, and 
peak areas of the individual peaks. Furthermore, the measured masses of the found tryptic 
peptides were compared to the theoretical masses calculated from the amino acid sequence to 
verify the correct identification of the single peptides. Recently, the development of ultra-high 
performance chromatography (UHPLC) and sub-2 μm solid core particle columns leads to 
improve peak resolution and width, resulting in enhancing efficiency, sensitivity, and repro-
ducibility for peptide identification [58–63]. To identify peptides with MS, peptides need to be 
transferred into gas phase by ionization such as ESI or MALDI [64, 65]. ESI is commonly used 
for peptide mapping in combination with HPLC separations. The hybrid mass instruments, 
Q-Orbitrap and QTOF with ESI ionization, are routinely used for peptide mapping of mAbs 
[66, 67].

Typical results of peptide mapping of bevacizumab, rituximab, and trastuzumab are shown 
in Figure 3. For the peptide mapping analysis, protein samples were digested with trypsin, 
and the resulting peptides were separated using RP-UHPLC, detected by UV-absorption, 
and identified by online ESI-QTOF or Orbitrap (Fusion). Peptide map analysis covers the full 
sequence of mAbs, with the exception of the small polar peptides, giving over 98% coverage 
for overall sequences. Along with the intact peptides, modified peptides were also identified, 
such as glycopeptides, C-terminal Lys deleted peptides, and peptides with Gln cyclization.

Figure 3. Identified peptides of three mAbs, bevacizumab, rituximab, and trastuzumab, by peptide mapping analysis 
using QTOF (Top) or Orbitrap (Bottom). Blue: peptides from heavy chain, Red: peptides from light chain. *Alkylated 
peptides, **N-glycopeptide, ***C-terminal Lys deleted peptide, and ^pyroglutamic acid Q N-term.
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2.4. Disulfide bond identification for mAb

Protein disulfide bonds are produced by the covalent bonding of two thiol groups between 
cysteine amino acids. They are essential for structural and functional roles of proteins and 
give stability of proteins [68, 69]. The number of disulfide bonds and their positions are a criti-
cal attribute for biopharmaceuticals to ensure safety and efficacy [70, 71]. Peptide mapping 
coupled with LC-MS offers fast and accurate workflow for characterizing disulfide bonds of 
proteins. The typical workflow for identifying disulfide bonds in proteins is done by peptide 
mapping with the conditions of reduced and non-reduced digestion, and these two condi-
tions are compared using LC-MS and LC-MS/MS [72, 73].

The typical result of disulfide bond identification for trastuzumab is shown in Figure 4. It 
is known that trastuzumab (IgG1) has 32 cysteine residues, which are cross-linked by four 
interchain disulfide bonds (two set of a disulfide bond between heavy and light chains, two 
between heavy chains) and two set of six intrachain disulfide bonds [74]. When trastuzumab 
is compared for tryptic map between reduced and non-reduced condition, 16 tryptic pep-
tides (T) having cysteine residues (for heavy chain (H)— H:T2 (Cys22), H:T11 (Cys96), H:T14 
(Cys147), H:T15 (Cys203), H:T19 (Cys223), H:T20 (Cys229, Cys232), H:C27(Cys229, Cys232), 
H:T22 (Cys264), H:T28 (Cys324), H:T36 (Cys370), and H:T41 (Cys428); for light chain (L)—L:T2 
(Cys23), L:T7 (Cys88), L:T11 (Cys134), L:T18 (Cys194), and L:T20 (Cys214)) are expected under 
reduced condition as shown in Figure 4. Under non-reduced condition, six peptides linked by 
an intra-chain disulfide bond (H:T2 = H:T11, H:T14 = H:T15, H:T22 = H:T28, H:T36 = H:T41, 
L:T2 = L:T7, and L:T11 = L:T18), a peptide linked by a disulfide bond between heavy and light 
chains (L:T19-20 = H:T19), and a peptide linked by two disulfide bonds between heavy chains 
(H:T20 = H:T20) are generated as shown in Figure 4.

Collision-induced dissociation (CID) for disulfide-bonded peptide usually generates b and y 
ions from two individual peptides as shown in Figure 5, requiring side-by-side comparison 
between reduced and non-reduced peptide map [75]. Electron-transfer dissociation (ETD) 
usually generates disulfide-bonded fragment ions from both peptides, simultaneously detect-
ing disulfide-bonded fragments and disulfide-bonded precursor peptide and simplifying the 
workflow for CID fragmentation without parallel side-by-side comparison [76]. The data-
independent MSE approach collects mass data of precursors and fragments of eluting peptide 
from protein digests in an unbiased manner for peptide mapping and disulfide bond analyses 
[77, 78]. An example of disulfide bond analysis using MSE is shown in Figure 5. The MSE 
spectrum not only contains b and y ions from the two individual peptides (H:T2 and H:T11) 

Figure 4. Identification of disulfide bonds for trastuzumab by peptide mapping under reduced (left) and non-reduced 
(right) tryptic digestions.
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but also has ions corresponding to disulfide-bonded fragments from both peptides shown 
(H:T2 = H:T11) in dotted box in Figure 5.

3. Post-translational modification (PTM)

PTMs can be classified into two major classes, enzymatic and chemical modifications. 
Enzymatic modifications are defined as enzyme-catalyzed processing of proteins after trans-
lation by kinases, phosphatases, proteases, transferases, ligases, etc. [79]. Most common 
PTMs in this class are glycosylation, disulfide bond formation, and proteolytic cleavage of the 
protein. Chemical modifications are generated during upstream and downstream process-
ing, formulation, and storage, including oxidation, deamidation, isomerization, glycation, 
and Gln/Glu cyclization [80]. Those PTMs can affect activity, stability, and immunogenicity 
and thus must be well-characterized, controlled, and monitored during development pro-
cesses [20, 21, 81]. Physicochemical and biological analyses are required for monitoring those 
PTMs [82–86]. Peptide mapping approach is one of those method capable for the site-specific 
identification and quantitation of various PTMs. Recently multi-attribute method (MAM) has 
been developed as MS-based method that is able to identify and quantify several attribute at 
once [48, 87, 88]. The conventional methods such as hydrophilic interaction chromatography 
(HILIC) for oligosaccharide analysis, cation-exchange (CEX) chromatography, and capil-
lary electrophoresis sodium dodecyl sulfate (CE-SDS) can be replaced by MAM approach 
(Table 1).

3.1. Glycosylation of mAb

Glycosylation is a major PTM, influencing protein folding and conformation. Thus, hetero-
geneity due to glycosylation may affect the bioactivity [89, 90]. Most mAbs have a single 
N-glycosylation site in Fc subunit (e.g., heavy chain N300), although some mAbs may have 
an additional glycosylation site in Fab subunit. Glycosylation on mAbs is known to affect 
their effector functions such as complement activation, antibody-dependent cell cytotoxicity 
(ADCC), cytotoxic endocytosis of immune complexes leading to antigen presentation, and 
inhibition of B lymphocytes, monocytes, and basophils [90–93].

Figure 5. Fragmentation of disulfide-bonded peptide (H:T2 = H:T11) from trastuzumab by MSE approach using CID.
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Figure 6. N-glycan profiling of mAb, trastuzumab, using HILIC-FLD-MS. Total ion chromatogram (TIC) and FLD 
chromatogram of N-glycans are shown. Inset represents TIC. Glycan structures (G0F, G1F, G2F, or etc.) were adapted 
from [35].

Glycan profiling can be done by releasing glycan moieties from mAbs using PNGase F and 
cleaving the linkage between GlcNAc and Asn. The released N-glycans are done by fluo-
rescent labeling and subsequently analyzed using HPLC with fluorescence detector (FLD) 
coupled to MS instrument [94]. The recent development of HILIC and ultra-high pressure 
liquid chromatography with sub-2 μm amide-bonded stationary phases enables to separate 
labeled N-glycans with high resolution [95–97]. The typical result of N-glycan profiling is 
shown in Figure 6. Based on the detected mass by MS analysis, potential structures are all 
assigned for each peak, and the relative contents are calculated for the assigned structures 
from FLD detection (Table 2). G0F and G1F are major glycans on trastuzumab. The contents 
of afucosylated N-glycans are around 9.9% and that of high mannose type N-glycan around 
1.7% of total. Sialylated N-glycans are not detected on this analysis.

For MAM approach for glycan profile, glycopeptides were identified by peptide mapping 
of mAb, trastuzumab. Different N-glycans were identified on the N300 of the H:T25 peptide 
(EEQYNSTYR), such as G0F-GlcNac, G0, G0F, Man5, G1, G1F, G2F, and G2F + 1SA. Intact 
peptide without N-glycan was also detected. Figure 7 shows the identified glycopeptide from 
peptide mapping analysis.

Attribute Description Current workflow Future development

N-term sequences Identity Edman Degradation Multi-attribute method (MAM)

N-term variants Gln/Glu cyclization CEX-HPLC

C-term variants C-term Lys deletion CEX-HPLC

Charge variants Deamidation/Isomerization CEX-HPLC

Clips Fragment CE-SDS

Glycans Glycosylation HILIC

HILIC: hydrophilic interaction chromatography, CEX-HPLC: cation-exchange high performance liquid chromatography, 
and CE-SDS: capillary electrophoresis-sodium dodecyl sulfate.

Table 1. MS-based MAM for attribute control compared to current workflow.
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Based on MS/MS analysis, potential structures are assigned for glycopeptide peak. The rela-
tive contents are calculated from XIC for the assigned structures (Table 3). The mass accuracy 
was determined by Eq. (1) and less than ±5 ppm. G0F and G1F are major glycans on trastu-
zumab. The contents of afucosylated N-glycans are around 12.2% and that of high mannose 
type N-glycan around 6.42% of total. A sialylated N-glycan was detected less than 1%.

Calculation of error for determined peptide by MS is shown in Eq. (1)

Error (ppm) = [(Determined Mass-Calculated Mass)/Determined Mass] x 106                                              (1)

To compare N-glycan profiling results between HILIC and MAM approaches, the relative 
contents for each N-glycan between two approaches are visualized and a linear regression 
analysis was performed. The results are shown in Figure 8. The relative amounts of G0, G0F, 
and G1F are slightly higher in HILIC than MAM but those of Man5 and G2F are higher in 
MAM than HILIC (Figure 9). From the regression analysis, the slope was 0.816, intercept was 
2.307, and correlation coefficient was 0.958, which indicates a correlation between HILIC and 
MAM approaches.

3.2. Deamidation and isomerization of mAb

The major cause of charge variants in mAbs is deamidation and isomerization [98–100]. 
Asparagine (Asn) and glutamine (Gln) are susceptible to deamidation, but glutamine is 
deamidated at a much lower rate than that of asparagine [101–103]. Deamidation of Asn is 

Peak 1 2 3 4 5 and 5’ 6 and 6’ 7

Glycan G0F-GlcNAc G0 G0F Man5 G1 G1F G2F

Relative 
content (%)

0.48 ± 0.09 6.48 ± 0.96 43.58 ± 1.81 1.66 ± 0.22 1.71 ± 0.11 39.10 ± 1.73 6.98 ± 0.49

Glycan structures (G0F, G1F, G2F, or etc.) were adapted from [35].

Table 2. N-glycan profiling of mAb, trastuzumab, determined by HILIC-FLD-MS.

Figure 7. Glycopeptide having different N-glycans identified by peptide mapping analysis of trastuzumab. Inset 
represents MS1 spectrum before deconvolution. Glycan structures (G0F, G1F, G2F, or etc.) were adapted from [35].
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a non-enzymatic process, converting Asn to a 5-ringed cyclic succinimide intermediate that 
is hydrolyzed to form a mixture of isoaspartic acid (isoAsp or isoD) and aspartic acid (Asp) 
[104]. Isomerization follows the same mechanism of deamidation but occurs at aspartic acid 
(Asp) residues to form iso-Asp through the succinimide intermediate [105, 106]. This results 
in product heterogeneity and complicates manufacturing consistency [107]. Deamidation and 
isomerization are also known to have significant impact on in vitro potency, product hetero-
geneity, shelf-life stability, manufacturing consistency, and yield [108–110].

CEX-HPLC and isoelectric focusing (IEF) have been successfully developed to investigate the 
charge variants due to deamidation and isomerization [111, 112]. Peptide mapping analysis 

Peptide Number Glycan 

attached
Calculated 

mass (Da)
Determined 

mass (Da)
Error 

(ppm)
Relative content 

(%)

EEQYNSTYR H:T25 1188.5047 1188.502 −2.27 2.18 ± 0.06

EEQYNSTYR H:T25** Man5 2404.9276 2404.9249 −1.12 6.42 ± 0.27

EEQYNSTYR H:T25** G0F-GlcNAc 2429.9592 2429.9531 −2.51 1.23 ± 0.04

EEQYNSTYR H:T25** G0 2486.9807 2486.9744 −2.53 3.21 ± 0.19

EEQYNSTYR H:T25** G0F 2633.0386 2633.0395 0.34 36.25 ± 0.68

EEQYNSTYR H:T25** G1 2649.0335 2649.031 −0.94 2.56 ± 0.18

EEQYNSTYR H:T25** G1F 2795.0914 2795.093 0.57 34.05 ± 0.80

EEQYNSTYR H:T25** G2F 2957.1443 2957.1398 −1.52 13.25 ± 0.85

EEQYNSTYR H:T25** G2F + 1SA 3248.2397 3248.2295 −3.14 0.86 ± 0.00

Glycan structures (G0F, G1F, G2F, or etc.) were adapted from Ref. [35]. **: N-glycosylated Peptide.

Table 3. N-glycan profiling of mAb, trastuzumab, determined by MAM approach.

Figure 8. Glycan profiles determined by HILIC and MAM approaches.
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based on LC-MS/MS is commonly applied for identification of site and quantification of 
deamidation and isomerization, including the succinimide intermediated [113, 114].

CEX-HPLC can detect the occurrence of deamidation or C-terminal Lys deletion as well 
as glycosylation variants. The result of charge variant profiling for mAb, trastuzumab, is 
shown in Figure 9. Four acidic variants and two basic variants were detected on the CEX 
chromatogram. Each fraction for charge variants was collected, and the pooled fractions 
were further analyzed to characterize modification site by peptide mapping analysis. This 
analysis gives the structural information for each variant, and most of the charge variants 
are produced by deamidation and isomerization, localized on the CDR regions of mAb, 
trastuzumab (Figure 9).

UV detection of CEX chromatography allows to quantify charge variant peaks and the rela-
tive contents are calculated (Table 4). The content of major form without deamidation or 
isomerization on CDR regions is around 71.2%, that of acidic charge variants (A1-A4) are 
around 22.4%, and that of basic variants (B1-B2) is around 6.4% of total (Table 4).

Figure 9. Profiling of charge variants from mAb, trastuzumab, by CEX-HPLC analysis. N: asparagine, D: aspartate, isoD: 
iso-aspartate, HC: heavy chain, and LC: light chain.

Peak N30(LC) N55(HC) D102(HC) Relative content (%)

A1 D/N isoD/N D/D 0.24 ± 0.05

A2 D/N N/N D/D 10.60 ± 0.30

A3 D/N N/N isoD/D 3.89 ± 0.18

A4 N/N N/N D/D 7.68 ± 0.10

M N/N N/N D/D 71.14 ± 0.58

B1 N/N N/N isoD/D 5.06 ± 0.26

B2 N/N N/N isoD/D 1.38 ± 0.05

N: asparagine, D: glutamate, isoD: iso-glutamate.

Table 4. The relative contents of charge variants identified by CEX analysis.
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For MAM approach for charge variant profile including deamidation and isomerization, 
modified peptides were identified from peptide mapping analysis of mAb, trastuzumab. 
Deamidation on Asn30 of light chain was detected and isomerization on Asp102 of heavy 
chain was also detected by peptide mapping analysis using LC-MS/MS. However, deami-
nation and isomerization on N55 of heavy chain were not detected. Figure 10 shows the 
results of deamidation and isomerization on Asn30 of light chain and Asp102 of heavy chain, 
respectively.

Based on MS/MS analysis, peptide sequences are confirmed for intact and modified peptides. 
The relative contents are calculated from XIC for the intact and modified peptides (Table 5). 
The mass accuracy was determined by Eq. (1) and less than ±5 ppm. Isomerization on Asp102 
of heavy chain was detected and its relative content was around 4.6% of total (Table 5). Intact 
and isomerized peptide has same molecular mass, and thus, it is not possible to distinguish 
from each other only by mass, but those peptides have different retention time on the chro-
matogram (Figure 10). Deamidation on Asn30 of light chain was detected and its relative con-
tent was around 7.7% of total (Table 5). Deamination and isomerization on N55 of heavy chain 
were not detected.

To compare profiling results of deamidation and isomerization between CEX and MAM 
approaches, the relative contents for each modified peptide between two approaches are visual-
ized and a linear regression analysis was performed. The result from CEX contains informa-
tion not from peptide levels but from full mAb, and thus CEX data were recalculated for the 
level of each amino acid comparable for MAM data. The results are shown in Figure 11. The 
relative amounts of deamidation and isomerization are very similar between CEX and MAM 
approaches (Figure 11). From the regression analysis, the slope was 1.038, intercept was 0.267, 
and correlation coefficient was 0.988, which indicates a very good correlation between HILIC 
and MAM approaches.

Figure 10. Isomerization on Asp102 of heavy chain (a) and deamidation on Asn30 of heavy chain (b). N: asparagine, D: 
aspartate, isoD: iso-aspartate, HC: heavy chain, LC: light chain.
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3.3. C-terminal Lys deletion of mAb

C-terminal Lys variants are clipped modification found at heavy chain C-terminus of mAbs 
produced in mammalian cell cultures, usually produced by proteolysis of endogenous car-
boxypeptidases during the manufacturing process [115, 116]. C-terminal Lys deletion has 
been known for no impact on antibody function, such as biologic activity, structural stability, 
pharmacokinetics, or bioavailability in rats [117]. However, there have been debates about 
impacts of C-terminal Lys deletion on Fc effector functions [117, 118].

Peptide Number Change Calculated 

mass (Da)
Mass (Da) Error 

(ppm)
Relative content 

(%)

WGGDGFYAM 
DYWGQGTLV 
TVSSASTK

H:T12 D102 2783.2537 2783.2551 0.50 95.36 ± 0.28

WGGisoDGFYAM 
DYWGQGTLV 
TVSSASTK

H:T12* D102 to 
isoD102

2783.2537 2783.2595 2.08 4.63 ± 0.28

IYPTNGYTR H:T6 N55 1083.5349 1083.5345 −0.37 100

IYPTisoDGYTR H:T6* N55 to 
isoD55

1083.5349 — — 0

ASQDVNTAV 
AWYQQKPGK

L:T3 N30 1989.9908 1989.9938 1.51 92.35 ± 0.24

ASQDVDTAV 
AWYQQKPGK

L:T3* N30 to D30 1990.9749 1990.9774 1.26 7.70 ± 0.24

N: asparagine, D: aspartate, isoD: iso-aspartate, H: heavy chain, L: light chain, and T: tryptic peptide.
 *: Deamidated or isomerized peptide.

Table 5. The relative contents of deamidation and isomerization identified by MAM analysis.

Figure 11. Profiles of deamidation and isomerization determined by CEX and MAM approaches. N: asparagine, D: 
aspartate, isoD: iso-aspartate, HC: heavy chain, and LC: light chain.
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Figure 12. Profiling of C-terminal Lys variants from mAb, adalimumab, by CEX analysis. Inset represents the CEX 
chromatogram after carboxypeptidase treatment. K: Lys and ΔK: Lys deletion.

Because Lys residue is positively charged, leading to charge heterogeneity of mAb prod-
ucts. Thus, it is still a quality parameter for characterization. Due to charge variation, the 
modified and unmodified structures can be separated by CEX, IEF, and cIEF [117, 119]. 
Loss of the terminal Lys residue gives mass shift, which can be also detected and quanti-
fied by mass spectrometry [115, 118]. The modified structures can be separated and also 
identified from the unmodified structures by comparing the results from carboxypeptidase 
treatment [115, 120]. Carboxypeptidase treatment removes C-terminal Lys of mAbs and 
the disappeared peaks on the chromatogram can be identified as the unmodified variants 
[115, 120–122].

The typical results of CEX analysis are shown in Figure 12, which identify and quantify 
C-terminal Lys variants of mAb, adalimumab. Five acidic variants and three basic variants 
are detected (Figure 12). With the treatment of carboxypeptidase, all of the basic peaks were 
disappeared on the chromatogram (Figure 12, inset). Thus, those peaks are the unmodified 
peaks having C-terminal Lys.

UV detection of CEX chromatography allows to quantify C-terminal Lys variant peaks and 
the relative contents are calculated (Table 6). The content of major form is around 64.7%, that 
of C-terminal Lys variants on both heavy chains (A1-A4 and M) are around 77.5%, that of 
C-terminal Lys variants on one heavy chain (B1 and B2) are around 18.3%, and that of intact 
C-terminal Lys (B3) is around 4.1% of total (Table 6).

For MAM approach for C-terminal Lys variant profile, modified peptides were identified from 
peptide mapping analysis of mAb, adalimumab. Figure 13 shows the results of C-terminal 
Lys variant of adalimumab. Based on MS/MS analysis, peptide sequences are confirmed for 
intact and modified peptides. XICs of confirmed peptides were determined and quantified. 
The mass accuracy was determined by Eq. (1) and less than ±5 ppm. C-terminal Lys variant 
was detected and its relative content was around 13% of total (Table 7).

To compare profiling results of C-terminal Lys variants between CEX and MAM approaches, 
the relative contents for each modified peptide between two approaches are visualized and a 
linear regression analysis was performed. The result from IEX contains information not from 
peptide levels but from full mAb, and thus, CEX data were recalculated for the level of each 
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amino acid comparable for MAM data. Along with adalimumab results, those of trastuzumab 
were also visualized. The results are shown in Figure 14. The relative amounts of C-terminal 
Lys variants from adalimumab and trastuzumab are very similar between CEX and MAM 
approaches (Figure 14). From the regression analysis for adalimumab and trastuzumab, the 
slope was 0.970, intercept was 2.935, and correlation coefficient was 0.998, which indicates a 
very good correlation between CEX and MAM approaches.

3.4. N-terminal cyclization of mAb

N-terminal cyclization (pyroGlu or pE) variants are generated by the rearrangement of Gln 
or Glu at the N-terminus of mAbs, which can be done by spontaneous or enzymatic reactions 
[123, 124]. The conversion rate from Gln to pyroGlus is much faster than that from Glu and 
nearly completed over 95% in mAbs having N-terminal Gln, which is known that this conver-
sion occurs primarily in bioreactors [123]. The N-terminal cyclizations of mAbs converting 
Gln/Glu to pyroGlu do not impact on their structure, activity, in vivo clearance, and other 
pharmacokinetic properties [124].

Peak C-terminal structure of heavy chains Relative content (%)

A1 Lys Deleted/Lys Deleted 0.10 ± 0.05

A2 Lys Deleted/Lys Deleted 0.54 ± 0.14

A3 Lys Deleted/Lys Deleted 0.29 ± 0.04

A4 Lys Deleted/Lys Deleted 5.52 ± 0.20

A5 Lys Deleted/Lys Deleted 6.422 ± 0.21

M Lys Deleted/Lys Deleted 64.65 ± 0.34

B1 Lys Deleted/Intact Lys 16.55 ± 0.21

B2 Intact Lys/Lys Deleted 1.78 ± 0.12

B3 Intact Lys/Intact Lys 4.15 ± 0.09

A: acidic, M: major, B: basic.

Table 6. The relative contents of C-terminal Lys variants from adalimumab identified by IEX analysis.

Figure 13. Identification of C-terminal Lys variant from adalimumab by peptide mapping analysis. K: Lys, ΔK: Lys 
deletion, and HC: heavy chain.
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The conversion from Gln to pyroGlu renders mAbs more acidic and the conversion from Glu 
to pyroGlu gives a basic shift. Thus, the N-terminal cyclization increases charge heterogene-
ity of mAb products, which can be detected by charge-based methods such as CEX, IEF, and 
cIEF. The conversion of Gln or Glu to pyroGlu gives a mass shift −17 or − 18 Da, respectively, 
compared to the unmodified peptide, and this can be assessed using peptide mapping and 
intact mass analysis by MS.

The typical results of CEX analysis are shown in Figure 15, which identify and quantify 
N-terminal cyclization variants of mAb, rituximab. On the chromatogram of rituximab, 
several acidic variants and two major basic variants are detected (Figure 15). Each fraction 
for basic charge variants was collected and the pooled fractions were further analyzed to 
characterize modification site by peptide mapping analysis. This analysis gives the structural 
information for each variant, and the basic variant (B2) are produced by N-terminal cycliza-
tion of light chain, rituximab (Figure 16).

UV detection of IEX chromatography allows to quantify this N-terminal cyclization variant 
and the relative content of it is calculated (Table 8). The content of major form is around 89.4% 
and that of N-terminal cyclization variant on a light chain is around 1.9% (Table 8).

For MAM approach for detecting and quantifying N-terminal cyclization of mAb, rituximab, 
the conversion from N-terminal Gln to pyroGlu was identified by peptide mapping analysis. 

Peptide Number Modification Calculated mass 

(Da)
Mass (Da) Error 

(ppm)
Relative content (%)

SLSLSPGK H:T40 787.4440 787.4434 −0.76 13.01 ± 0.38

SLSLSPG H:T40* K → ΔK 659.3489 659.3489 0.00 86.99 ± 0.38

K: Lys and Δ K: C-terminal Lys deletion. *: Deamidated or isomerized peptide.

Table 7. The relative contents of C-terminal Lys variants from adalimumab identified by MAM analysis.

Figure 14. Profiles of C-terminal Lys variants for adalimumab and trastuzumab determined by CEX and MAM 
approaches.
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N-terminal cyclization on Gln1 of light chain was detected but N-terminal cyclization on Gln1 
of heavy chain was not detected by peptide mapping analysis. Figure 16 shows the results of 
N-terminal cyclization on Gln1 of light chain of mAb, rituximab.

Based on MS/MS analysis, peptide sequences are confirmed for intact and modified pep-
tides. The relative contents are calculated from XIC for the intact and modified peptides. 
The mass accuracy was determined by Eq. (1) and less than ±5 ppm. N-terminal cyclization 
variant of light chain was detected and its relative content was around 99% of total (Table 9).

To compare profiling results of N-terminal cyclization variant between CEX and MAM 
approaches, the relative contents for each modified peptide between two approaches are com-
pared and visualized. The relative amounts of N-terminal cyclization variant from rituximab 
are very similar between CEX and MAM approaches (Figure 17).

3.5. Other PTMs of mAb

Many other PTMs can be identified and quantified using MAM approach, including oxida-
tions of Met and Trp, glycation, cysteine variants, truncation, mutations, etc. Those PTMs 

Figure 15. Profiling of N-terminal cyclization variant from mAb, rituximab, by IEX analysis. K: Lys, ΔK: Lys deletion, 
and pE: pyro-glutamate.

Figure 16. Identification of N-terminal cyclization variant from rituximab by peptide mapping analysis. Q: glutamine, 
pE: pyro-glutamate, and LC: light chain.
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result in mass shifts compared to those intact peptides, and this gives clues for detecting 
PTMs by considering the mass differences. Most of those PTMs may not be separated from 
their unmodified form by conventional approaches. For those cases, MAM approach is a pos-
sible alternative for quantifying those PTMs.

Peak N-terminal structure of light chains Relative content (%)

Acidic pyroGlu/pyroGlu 5.26 ± 0.01

M pyroGlu/pyroGlu 89.40 ± 0.12

B1 pyroGlu/pyroGlu 3.42 ± 0.08

B2 Gln/pyroGlu 1.92 ± 0.05

M: major and B: basic.

Table 8. The relative contents of N-terminal cyclization variant from rituximab identified by CEX analysis.

Peptide Number Change Calculated mass 

(Da)
Mass (Da) Error 

(ppm)
Relative content (%)

QIVLSQSPAI 
LSASPGEK

L:T1 1823.9993 1823.9949 −2.41 0.93 ± 0.01

pEIVLSQSPAI 
LSASPGEK

L:T1 pyroGlu 1806.9727 1806.9731 0.22 99.08 ± 0.01

L: light chain, T: tryptic peptide, and pE: pyro-glutamate.

Table 9. The relative contents of N-terminal cyclization variant from rituximab identified by MAM analysis.

Figure 17. Profiles of N-terminal cyclization variants for rituximab.
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4. Conclusions

The analytical characterization of biopharmaceutical is still challenging for biotech indus-
try to meet the requirements. Conventional methods, such as chromatography and elec-
trophoresis, are routinely used because they are easy to use, robust, and, cost effective. 
Current trends for characterization are in-depth and well characterized. Current advances 
in instrumentation can help to follow those trends and characterize very complex hetero-
geneity from various PTMs. MS is the most powerful instrument among them, which pro-
vides high resolution, accurate, and confident data with rich information from primary 
structure (intact mass and peptide mapping) to high order structures (PTMs and HDX).

In this chapter, several workflows are summarized for intact mass determination, primary 
structure analysis, and determination and quantitation of various PTMs using chromatog-
raphy with online detection by MS. Those conventional approaches were assessed by the 
current MAM approaches primarily by peptide mapping analysis using MS.

MAM approach has been introduced, which is able to identify and quantify several attributes 
at once. In this chapter, glycosylation, deamidation/isomerization, C-terminal Lys variants, 
and N-terminal cyclization are investigated by using MAM approach, and the performance 
was compared to the conventional methods such as HILIC oligosaccharide analysis and CEX 
charge variant analysis. The results confirmed that MAM approach is quite comparable for 
those from conventional independent approaches.

In this chapter, we showed that MAM approach for biopharmaceutical characterization is 
quite comparable for typical conventional approaches using HILIC and CEX. This result 
conveys that MAM workflow can be extended to other related area of biopharmaceutical 
development as follows. MAM approach may help to select best cell lines for producing 
biopharmaceuticals, to support process control for upstream and downstream, and monitor 
critical attributes for production. MAM approach will also gain attention for the development 
of biosimilar requiring in-depth structural analysis for similarity.
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