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Abstract

Due to climate change, the common assumption of stationarity in extreme value analysis
of climate extremes has been gradually challenged. The familiar concepts such as a return
period and a return level do not apply in a changing climate. To quantify and communi-
cate risk of climate extremes in a changing climate, nonstationarity should be considered
carefully. In this chapter, both the concepts and interpretations of return period, return
level, failure risk, and reliability under nonstationary condition were interpreted. It was
concluded that the two interpretations of the return period became divergent under
nonstationary condition, while the two interpretations of failure risk were consistent
irrespective of stationarity. Moreover, two examples of risk communication based on
generalized extreme value (GEV) distribution for nonstationary climate extremes were
presented. In the first example, climate change and its impacts on global air temperature
extremes were detected. In the second example, extreme value analysis was firstly applied
to precipitation extremes at two weather stations in China. Then, the fitted GEV distribu-
tion on historical records was also extrapolated for future risk communication. With these
examples, the concepts those were related to risk measure and communication in a
changing climate could be easily understood and applied in practice.

Keywords: extreme value theory, nonstationarity, engineering design, return level, failure
risk, reliability

1. Introduction

Extreme climate events could, directly or indirectly, impact all sectors of the economy leading to

severe losses of life and property [1–3]. Mitigating natural hazards caused by extreme climate

events is crucial to the sustainable development of human society and economy [4]. In IPCC’s

report, an extreme climate event is generally defined as the occurrence of a value of a weather or

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



climate variable above (or below) a threshold value near the upper (or lower) ends of the range of

observed values of the variable [1]. The fundamental probability theory of extreme values has

been well developed for a long time and already applied in resolving the practical problems in

engineering design and risk management [5–7]. For the most part, extreme value theory (EVT)

assumes that extreme events are stationary, and these extremes could be successfully character-

ized by the probability distributions such as the generalized extreme value (GEV) and general-

ized Pareto (GP) distribution [8, 9]. The occurrences of extreme events are also assumed to be

independent or weakly dependent, then, the return levels and return periods could be easily

determined [7, 10]. Under stationary condition, there is a simple one-to-one relationship between

a return period and a return level, and these two terms can be easily understood [10, 11].

Moreover, risk could be simply communicated using the probability distributions of extremes

derived from EVT [11]. In this study, the term “risk” merely refers to the probability of an

extreme event with substantial consequence but not the expected loss in general risk analysis.

During the past few decades, there were clear and convincing evidences for global warming

and climate change [12], which raised fundamental interdisciplinary issues of risk analysis

and communication [13, 14]. As climate changes, weather or climate extremes also change [4]

and gradually challenge the stationarity assumption in climate and weather extreme value

analysis [6, 11, 15–17]. It has been documented that in some places, climatic and hydrological

extremes exhibit some type of nonstationarity in the form of trends, shifts or a combination

of them [18–20]. In a nonstationary world, both the severity and frequency of climate and

weather extremes will change [2, 3, 10, 16, 17]. Consequently, extreme value analysis of

climate and weather extremes has to consider and account for the nonstationarity [15]. Katz

et al. [21] presented a nonstationary GEV distribution by introducing time as a covariate. He

further showed that both GEV and GPD distributions could be retained under nonstati-

onarity, and maximum likelihood method was also applicable for parameter estimation [6].

Nonstationary extreme values modeling based on GEV and GPD distributions has been

realized in R-package ismev [22] and extRemes [23]. The other R-package GAMLSS (general-

ized additive model in location, scale, and shape) also allows nonstationary modeling for

block maxima, where the parameters are modeled as linear or smooth functions of covariates

[24]. Another available R-package for nonstationary extreme value analysis is GEVcdn, in

which the parameters in GEV distribution are specified as a function of covariate using a

conditional density network [25]. Besides these R-packages, nonstationary extreme value

analysis could also been implemented using a MATLAB toolbox NEVA [26]. Although the

nonstationary models in these packages performed better than the stationary equivalents in

fitting nonstationary climate extreme, the return period (or return level) and risk for

nonstationary conditions were not explicitly presented.

In nonstationary extreme value analysis, the concepts of the return period (or return level) and

risk needed to be carefully reformulated and extended, because these familiar concepts, strictly

speaking, no longer apply in a nonstationary climate [27]. In stationary cases, there exist two

parallel interpretations for the return period: expected waiting time to an extreme event and

expected number of extreme events in a given return period [7, 11]. In addition, the return level

is the same in each year under stationary conditions. In Wigley [16], the return period was

defined as the expected waiting time, and the influence of nonstationarity on the risk of
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extremes was presented using some simple probability arguments. The concept of the return

period was further extended to nonstationary condition in Olsen et al. [10], where the return

period was defined as the expected waiting time until an exceedance as the measure of risk.

The alternative interpretation of the return period (expected number of extreme events in a

given return period) for nonstationary conditions was clearly explained in Parey et al. [28, 29].

Recently, Cooley [11] reviewed these two definitions of the return period suggested by Olsen

et al. [10] and Parey et al. [28, 29], and proposed that the return period could be used to

communicate risk in nonstationary climate. From the perspective of engineering design, Salas

and Obeysekera [7] illustrated the estimation of the return period and examined the failure risk

of hydrological structures in nonstationary climate. Rootzén and Katz [30] also concerned the

failure risk in the design period and proposed a risk-based engineering design concept, Design

Life Level, which served as the basis of risk communication in a nonstationary climate. In the

above literatures, the concepts of the return period or return level have been extended and

adapted to nonstationary condition; however, the interrelations between return period and

risk communication, especially for engineering design purpose, was still ambiguous. The

major reason causing such ambiguity is the diversified explanations of one terminology for

different purposes. Therefore, a comprehensive interpretation of the return period (or return

level) and failure risk (or reliability) under either stationary or nonstationary conditions simul-

taneously are needed.

The aim of this chapter is to present the extension process of return period, return level, and

failure risk from stationary condition to nonstationary condition in a different way so that the

commonness and difference could be clearly identified. Consistent with the way how a return

period is defined and derived in some previous literatures, extreme value analysis will apply

to the time series of annual maxima in this study. Accordingly, GEV distribution is used to

illustrate the computation of the return period (return level) and failure risk (reliability) in

nonstationary climate.

2. Concepts and interpretations

In some previous literatures, the interpretation of the return period usually began with the

simple one-to-one relationship between a return period and a return level under stationary

condition [7, 10, 28–30]. Like Cooley [11], we define random variableMy as the annual maxima

of climate or weather events for year y, and My

� �

are assumed to be temporally independent.

The cumulative probability distribution of My is denoted by

Fy xð Þ ¼ P My ≤ x
� �

(1)

In this study, we try to explain the concepts of the return period and failure risk using the time

series of annual maxima and the underlying stochastic process but omitting the assumption of

stationarity or nonstationarity. In practice, analyzing the extremes and their probability distri-

butions is usually considered as the basis of frequency analysis, engineering design, and risk

assessment.
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2.1. Waiting time-based concepts

Given a exceedance level x, let T be the waiting time (from y ¼ 0) until an exceedance over this

level x occurs [11], then the discrete probability density of random variable T is generally given

by [7, 11]:

P T ¼ tð Þ ¼ P M1 ≤ x;M2 ≤ x;⋯;M t�1ð Þ ≤ x;Mt > x
� �

¼ P M1 ≤ xð ÞP M2 ≤ xð Þ⋯P M t�1ð Þ ≤ x
� �

P Mt > xð Þ

¼
Y

t�1

y¼1

Fy xð Þ 1� Ft xð Þð Þ

(2)

where the second line in Eq. (2) is based on the temporal independence assumption. Then, the

expectation of waiting time T is computed as

E T½ � ¼
X

∞

t¼1

tP T ¼ tð Þ

¼
X

∞

t¼1

t
Y

t�1

y¼1

Fy xð Þ 1� Ft xð Þð Þ

¼ 1þ
X

∞

i¼1

Y

i

y¼1

Fy xð Þ

(3)

The details of the derivations of Eq. (3) were shown in the appendix in [11]. The first definition

of the return period is based on the expected waiting time. Specifically, a Y-year return period

can be interpreted as: the expected time to the next extreme event is Y years [10].

Next, we adopt the commonly used definition of failure risk for an engineering structure, which

is interpreted as the probability of the failure or the probability of exceedance over its design

level in its design life period. We denote the failure risk by R and the design life period by L (in

frequency analysis or engineering design, the denotations L and Y were usually not strictly

distinguished). In terms of expected waiting time, the failure risk of a focal structure within its

design life period is equivalent to the probability that the expected time of exceedance is less than

or equals to the length of the design period, R ¼ P T ≤ Lð Þ. Accordingly, the non-exceedance

probability P T ≤ Lð Þ can also be given by the cumulative probability of the waiting time T [7]:

R ¼ P T ≤Lð Þ

¼
X

L

t¼1

P T ¼ tð Þ

¼
X

L

t¼1

Y

t�1

y¼1

Fy xð Þ 1� Ft xð Þð Þ

¼ 1�
Y

L

y¼1

Fy xð Þ

(4)

Consequently, the reliability of the focal structure within its design life period is Rℓ ¼ 1� R.
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2.2. Expected number-based concepts

We define random variable N as the number of exceedances over a given exceedance level x

occurring in Y years period beginning with the year y ¼ 1 and endingwith the year y ¼ Y [7, 11].

In each year, we have the following indictor function:

I My > x
� �

¼
1, My > x

0, My ≤ x

�

(5)

Then, we get

N ¼
X

Y

y¼1

I My > x
� �

(6)

The expectation of N becomes

E N½ � ¼
X

Y

y¼1

E I My > x
� �� �

¼
X

Y

y¼1

P My > x
� �

¼
X

Y

y¼1

1� Fy xð Þ
� �

(7)

Now, we say that the Y-year return period can also be interpreted in an alternative way: in Y

years the expected number of exceedance events is 1 [28, 29].

Similarly, the reliability of a focal structure in its design life period L can be understood as

there are no exceedance events occurring from y ¼ 1 to y ¼ L. Then, the reliability can be

computed as

Rℓ ¼ P M1 ≤ x;M2 ≤ x;⋯;M L�1ð Þ ≤ x;ML ≤ x
� �

¼
Y

L

y¼1

P My ≤ x
� �

¼
Y

L

y¼1

Fy xð Þ
(8)

From Eqs. (4) and (8), we find that the two parallel interpretations of failure risk (or reliability) of

a focal engineering structure are equivalent irrespective of My

� �

is stationary or nonstationary.

3. Risk communication

3.1. Risk measure under stationarity

Under a stationary assumption, My

� �

is identically distributed with a distribution function F xð Þ,

where the year index y is discarded for notational simplicity. Now, the relationship between a
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return period (Y) and the associated return level (xY , a special exceedance level) can be revealed

by the following equation [11, 30]:

F xYð Þ ¼ P M ≤ xYð Þ ¼ 1� 1=Y (9)

The Y-year return level of annual extreme M is defined to be the 1� 1=Tð Þ-th quantile of the

distribution of climate extreme in any year. In addition, we have P M > xYð Þ ¼ 1=Y. That

means that the exceedance probability over the return level xY is 1=Y for each year.

It has been proved that the two interpretations of return period in the stationary case are both

correct with this identical exceedance probability under stationarity assumption [11]. Substitut-

ing Eq. (9) into Eq. (3), we get the interpretation of the return period based on waiting time of

exceedance:

E T½ � ¼ 1þ
X

Y

i¼1

Y

i

y¼1

1� 1=Yð Þ ¼ Y (10)

Similarly, substituting Eq. (9) into Eq. (7), we get the alternative interpretation of return period

based on expected number of exceedance events:

E N½ � ¼
X

Y

i¼1

1=Y ¼ 1 (11)

The simple one-to-one relationship between a return period and a return level in the stationary

case has been commonly utilized in frequency analysis and engineering design practice [8, 21].

For example, the frequency or expected waiting time of extreme events exceeding a given

exceedance level can be easily determined using Eq. (9) in frequency analysis of climate

extremes. In practice, a very important concept for an engineering structure is the design life

period. Reversely, given a design life period or exceedance probability, return levels could also

be determined easily. Moreover, the failure risk or reliability of a focal structure in its design

life period L could also be evaluated using a simpler formulation

R ¼ 1� F xDð Þð ÞL (12)

where xD is the design level in engineering design.

3.2. Risk measure under nonstationarity

Under nonstationary condition, My

� �

is no more identically distributed. In frequency analysis,

engineering design, and risk assessment, the dependence of probability distributions Fy xð Þ on

the year index y should be considered. It is more valuable to do extreme value analysis within

the design life period. We have shown the two different interpretations of a return period in

Section 2. Under nonstationary condition, the relationship between the return period and the

associated return level could be expressed independently using Eqs. (3) and (7). Given a return

period or design life period Y (Y and L are substitutable here), the Y-year return level could be

estimated by setting E T½ � ¼ Y and E N½ � ¼ 1, respectively [10, 28, 29]. Theoretically speaking, the
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Y-year return level in the nonstationary case could be estimated by solving the following two

equations numerically

Y ¼ 1þ
X∞

i¼1

Yi

y¼1

Fy xYð Þ (13)

1 ¼
XY

i¼1

1� Fy xYð Þ
� �

(14)

To determine Fy xð Þ, fitting the historical records of annual maxima to nonstationary extreme

value distribution is the first step. Moreover, to estimate the return level of extremes or

assessing the failure risk of a focal structure in its rest life span, it is necessary to extrapolate

the trend or shift in climate extremes. Cooley [11] showed that it was unnecessary to extrapo-

late Fy xð Þ indefinitely and an accurate estimation of the return level could be obtained, when

Fy xð Þ was monotonically increasing. For computational simplicity, the definition of the return

period based on the expected number of events has more advantage since the maximum

extrapolation length is Y years but not indefinitely to þ∞.

The return level in Eqs. (13) and (14) are the two extensions of the return period in the

stationary case; however, these two extensions are not applicable in practical engineering

design [7, 30]. For engineering design purpose, Rootzén and Katz [30] presented a new

concept, Design Life Level, by keeping the failure risk at a low constant level during the design

life period. The relationship between Design Life Level and design life period was expressed

by the following equation [30]:

F1�Y xð Þ ¼ P M1�Y ≤ xð Þ

¼ P M1 ≤ xð ÞP M2 ≤ xð Þ⋯P M t�1ð Þ ≤ x
� �

P Mt ≤ xð Þ

¼ F1 xð Þ∗F2 xð Þ∗⋯∗FY xð Þ

(15)

where M1�Y ¼ max M1;M2;⋯;MYf g denoted the largest annual maxima during the design life

period 1 � Y. Usually, the mathematical expression of F1�Y xð Þ is analytically intractable, while

its numerical approximation bF1�Y xð Þ is frequently used in practice. Given a failure risk, br, of a
focal engineering structure during its design period 1 � Y, the associated design life level

could be computed by

DLL ¼ bF�1
1�Y 1�brð Þ (16)

A variant of Design Life Level is Minimax Design Life Level [30]. The computation of Minimax

Design Life Level is even simpler. During the whole design life period 1 � Y, we can obtain a

series of return levels: bF
�1

y 1�brð Þ
n o

, y ¼ 1, 2,⋯, Y, and the Minimax Design Life Level is

minmaxDLL ¼ max bF
�1

y 1�brð Þ
n o

, y ¼ 1, 2,⋯, Y (17)

Similarly, the first step to compute the Design Life Level or Minimax Design Life Level is

nonstationary modeling of historical climate extremes. Then, the trends of extremes would be
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extrapolated over the design life period. Moreover, the statistical uncertainty in the return

period and Design Life Level can be described by computing the standard errors using the

delta method [11, 30].

4. Applications

In this section, we present two examples of extreme value analysis and risk communication in

a changing climate. The cumulative distribution function of the GEV is expressed as [8]:

F xð Þ ¼ exp � 1þ ε �
x� μ

σ

	 
h i�1=ε
� �

, 1þ
ε x� μ
� �

σ
> 0 (18)

where μ, σ > 0, and ε are the location, scale, and shape parameters, respectively. Constant

parameters correspond to stationary GEV distribution, while time-varying parameters corre-

spond to nonstationary GEV distribution. The time-varying parameters in nonstationary GEV

distribution could be modeled as the function of time or other climate indictors [6]:

Fy xð Þ ¼ exp � 1þ εy �
x� μy

σy

� 
� ��1=εy
( )

(19)

where y is the year index. Commonly, the location parameter μy and/or the scale parameter σy

are assumed to be time varying, while the shape parameter is assumed to be constant [6–8, 26].

In particular, the extrapolation of Fy xð Þ into the future design life period is reasonable, only if

the location and/or the scale parameters have linear or log-linear trends [7, 26]. Before extrap-

olation, it is needed to select a best fitting GEV distribution model, and the model selection is

usually based on AIC or BIC [6].

The first example of risk communication was for global annual maximum near surface air

temperature (1948–2015). The global gridded data were extracted from the reanalysis products

with a spatial resolution of 2.5 * 2.5 provided by Earth System Research Laboratory, NOAA

(http://www.esrl.noaa.gov). For each grid, the time series of annual maximum near surface air

temperature from 1948 to 2015 was firstly constructed and the trend was detected using the

Mann-Kendall (M-K) test method [32, 33]. The test result was showed in Figure 1(a). Both

positive and negative trends at the 5% significance level were detected during the past 68 years

(1948–2015) for most part of the earth. The time series with significant trends will be fitted using

nonstationary GEV distribution with time-varying parameters. Otherwise, a stationary GEV

distribution with constant parameters will be applied. Like Cheng et al. [26], only the location

parameter was assumed to be linearly varying with time. Nonstationary modeling was perfo-

rmed with the R-package extRemes [23]. The aim of this example was to show the changes in

climate extremes caused by climate change and how this change impacted risk communication;

therefore, we did not extrapolate the trends of temperature extremes but only computed the 20-

year return level (the expected number-based return level during 1996–2010). Solving Eq. (14)
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relied on numerical optimization techniques, and in this study, the particle swarm optimization

method was applied. The result of the global 20-year return level of annual maximum near

surface air temperature in 1996–2015 was shown in Figure 1(b).

In the second example, we used two time series of annual maximum precipitation (AMP) to

illustrate the risk measure and communication under both stationary and nonstationary condi-

tions. The two AMP time series were extracted from observation dataset of daily precipitation,

Figure 1. (a) M-K test for global annual maximum near surface air temperature (1948–2015) (positive trend in white: no

significant trend in gray; negative trend in black). (b) Nonstationary 20-year return level of global annual maximum near

surface air temperature based on the expected number of events during 1996–2015.
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which was provided by the National Meteorological Information Center (NMIC) of the China

Meteorological Administration (CMA). The two AMP time series were selected, because either

positive or negative trends were detected. The corresponding weather stations are Qionghai

(Station ID: 59855) and Zunhua (Station ID: 54429), which are located at N19 ∘ 140E110 ∘ 280 and

N40 ∘ 120E117 ∘ 570, respectively. The valid observation periods were 1953–2013 (Qionghai) and

1956–2013 (Zunhua). Both stationary and nonstationary GEV distributions were used to fit the

AMP time series denoted by the following four candidate models:

M0 : μ; σ; ε
� �

M1 : μ0 þ μ1y; σ; ε
� �

M2 : μ; σ0 þ σ1y; ε
� �

M3 : μ0 þ μ1y; σ0 þ σ1y; ε
� �

8

>

>

>

<

>

>

>

:

(20)

Akaike information criterion (AIC) was also computed for model fitting evaluation [31]. The

model that was preferred was having the minimum value of AIC. For AMP time series at station

Qionghai, the best fitting model wasM1. For AMP time series at station Zunhua, the best fitting

model was M3. The observed values of AMP, the estimated median, and the 5th and 95th

percentiles were shown in Figure 2(a). With the best fitting models, trends in precipitation

extremes were extrapolated to the next 50 years (2014–2063). In other words, the design life

period was assumed to be 50 years starting from 2014 to 2063. The scale parameter σy was

constrained to be positive by max 0; σ0 þ σ1yf g in the design life period. With the extrapolated

Fy xð Þ in 2014–2063, we computed the return levels (or Design Life Level and Minimax Design

Life Level) along with their standard errors, expected waiting time (or the return period that has

been given in advance), failure risk, and reliability in the design life period. The return levels for

nonstationary conditions presented in [10, 28, 29] were computed using Eqs. (13) and (14), while

Design Life Level and Minimax Design Life Level are computed using Eqs. (16) and (17), respec-

tively. The corresponding standard errors were computed using the delta method [11, 30].

Expected waiting time was computed based on Eq. (3), and the failure risk and reliability were

computed using Eqs. (4) and (8).

The results were shown in Tables 1 and 2, respectively. The first three rows in Tables 1 and 2

mainly illustrated the relationship between the return period and the return level under station-

ary and nonstationary conditions. The last two rows in Tables 1 and 2 showed the two concepts,

Design Life Level and Minimax Design Life Level, for the purpose of engineering design under

nonstationary conditions. For AMP time series at Qionghai station, there was a significant

positive trend in precipitation extremes. Given a 50-year return period, the associated return

level under stationary assumption was much lower than those under nonstationary assumption.

From the perspective of engineering design, the return levels shown in the first three rows were

unacceptable, because the failure risks in the following 50 years (design life period) were all

larger than 0.55. To ensure a low failure risk, a higher design level is needed. For AMP time series

at Zunhua station, there was a significant negative trend in precipitation extremes. When

nonstationarity was considered, the return level became lower due to the decreasing trend in

precipitation extremes. Furthermore, due to the same reason, the Design Life Level andMinimax

Design Life Level in 50-year design life period (2014–2063) were lower than the 50-year return

level under stationary assumption.
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Figure 2. Summary of the nonstationary modeling of annual time series of precipitation extremes using GEV distribution

models. (a) Station Qionghai (ID:59855); observation period: 1953–2013; the best fitting nonstationary GEV distribution:

M1. (b) Station Zunhua (ID:54429); observation period: 1956–2013; the best fitting nonstationary GEV distribution: M3.

Symbols: observed values (dots), the estimates of the median (solid lines), and the 5th and 95th percentiles (dashed lines).

Risk communication

Model Equation Return level Standard error Return period (or EWT)a Risk Reliability

M0 Eq. (9) 398.31 46.15 50 0.6358 0.3642

Eq. (13) 485.00 65.67 50 0.5594 0.4406

M1 Eq. (14) 466.61 61.77 50 0.6359 0.3641

Eq. (16) 818.87 13.4 177.03 0.0407 0.9593

Eq. (17) 790.58 15.0 171.96 0.05 0.95

aEWT stands for expected waiting time.

Table 1. Results of risk communication for precipitation extremes with positive trend at station Qionghai (ID: 59855).
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5. Discussion and conclusions

Due to the climate change, the stationary assumption that was commonly used in statistical

analysis of climate extremes gradually became unacceptable [6, 15, 17]. How to quantify and

communicate risk of climate extremes in nonstationary climate is essential for engineering design

and risk assessment [7, 11, 30]. There were many attempts to quantify and communicate risk in a

changing climate such as extending the concepts of the return period from stationary condition

to nonstationary condition [10, 28, 29] or developing a new concept of the return level [30]. In

stationary climate, frequency analysis, engineering design, and risk assessment were all based on

the stationary extreme value distribution model [8]. It was assumed that the fitted extreme value

distribution model on historical records also applied for future observations. Also due to

stationarity, the concepts of risk measure for different purposes had not been strictly distin-

guished. Unlike the simple one-to-one relationship between a return level and a return period

under stationary condition, risk measure and communication were more complicated under

nonstationary condition, especially due to the time-varying essence of climate extremes. There-

fore, a clear interpretation and illustration of the methods for risk measure and communication

in a changing climate are of great importance.

In this study, climate extremes were presented in the form of annual maxima of extreme

climate events. This chapter began with the two parallel interpretations of the return period,

in which, the implicit relationship between a return level and a return period was included, but

the stationary or nonstationary assumptions were omitted. This implicit relationship was also

considered as the basis for frequency analysis and engineering design. In the stationary case,

the two interpretations of the return period were equivalent. Although they were no more

equivalent in the nonstationary case, they both provided independent methods for determin-

ing the associated return level for a given return period. Risk assessment usually aims to a

focal engineering structure with a given design level. We showed that the concept of failure

risk (or reliability) also had two parallel interpretations, and these two interpretations were

consistent irrespective of stationary or nonstationary assumptions. In order to illustrate how

risk was quantified and communicated in a changing climate, two examples of nonstationary

climate extremes were used. Totally, we have reviewed two methods for estimating the return

Risk communication

Model Equation Return level Standard error Return period (or EWT)a Risk Reliability

M0 Eq. (9) 282.3 50.59 50 0.6358 0.3642

Eq. (13) 81.44 20.07 50 0.7647 02353

M3 Eq. (14) 83.72 18.75 50 0.6548 0.3452

Eq. (16) 105.62 11 199.78 0.001 0.9989

Eq. (17) 98.41 19.59 189.98 0.05 0.95

aEWT stands for expected waiting time.

Table 2. Results of risk communication for precipitation extremes with negative trend at station Zunhua (ID: 54429).
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level for a given return period under nonstationary condition [10, 28, 29] and two newly

refined concepts of the return level in a given design life period for engineering design purpose

[30]. In the first example, we detected the trend of annual maximum of global near surface air

temperature during 1948–2015. Nonstationary GEV distribution with a time-varying location

parameter was used to fit near surface air temperature extremes with significant trends, and

the expected number-based return levels in 1996–2015 were computed. In the second example,

time series of observed annual precipitation extremes at two weather stations in China with

significant trends was analyzed. Both stationary and nonstationary GEV distribution models

were used to fit the precipitation extremes. For each station, one best fitting GEV distribution

was identified. Then, the linear trends in the parameters of GEV distribution were extrapolated

into the following 50 years (also considered as the design life period). Return level, Design Live

Level, and Minimax Design Live Level were all computed for the design life period (2014–

2063), respectively. It was concluded that the communication of risk in a changing climate was

obviously different from that in a stationary climate. For frequency analysis purpose, general

return level/return period might be quite capable of communicating risk of climate extremes.

While for the engineering design purpose, Design Live Level or Minimax Design Live Level

were recommended, because the failure risk of a focal structure would be very low if Design

Live Level or Minimax Design Live Level were chosen as the design level.

A reliable statistical modeling on long-term data was the basis of risk communication in a

changing climate [26]. In nonstationary extreme value modeling, there are usually many candi-

date models. The choice of extreme value distribution models might influence the risk measure

substantially in nonstationary and changing climate, because the trend captured by the extreme

value distribution should be extrapolated into the future design life period. In this chapter, we

only chose time as the covariate in the nonstationary extreme value analysis, and the parameters

in GEV distribution model were expressed as the linear function of time. Perhaps, there might be

more suitable trends such as quadratic or exponential trends leading to more candidate models.

Evaluating all these candidate models was not an easy task. In practice, only a few of commonly

used models was evaluated and compared. Moreover, the model selection process is not simply

by using tools such as AIC or BIC [11]. Sometimes, additional expert knowledge is needed. In

nonstationary extreme value modeling, besides time, some other climate indictors representing

the variability of the climate system were also chosen as covariates. Although the historical data

could be successfully fitted with these additional climate indictors, it was difficult to extrapolate

the historical climate variability. That is because the climate variability itself is difficult to predict

due to the complicity of the climate system. To reduce the uncertainty in statistical extrapolation,

the output of numerical climate models was also used. However, the reasonability of simulation

results was constrained by the parameters setting and initial values [30]. Additionally, the

standard error of return levels and Design Live Level was all estimated using the delta method.

Although standard error is a simple measure to quantify the uncertainty of nonstationary

extreme value modeling, the uncertainty cannot be properly reflected using the symmetric

confidence interval. Lastly, as pointed in [30], neither Design Life Level nor Minimax Design Life

Level could be used as the criteria for realistic engineering design, because more economic and

political factors should be considered besides the failure risk and reliability. All the above

mentioned things are outside the scope of this chapter; here, our primary objective was to

discriminate the concepts and their interpretations of the return period/return level, failure risk/
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reliability under stationary and nonstationary conditions, and to illustrate the computations

using realistic climate extremes. With these examples, we believed that the concepts those were

related to risk measure and communication in a changing climate could be easily understood

and applied.
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