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Abstract

Phosphorus (P) eutrophication in the aquatic system is a global problem. With a nega-
tive impact on health industry, food security, tourism industry, ecosystem health and 
economy. The sources of P include both point and nonpoint sources. Controlling P inflow 
from point sources to aquatic systems have been more manageable, however control-
ling nonpoint P sources especially agricultural sources remains a challenge. The forms 
of P include both organic and inorganic. Runoff and soil erosion are the major agents of 
translocating P to the aquatic system in form of particulate and dissolved P. Excessive P 
cause growth of algae bloom, anoxic conditions, altering plant species composition and 
biomass, leading to fish kill, food webs disruption, toxins production and recreational 
areas degradation. Phosphorus eutrophication mitigation strategies include controlling 
nutrient loads and ecosystem restoration. Point P sources could be controlled through 
restructuring industrial layout. Controlling nonpoint nutrient loads need catchment 
management to focus on farm scale, field scale and catchment scale management as well 
as employ human intervention which includes ferric dosing, on farm biochar application 
and flushing and dredging of floor deposits. Ecosystem restoration for eutrophication 
mitigation involves phytoremediation, wetland restoration, riparian area restoration and 
river/lake maintenance/restoration. Combination of interventions could be required for 
successful eutrophication mitigation.

Keywords: agriculture, aquatic, eutrophication, mitigation, phosphorus

1. Introduction

Globally many aquatic ecosystems have been negatively affected by phosphorus (P) eutro-

phication [1]. Phosphorus is a primary limiting nutrient in both freshwater and marine 
systems [2, 3]. Phosphorus eutrophication is defined as the over enrichment of aquatic 
ecosystems with P leading to accelerated growth of algae blooms or water plants, anoxic 
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events, altering biomass and species composition [4–8], eutrophication is a persistent 

condition of surface waters and a widespread environmental problem. Aquatic systems 
affected by eutrophication often exhibit harmful algal blooms, which foul water intakes 
and waterways, fuel hypoxia, disrupt food webs and produce secondary metabolites that 
are toxic to water consumers and users including zooplantkton, shellfish, fish, domestic 
pets, cattle and humans [9]. Excess phosphorus inputs to lakes usually come from indus-

trial discharges, sewage and runoff from agriculture, construction sites, and urban areas 
[1, 6]. Many countries have regulated point sources of nutrients for example industrial and 

municipal discharges, however, nonpoint sources of nutrients such as runoff from urban 
and agricultural lands have replaced point sources as the driver of eutrophication in many 

countries [10].

The plant availability of phosphate fertilizer is reduced by sorption and organic com-

plexation in the soil, therefore fertilizer applications greater than the amount required 
by the crop are used to counteract the strong binding of the phosphate to the soil matrix 

leading to increased P content of managed soils [11]. Mining phosphorus (P) and apply-

ing it on farm for animal feed and crop production is altering the global P cycle, leading 

to P accumulation in some of the world’s soils [4]. Over application of P fertilizer to soil 
is in itself wasteful, but the transport of P to aquatic ecosystems by erosion is also caus-

ing widespread problems of eutrophication [12, 13]. Using global budget [4] estimated 

the increase in net P storage in terrestrial and freshwater ecosystems to be at least 75% 
greater than preindustrial levels of storage. Large portion of P accumulation occurs as 

a result of increased agriculture intensification, land use change and increased runoff 

[14–16].

2. Sources of phosphorus

Excess phosphorus inputs to lakes usually come from industrial discharges, sewage and run-

off from agriculture, construction sites, and urban areas [6]. The input of P to soil creates the 

potential for an increase in transfer to the wider environment. Phosphorus sources can be 
natural which includes indigenous soil P and atmospheric deposition and/or anthropogenic 
which includes fertilizers, animal feed input to the farm and manure applied to the soil [17]. 

In addition ground water can potentially contribute significant amount of P in water bodies 
driving eutrophication process [18].

As a result of P point source control in many countries the nonpoint P source especially agri-
culture is the main pollutant of aquatic systems [10]. The major source of nonpoint nutrient 
input to water bodies is the excessive application of fertilizer or manure on farm which cause 
P accumulation in soils [4]. Phosphorus retention has been caused by an excess of fertilizer 
and animal feed inputs over outputs of agricultural products [19]. For example [12] indicated 

that less than 20% of P input to the Lake Okeechobee watershed in fertilizers was output in 
agricultural as well as other products.
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3. Forms of phosphorus

Most studies on plant nutrition often consider only inorganic P to be biologically available, how-

ever organic phosphorus is abundant in soils and its turnover can account for the majority of P 
taken up by vegetation [20, 21]. Soil phosphorus exists in a range of organic and inorganic com-

pounds that differ significantly in their biological availability in the soil environment [22]. The 

inorganic P compounds mainly couple with amorphous and crystalline forms of Al, Fe, and Ca 
[23] which is highly influenced by soil pH [24]. The organic phosphorus in most soils is dominated 

by a mixture of phosphate monoesters (e.g., mononucleotides, inositol phosphates) and phos-

phate diesters (mainly nucleic acids and phospholipids), with smaller amounts of phosphonates 
(compounds with a direct carbon-phosphorus bond) and organic polyphosphates (e.g., adenosine 
triphosphate) [25]. Plants can manipulate their acquisition of P from organic compounds through 

various mechanisms, some of the mechanisms allow plants to utilize organic P as efficiently as 
inorganic phosphate [26, 27]. In lake sediment in China, the heavily polluted sediments contained 
higher organic P fractions compared to moderately and no polluted sediments [28]. Increased pH 
can alter the availability of P binding sites on ferric complexes as a result of competition between 
hydroxyl ions and bound phosphate ions [29]. Anoxic condition leads to release of P as a result 
of reduction of ferric to ferrous iron [30]. In addition presence of sulfate could lead to reaction of 

ferric iron with sulfate and sulfide to form ferrous iron and iron sulfide leading to release of P [31]. 

Increased temperature can reduce adsorption of P by mineral complexes in the sediment [32]. 

Other physicochemical processes affecting release of P from the sediment include temperature, pH 
potential, redox, reservoir hydrology and environmental conditions [33]. These physical chemical 

processes are further complicated by the influence of biological processes for example mineraliza-

tion, leading to a complex system governing the release of P across sediment water interface [33].

4. Translocation/mobilization of phosphorus

Phosphorus in most cases enters aquatic ecosystems sorbed to soil particles that are eroded 

into rivers, lakes and streams [34, 35]. Watershed land use and P concentration in watershed 
soils strongly influence potential P pollution of aquatic ecosystems [4]. In addition any factor 

accelerating erosion or elevating P concentration in the soil increases the potential P runoff 
to aquatic systems [34, 35]. Mobilization of P involves biological, chemical and biochemi-
cal processes. The processes are grouped into solubilization or detachment mechanisms and 
are defined by the physical size of the P compounds that are mobilized [17] and it has been 

indicated that the potential for solubilization increases with increasing concentrations for 
extractable P. However, organic P has an important but little understood role in determining 
P solubilization [25]. Detachment of soil particles and associated P is mainly linked to soil ero-

sion, which provides a physical mechanism for mobilizing P from soil into waters bodies [36].

Depending on site conditions diffuse P transport occurs as particulate or dissolved P in 
overland flow, channelized surface runoff, drainage, or groundwater [18]. In ground water 
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P concentration is considered to be low [37]. This is as a result of orthophosphate P being 

adsorbed in the soil and sediment in the vadose or the saturated zone [18]. However, waste-

water has been reported to cause heavy groundwater contamination leading to P elevation 
[38, 39].

5. Consequences of eutrophication

Consequences of eutrophication include excessive plant production, blooms of harmful algae, 

increased frequency of anoxic events, and death of fish, leading to economic losses and health 
implications which include costs of water purification for human and industry use, losses of 
fish and wildlife production and losses of recreational amenities [10, 40]. Some of the conse-

quences of eutrophication includes:

5.1. Food/fishing industry

High level of Lake Eutrophication has led to suffocating of fish population on a massive scale 
with a very negative repercussions on the economy [41]. The total economic loss incurred 

from 1998 algal bloom in the Lake Tai China catchment area was estimated at U.S.$6.5 billion. 
During winter of 2002–2003, a severe oxygen deficit induced a fish kill in the eutrophicated 
two-basin Lake Aimajarvi in southern Finland, which resulted in cascading effects on the 
lower trophic levels of the lake [42].

5.2. Tourism

Coastal areas are an important economic source for tourism [43]. The algal bloom have degraded 

the investment environment and damaged the hospitality and tourism industry [41].

5.3. Human/animal healthy

Toxin producing algae can cause mass mortalities of fish marine mammals, birds and human 
illness through consumption of sea food [44]. It is estimated that 60–80 species of about 400 

known phytoplankton are toxin producing and capable of producing harmful algal blooms 
[8]. In humans, toxins arising from harmful algal blooms have mainly been from shellfish 
consumption [44], bivalve shellfish have been reported to graze on algae and concentrate 
toxins effectively. As a result the poisoning can lead to paralytic shellfish poisoning, diarrhetic 
shellfish poisoning, neurotoxic shellfish poisoning, amnesic shellfish poisoning and azaspi-
racid shellfish poisoning. In addition there are many respiratory complaints from inhaling 
contaminated aerosols [45]. A case reported that in July 2002 teenage boys swam in a blue-
green algae covered golf course in Dane County, Wisconsin. They all became ill, the most 

severe symptoms occurred in the boys who swallowed water. Approximately after 48 h one 
of the boys suffered a seizure and died of heart failure, the coroner identified anatoxin-a as the 
most likely underlying cause of death [46, 47].

In May and June 1998, over 200 California sea lions died and others displayed signs of neu-

rological dysfunction along the central California coast, this was linked to a harmful algal 
blooms [48].
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5.4. Water quality

Harmful algal blooms is a cause of restriction on drinking water, fisheries and recreation water 
uses leading to significant economic consequences [49]. The presence of algal bloom and other 

species have disrupted the normal supply of drinking water in many parts of the world for 
example China [41]. The presence of algal blooms in Lake Tai severely affected industrial and 
agricultural production as well as lives of the urban dwellers. Whereby in 1990 algal bloom 
forced the shutdown of the entire water supply system and triggered a crisis in water secu-

rity for the urban population. The direct economic loss was estimated at about U.S.$30 million. 
Harmful algal blooms present significant challenges for achieving water quality protection and 
restoration goals especially when these toxins confound interpretation of monitoring results and 
environmental quality standards implementation efforts for other chemicals and stressors [49].

6. Phosphorus eutrophication mitigation strategies

There is need to reduce anthropogenic nutrient inputs to aquatic ecosystems in order to reduce 

the negative effects of eutrophication [50]. It has been indicated that reducing P input in the 

water bodies leads to eutrophication mitigation [16, 51] (Table 1) [16]. Derived this conclusion 

from four methods, all long-term studies at ecosystem scales:

i. long-term case histories,

ii. multiyear whole lake experiments,

iii. experiments where chemical treatments are used to remove phosphorus from the water 
column, and

iv. chemical additions to inhibit return of phosphorus from the sediments to the water 
column.

However, [6, 52] argued that P based nutrient mitigation commonly regarded as the key tool 
in eutrophication, in many cases has not yet yielded the desired reductions in water quality 
and nuisance algal growth in water bodies has not reduced in decades of reducing P input. 
[52, 53] argued that these observations could be as a result of:

i. legacies of past land-use management;

ii. decoupling of algal growth responses to river P loading in eutrophically impaired aquatic 
system; and

iii. recovery trajectories, which may be nonlinear and characterized by thresholds and alter-

native stable states.

Therefore, as a result of these contrasting findings there is need in some cases to consider a 
combination of different P mitigation strategies for example employing control of nutrient 
loading, physicochemical and physicomechanical method simultaneously. Control or mitiga-

tion of P eutrophication should encompass multiple components which could include; con-

trol of pollutant sources, restoration of the damaged ecosystem, and catchment management 

[41]. The mitigation strategies includes:
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6.1. Control of nutrient loads

6.1.1. Restructuring of industrial layout

Point source P originating from mines, factories and residence form one of the most important 

sources of P to water bodies [41]. For example Lake Tai in China, its catchment area used to 
be full of heavy industrial polluters, for example, chemical and dye factories. The township 
lacked adequate facilities for treating waste water before disposal. Therefore, to mitigate pol-
lution coming from the industry it is important to shut down heavily polluting industries. 
While as the less polluting plants could be relocated to a designated industrial part to ensure 

centralization and effectiveness in handling pollution control.

Table 1. Examples of fresh waters in some countries where eutrophication decreased following the control of phosphorus 
inputs. Latitudes and longitudes are given. Lakes recovered by using chemicals to precipitate phosphorus are not 
included, modified from [16].
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6.1.2. Farm/field/catchment management

It has been much easier to control point source P, therefore making nutrient discharge from 
agricultural fields the chief source of pollution [41]. As a result nutrient discharge from agri-
cultural fields could be addressed through farm, field and catchment management or ratio-

nalization of land use [41].

6.1.2.1. Farm scale management

In the farm scale environmentally sound fertilizer application and nutrient handing is impor-

tant this would be achieved through appropriate placement and proper timing of application. 
This would result in moderate P levels in the soils. In Addition P input could be reduced 
through increasing digestible P in fodder and reducing total P [51] (Table 2).

6.1.2.2. Field scale management

To avoid transport of particulate P and leaching of P, increase soil storage there is need to 

change soil management. In addition there is need to change crop management in order to 

reduce run off and reduce leaching [51] (Table 3).

Table 2. Mitigation strategies for nutrient management at farm scale. Modified from [51].
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6.1.2.3. Catchment scale management

In the catchment scale eutrophication mitigation strategy would involve water management, land 
use management and landscape management [51]. Water management could be achieved through 

reducing runoff flow and avoiding subsurface leaching. Land use management would involve pro-

tecting vulnerable areas and improving sink and sources of P by changing agricultural use patterns. 
Land scape management would include reducing direct sources of P from farmyard, livestock and 
reducing surface runoff and erosion from field to field within the catchment [51] (Table 4).

6.1.3. Human intervention

It has been demonstrated that often the nutrient load and algal blooms in water bodies 
respond slowly to interventions aimed at controlling external nutrient sources because of the 
nutrients replenished from waterbodies deposits [54]. As a result P could be reduced through 
physiochemical and physicomechanical methods. Whereby the P is trapped and removed 

from the system or trapped on farm and its mobility to aquatic system reduced.

6.1.3.1. Ferric dosing

Reduction in the external P loading for control of algal biomass in the water reservoirs can 
be achieved by the use of ferric dosing. Ferric dosing technique is a physiochemical method 

Table 3. Mitigation strategies at field scale modified from [51].
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and involves the addition of ferric sulfate or alternatives to the pumped input, to precipitate 

dissolved particulate and orthophosphate in the coming water. The system is coupled with 
filtration to remove the ferric/phosphorus floc [33]. Resulting in a significant reduction of P in 
the pumped inputs to the aquatic system.

6.1.3.2. Flushing and dredging of floor deposits

Flushing and dredging of floor deposits is a physicomechanical methods meant to remove 
the already accumulated P from the aquatic system floor [55]. The limitation with both ferric 
dosing and flushing and dredging of floor deposits is that they provide temporal solutions 
and do not address the root cause of the problem. Once the intervention is stopped nutrients 

levels goes back to the former status. However, the success of these methods are dependent 
on their being implemented together with control of nutrient load intervention.

6.1.3.3. Biochar potential in phosphorus adsorption on farm

Application of P on farm has potential to mitigate P eutrophication though P adsorption 
leading to reduction in P translocation (Figure 1). The P adsorption to biochar is favored 

by increased biochar pyrolysis temperature and is biochar biomass species specific [24]. The 

increase of biochar aromatic C (Figure 2) and pH adjustment with high biochar pyrolysis 
temperature is important for P retention [24]. Biochar is a byproduct of biofuel production, 

therefore increased production of biofuel will be consistent with biochar availability in future.

Table 4. Mitigation strategies at catchment scale modified from [51].
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6.2. Aquatic ecosystem restoration

Ecosystem restoration focus on rehabilitating the functionality of the damaged ecosystem and 

it relevant physical, chemical and biological properties [41].

Figure 1. Biochar phosphorus adsorption; from [24].
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6.2.1. Phytoremediation

Ecological restoration may be accomplished through reduction of algae in the water bodies 
through aquatic plants. Being primary producers, advanced aquatic plants and micro-organisms 

compete with each other for ecological resources, such as light, nutrients, and living space. During 
their growth, advanced aquatic plants release chemical substances that are conducive to inhibit-
ing algal production, as well as directly absorbing nitrogen and phosphorus in water. Storage of 
these elements in the plants means that they can be effectively extracted from the water through 
physical removal of these plants from the lake, thus reducing the nutrient level in lake waters [56].

6.2.2. Wetland restoration and constructed wetlands

Wetland restoration and constructed wetlands retain nutrient loss from upstream fields pro-

tecting the aquatic system (Table 5) [51]. Wetlands play a key role in P removal due processes 
that include peat accretion (sorption and burial in soil and sediments), uptake by microbes 
and vegetation and precipitation by iron and aluminum [57–59].

6.2.3. Riparian area restoration

Although [18] indicated that ground water contained elevated P which was a driver of eutro-

phication, there was no clear evidence of the location and sources of the pollution, as a result 

Figure 2. Biochar carbon functional groups as determined by nuclear magnetic resonance (NMR); from [24].
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measure to decrease groundwater derived P loads cannot target the contamination at its source 
in the catchment. Hence the need to implement measures in the riparian area to eliminate 
groundwater P directly before it enters the water body.

6.2.4. River/lake maintenance and restoration

River maintenance and restoration is important in increasing nutrient retention capacity. 

Lake rehabilitation and restoration reduce the P concentration of lake [51] (Table 5).

7. Conclusion

Phosphorus eutrophication is a major environmental problem globally resulting in negative 
impact on the economy, health and tourism sector. Phosphorus eutrophication is caused by 

both point and nonpoint sources of P. In many countries point source of P has been better con-

trolled while nonpoint sources of P which is mainly agricultural sources have been an ongo-

ing major challenge. The excessive P in the farm is a result of excessive fertilizer and manure 
application on farm. Phosphorus has mainly been translocated from the source to aquatic 

systems through run off and leaching and in some isolated cases through ground water. 
There is need to implement mitigation strategies. This chapter recommends implementation 

of measures to control nutrient loads through restructuring industrial layout which is a point 
sources of P pollution. To address nonpoint source of P there is need to implement catchment 

management measures and ecosystem restoration measures. The catchment management 

encompasses farm scale, field scale and catchment scale measures that will either reduce P 
availability for translocation or retain P in the catchment area. Human intervention is equally 
important to ensure removal of P from already contaminated aquatic system or prevention of 

P translocation to the water bodies; human intervention includes ferric dosing, flushing and 
dredging of floor deposits and biochar application on farm. The human intervention espe-

cially ferric dosing and flushing and dredging of floor deposits has limitation because once 
intervention is abandoned the P status could easily revert to pre-intervention status. Previous 

Table 5. Mitigation strategies in aquatic ecosystems. From [51].
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studies indicate contrasting finding on the success of the mitigation strategies, whereby some 
reported success while others indicated no response to P eutrophication mitigation. As a 
result, it seems there is need in some cases to combine multiple eutrophication mitigation 

interventions for example control of nutrient loading, physicochemical and physicomechani-

cal interventions in order to take care of legacy P and ensure successful mitigation process.
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