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Abstract

In this study, a methodology for optimal sizing of waste heat recovery (WHR) systems is
presented. It deals with dynamic engine conditions. This study focuses on Euro-VI truck
applications with a mechanically coupled Organic Rankine Cycle-based WHR system. An
alternating optimization architecture is developed for optimal system sizing and control
of the WHR system. The sizing problem is formulated as a fuel consumption and system
cost optimization problem using a newly developed, scalable WHR system model. Con-
straints related to safe WHR operation and system mass are included in this methodology.
The components scaled in this study are the expander and the EGR and exhaust gas
evaporators. The WHR system size is optimized over a hot World Harmonized Transient
Cycle (WHTC), which consists of urban, rural and highway driving conditions. The
optimal component sizes are found to vary for these different driving conditions. By
implementing a switching model predictive control (MPC) strategy on the optimally sized
WHR system, its performance is validated. The net fuel consumption is found to be
reduced by 1.1% as compared to the originally sized WHR system over the total WHTC.

Keywords: scalable models, component sizing, control, heavy-duty diesel engine

1. Introduction

Heavy-duty (HD) engines are the workhorse in the transport sector. Driven by societal con-

cerns about global warming and energy security, this sector faces enormous challenges to

dramatically reduce green house gas emissions and fuel consumption over the upcoming

decades. In the EU, CO2 legislation for HD vehicles is in preparation. For 2050, a 60% CO2

reduction sectorial target is set.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



To meet these challenging targets for trucks, besides vehicle and logistic measures, increase of

the powertrain efficiency is an important research area. In modern diesel engines, around 25%

of the fuel energy is converted into heat and is wasted with the exhaust gases into the environ-

ment. Extracting this energy and converting it into useful propulsion energy will potentially

lead to significant reductions in fuel consumption.

The Organic Rankine Cycle (ORC) seems a promising waste heat recovery (WHR) technology

for heavy-duty applications [1, 2]. For future implementation, further optimization of the cost-

benefit ratio is crucial. More precisely, optimal sizing of the WHR system is necessary to

maximize the WHR power output and fuel economy of the vehicle. However, this is challeng-

ing, since there are many factors that affect the optimality of WHR system size, including:

driving conditions, system constraints, and the control strategy. In [3], it is shown that dynamic

operating conditions play an important role for optimization of WHR systems, especially in

truck applications. A huge gap was observed between predictions based on steady-state and

dynamic conditions. Similar results are found in [4]: performance evaluation in steady-state

operating points derived by driving cycle reduction tends to overestimate the fuel gain

induced by the WHR system. In addition, the coupling between system and control design

has to be dealt with.

In the literature, publications dedicated to topology design and architecture, control and

integration with the powertrain system can be found for ORC-based WHR systems in auto-

motive applications. The studied physics-based models [5–9] are based on stock component

models, which are already available commercially. The size of the components is chosen based

on the packaging requirements and cost. In summary, models with scalable components and

component sizing approaches are lacking.

In this study, a new methodology is presented for optimal component sizing of WHR systems

in the presence of highly dynamic engine conditions. The main goal is to minimize overall

powertrain fuel consumption, while meeting safety constraints. This study is an extension of

the work done in [10], where models and control techniques are developed to enable waste

heat recovery for a Euro VI heavy duty diesel engine. By following an alternating optimization

approach, system and control design is separated. A general optimization framework is

defined that deals with the impact of component size on overall fuel consumption, system

costs and system mass. A new, scalable WHR system model is proposed to support this

optimization methodology. It is noted that the optimization is performed using a stand-alone

WHR system, since it is seen from our research that this does not affect the optimality of the

results, compared to using the complete powertrain model.

This work is organized as follows. The studied engine with WHR system and the general

WHR optimization problem are introduced in Sections 2 and 3, respectively. Section 4 presents

the scalable WHR system model. In the proposed alternating optimization approach, optimal

component sizing and control design are split. Section 5 introduces the sizing optimization

problem, which is followed to determine optimal scaling factors for evaporators and expander

using the developed, scalable WHR model. For a switching MPC controller, the optimally

sized WHR system performance is validated over the hot start World Harmonized Transient

Cycle (WHTC) in Section 6. Finally, the main conclusions are summarized in Section 7.
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2. System description

Figure 1 shows the studied system, which is based on a 13 liter, 6 cylinder Euro-VI heavy-duty

diesel engine. This engine is equipped with common rail fuel injection, a high-pressure exhaust

gas recirculation (EGR) system, variable turbocharger geometry (VTG) and an aftertreatment

system. This aftertreatment system consists of a diesel oxidation catalyst (DOC), a diesel

particulate filter (DPF) and a selective catalytic reduction (SCR) system with ammonia oxida-

tion catalyst (AMOX).

A waste heat recovery system is installed that recovers heat from the EGR line as well as the

line downstream of the aftertreatment system using an EGR and Exhaust Gas (EXH) evapora-

tor, respectively. The working principle of this WHR system is based on an Organic Rankine

Cycle (ORC). The working fluid is ethanol. It is pumped from the open reservoir, which is at

ambient pressure, through the evaporators by two electrically driven pumps. In the evapora-

tors, heat is extracted from the exhaust gases and is used to vaporize the ethanol. This vapor

expands in the two-piston expander and generates mechanical power. Note that the expander

is mechanically coupled to the engine crankshaft. The expander is said to operate safely if

vapor state is maintained before the expander, that is, the working fluid must be in super-

heated state. The presence of droplets can damage the expander. After expansion, the working

fluid is cooled in the condenser. The resulting liquid working fluid flows back to the reservoir,

where it is stored at atmospheric pressure. For WHR system control, both pumps are used. A

throttle valve ut at the expander inlet is also available to accommodate gear shifting. When the

driver’s requested power is less than the net power delivered by the WHR system, Preq ≤Pwhr,

Figure 1. Scheme of the complete powertrain with WHR system [11].
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this valve is closed to avoid unwanted torque responses. In this study, this valve is maintained

at fully opened position, since we focus on realizing maximum power output. The system

pressure is limited to 60 bar by a pressure relief valve. The EGR valve ug1 is controlled by the

engine control unit (ECU), whereas the exhaust gas bypass valve ug2 is controlled, such that the

condenser cooling capacity is not exceeded.

In previous work [10], an electrified WHR system is also studied. This WHR system is

equipped with a battery for energy storage, and the expander is coupled to a generator instead

of the engine crankshaft. However, to demonstrate the potential of the WHR component sizing

methodology, the configuration shown in Figure 1 is chosen. This configuration is more

attractive for short-term application due to its relatively low system costs and complexity.

3. Optimization problem

3.1. General problem definition

The high-level objective of this study is to minimize fuel consumption of the overall powertrain

by optimal sizing and control of WHR system components over a transient drive cycle, while

guaranteeing safe operation. In other words, optimal component scaling factors (λi) in combina-

tion with optimal speed settings for both pumps (ωp1 and ωp2) have to be determined:

minimize
ωp1,ωp2,λi

ðtf
0

_mfuel tð Þdt (1)

where tf is the duration of drive cycle. The fuel mass flow is a function of engine torque τe,

engine speed Ne and EGR valve and VTG positions:

_mfuel ¼ f τe;Ne;EGR%;VTG%ð Þ (2)

The dynamic model of the engine with WHR system is shown in Figure 2. This scheme

illustrates the components and their interaction. Ambient temperature and pressure (Tamb and

patm), the requested engine speed Nd and the torque τd associated with the drive cycle are the

external model inputs (in green). The variables to be optimized, that is, control inputs ωp1,2 and

scaling parameters λi, are indicated in blue.

To meet the torque request τd, the required engine torque is given by:

τe ¼ τd � τwhr (3)

with the torque τwhr provided by the WHR system:

τwhr ¼
Pwhr

ωe
¼

P exp � Pp1 � Pp2

ωe
(4)
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As this study focuses on maximizing the WHR system performance, the fuel consumption in

Eq. (2) can be reduced by lowering the engine torque τe. This is done by maximizing the net

WHR power output Pwhr, Eq. (3)–(4). The external inputs to the WHR system are the EGR and

exhaust gas flows from the engine and aftertreatment system, which are also a function of

τe, Ne, EGR and VTG positions.

In conclusion, a combined design and control optimization problem is formulated:

Problem 1

minimize ωp1,ωp2,λi

ðtf
0

Pwhr tð Þdt

subject to : ωmin
p ≤ωp1,p2 tð Þ ≤ωmax

p

λmin
i ≤λi ≤λ

max
i ; i ¼ 1…nf g

Tout
egr tð Þ ≥ 120 ∘C

Tf 1,2 tð Þ ≤ 270 ∘C

χf tð Þ ≥ 1 (5)

with optimization variables:

Figure 2. Scheme of the dynamic model for the studied engine-WHR system. WHR-related components are indicated by

red blocks.
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• Pump speeds ωp1 tð Þ and ωp2 tð Þ, which control the mass flow rate of the working fluid

required to extract heat energy from both the evaporators;

• Design variables λi: these time-independent scaling factors are applied to vary the size of

different components of WHR system, where n is the number of components to be scaled.

This optimization problem is subject to the following constraints:

• ωmin
p and ωmax

p are the minimum and maximum pump speeds to limit the mass flow rate of

working fluid in the WHR system;

• Exhaust gas temperature Tout
egr tð Þ at the EGR evaporator outlet should be more than 120 ∘C

to prevent condensation;

• Ethanol temperature should always be less than 270 ∘C to avoid degradation;

• χf tð Þ is the vapor fraction of the working fluid, which is given by:

χf ¼
hf � hl pf

� �

hv pf

� �

� hl pf

� � (6)

where hl pf

� �

and hv pf

� �

denote the specific saturated liquid and vapor enthalpy, respectively,

as a function of system pressure pf . To avoid damage by droplets, this fraction should be larger

than 1 at the expander inlet.

Note that maximizing the WHR system power output by optimizing component sizes can lead

to an increase in the needed cooling power in the condenser. However, in this work, we

assume that this cooling capacity is always available (ideal condenser).

3.2. Optimization methodologies

The problem stated above is nonconvex and highly nonlinear where both control and design

parameters are optimization variables. For combined plant and control design problems, three

approaches can be distinguished [12]:

• Alternating plant and control design: the plant is optimized first, which is then followed

by an optimal control design. Subsequently, this process is repeated until the coupled

variables converge;

• Nested optimization: the control design is nested within the plant design, that is, for each

evaluation of the plant, the controller design is optimized. Often, nested optimization

architectures are also called bi-level, referring to the two design layers;

• Simultaneous optimization: optimization of plant and controller design is done simulta-

neously, that is, solving Eq. (5) all-in-one.

The WHR system shown in Figure 1 is controlled by a switching model predictive control

(MPC) strategy. With an alternating optimization architecture, an MPC tuned for one system

Organic Rankine Cycle Technology for Heat Recovery84



size might not be functional for a different size, due to the changing heat exchanger system

dynamics. When using a nested framework, for every evaluation of plant design, multiple

MPCs must be obtained covering the WHR operating area. Moreover, high tuning effort is

required to implement a switching MPC strategy to obtain good disturbance rejection.

Due to the high complexity of the optimization problem, the alternating optimization method

is selected in this study. The main reasons are as follows: applicability to other WHR systems

topologies and possibility to sequentially run the controller and plant optimization, which

reduces the instantaneous computational burden.

Remark 1.

The sizing optimization requires significant controller tuning effort for different plant sizes. Therefore, a

size independent feed forward controller is necessary to significantly reduce the tuning effort and thus

the computational complexity of the optimization problem. Even though a feed forward controller does

not give the full performance, it is still representative for solving sizing problems. Moreover, in Section 6,

we will show that using such a controller produces results with acceptable validation properties.

3.3. Feedforward pump control

The low-level pump controllers have to guarantee that the working fluid at the expander inlet

is at superheated state: χf ≥ 1. Both pumps control the mass flow of the working flow through

the evaporators and by that the heat transfer between the exhaust gas and the working fluid.

The discussed MPC strategy needs relatively high tuning effort when the WHR system has to

be simulated on a grid of design points.

Considering these issues, a feed forward (FF) pump controller is introduced, which is inde-

pendent of the plant size. It is based on the measured EGR and exhaust gas heat flows from the

engine, measured temperature of the working fluid at the evaporator inlet, and the working

fluid system pressure. For stationary conditions, the amount of heat that needs to be trans-

ferred from the exhaust gas to the working fluid is determined from the energy balance:

_Qg �
_Qg, loss ¼

_Q f (7)

where _Qg is the heat flow from the exhaust gas, _Qg, loss are the heat transfer losses and _Qf is the

heat flow toward the working fluid. From this equation, the required working fluid mass flow

can be determined, using:

_m f ¼

_Qg �
_Qg, loss

h
ref
f out

� hf in

(8)

where hfin is the actual enthalpy of the working fluid at the evaporator inlet and href
fout

is the

estimated enthalpy of the working fluid corresponding to a post-evaporator temperature of

10 ∘C above the saturation temperature. The feed forward pump controller realizes this

required working fluid flow.
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4. Scalable WHR system model

In this section, the Waste Heat Recovery model from [13] is made scalable for component size.

For each component, the physical parameters that have the biggest impact on the WHR power

output are identified to scale the overall size of these components. The WHR system model is

described using a component-based approach. The pumps and expander are map-based com-

ponents. The remaining components, that is, evaporators, condenser, valves, and pressure

volumes, are based on conservation of mass and energy principles.

The following assumptions are made in the model:

• Transport delays and pressure drops along the pipes are neglected;

• Change in exhaust gas density as a function of temperature and pressure is neglected;

• Pressure dynamics in the heat exchangers are not considered because of small time scales

compared to temperature phenomena;

• Temperature along the transverse direction is considered to be uniform for both exhaust

gas and working fluid;

• Condenser model is ideal, such that the reservoir provides the working fluid at an ambi-

ent pressure of 1 bar and temperature of 65 ∘C. Hence, condenser sizing is not considered

in this study.

4.1. Pumps

There are two identical pumps in the WHR system to pump the working fluid from the

reservoir to the EGR and exhaust gas evaporators. Pumping power Pp1,2 is directly propor-

tional to the displacement volume and rotational speed of the pump. Thus, it can be inferred

that a smaller pump can rotate at higher rotational speeds to meet the demands of mass flow

rates of working fluid, while maintaining the same pressure difference without necessarily

affecting the power output. Therefore, any variation in their displacement volume would not

affect the required working fluid mass flow rate for the same operation cycle. Hence, sizing of

the pumps is not considered here.

4.2. Expander

The expansion process in the two-piston expander is illustrated in Figure 3. This cycle consists

of two isobaric strokes (1!2 and 4!5), two isentropic stokes (2!3 and 5!6) and two

isenthalpic mass transfers at the end of the strokes (3!4 and 6!1).

The expander power is ideally calculated by multiplying net work done in the cycle with the

expander speed, given by

Pexp, ideal ¼ Wnet, ideal �
N exp

60
(9)

where
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Wnet, ideal ¼ W12 þW23 þW45 þW56 (10)

Using the ideal gas law, work delivered for different sub processes in the cycle are given by [14]:

W12 ¼ p � V2 � Vheadð Þ

W23 ¼
pVκ

2

1� κð Þ
�

1

Vhead þ Vdð Þκ�1
�

1

Vκ�1
2

 !

W45 ¼ patm � V5 � Vhead � Vdð Þ

W56 ¼
patmV

κ

5

1� κð Þ
�

1

Vheadð Þκ�1
�

1

Vκ�1
5

 !

(11)

where κ is the adiabatic index, and patm is the atmospheric pressure.

The physical parameter that is affecting the power output of the expander is its volume, as

indicated by Eq. (11). Thus, applying the same scaling factor to Vhead and Vd, will change the

overall dimensions of the expander. By applying the scaling factor to these volumes, it is assumed

that the bore-to-stroke ratio of the cylinder is not changed. Hence, new volumes are defined:

V∗

head ¼ λ exp � Vhead

V∗

d ¼ λ exp � Vd

(12)

To keep the valve timings of the expander same as the original system, the same scaling factor,

λ exp is applied to V2 and V5.

Figure 3. p-V diagram of the expansion process (V2 ¼ VIC: intake valve closing volume; V5 ¼ VEC: exhaust valve closing

volume; Vhead: clearance volume; Vd: displacement volume).
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V∗

2 ¼ λ exp � V2

V∗

5 ¼ λ exp � V5

(13)

The ideal physics-based model of the expander deviates from the measurements because the

model simulates an ideal cycle, and a number of adverse effects are not taken into account, for

example, drag in the outlet, formation of droplets, Van der Waals interactions and volumetric

efficiency. Hence, a steady state physics-based model of the expander was estimated in [14]

based on the measurement data. This data were obtained during steady-state dynamometer

testing for different values of expander speed N exp and system pressure pf [10]. Results for

different expander sizes are provided by the expander manufacturer. It suggests that the

nominal power output increases linearly with increase in displacement volume. This is due to

the modular design of the expanders. Therefore, for this study, the losses Ploss are considered

equal for different expander sizes (λ exp ), so Figure 4 is used:

Pwhr ¼ Pwhr, ideal � 1� Ploss N exp ; pf

� �h i

(14)

4.3. Evaporators

The evaporator model [15] is based on the conservation principles of mass and energy. To scale

the evaporators size, the scaling factor needs to be applied on the volume of the evaporator.

And the volume of evaporator can be varied by changing either length or width or height of

the evaporator. The general structure of the studied evaporator is shown in Figure 5.

Figure 4. Expander power losses.
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Scaling factors λl, λw and λh are applied to length l, width w and height h of the evaporators:

lnew ¼ λl � l

wnew ¼ λw � w

hnew ¼ λh � h

(15)

Consequently, the following model parameters are affected. The number of plates inside the

evaporator will vary, when its height is changed,

np,new ¼ λh � np (16)

Note that number of plates should be a discrete number, that is, np,new ∈N. But in this study, it

is varied continuously with the scaling factors, as it does not affect the end results.

In addition, the surface area available for the working fluid to extract the heat energy from

exhaust gases through the wall or plates is affected:

Sf ¼ 2 � np,new � wnew � lnew (17)

This also impacts the surface area available for the exhaust gas to transmit its heat to the

working fluid through wall or plates, which is given by:

Sg ¼ Sf þ Sg, fins (18)

where Sg, fins is the surface area of fins at exhaust gas side. The surface area of the wall is linear

dependent on evaporator length and width:

Sw ¼ lnew � wnew (19)

Finally, the flow cross-sectional area, Ai is given by,

Ai,new ¼ wnew � hnew i ¼ fluid; gasf g (20)

Accordingly, the Reynolds number for the working fluid and gas side is affected:

Figure 5. Exhaust gas recirculation heat exchanger modular design.
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Rei ¼
_mi � dhi

Ai,new � ηi
(21)

where ηi is the viscosity, dhi is the hydraulic diameter, that is, outer gap height of one plate and

_m i is the mass flow rate of the working fluid and gas. The heat transfer coefficient αi for the

working fluid and exhaust gas also depends on Ai,new:

αi ¼
Nui �Λi

dhi
¼

Nui
Rei

�

_m iΛi

Ai,new � ηi
(22)

where Λi is the thermal conductivity of the working fluid and exhaust gas.

For varying evaporator length, there will be no change in the flow cross sectional area as well as in

the exhaust gas side cross sectional area. As a result, there will be no effect on Reynolds number,

Re, and the Nusselt number, Nu, which is directly proportional to Re. The surface areas available

for exhaust gas and working fluid increase with increasing l and vice versa (see Eqs. (17)–(19)).

These areas directly affect the working fluid temperature at the evaporator’s outlet.

The cross-sectional areas Ai,new varies with width as well as with height and is inversely

proportional to the heat transfer coefficients αfluid and αgas. The surface areas Sf and Sg increase

with w and h and, hence, the working fluid temperature at the evaporator’s outlet will behave

in the same direction through equations for conservation of energy. However, Sw will stay the

same with change in height, because the number of plates will change with this dimension.

With the introduced scaling factors, the evaporator size can be changed by varying its length,

width or height depending on the requirements from the system, input heat flows, and type of

working fluid. These three parameters have different impact on the evaporator’s performance.

Therefore, a sensitivity analysis has to be done to select the parameter that has the most

positive impact on WHR system power output.

5. WHR system size optimization

This section presents a methodology to optimize component size for WHR systems under

transient driving conditions. Figure 6 gives an outline of the approach that is followed in this

study. The scalable WHR system model developed in the previous section is crucial input for

this approach. From a sensitivity analysis for the exhaust evaporator, scaling of the evaporator

length is identified as the most promising route to maximize WHR power output. Details can

be found in [16]. As a result, evaporator width and height will be set to their original system

values in the sequel of this study. In summary, the following parameters are considered for

optimal component sizing in order to maximize WHR power output:

• Expander scaling λ exp ;

• Exhaust gas evaporator length scaling λexh;

• EGR evaporator length scaling λEGR.
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The component sizes are optimized based on fuel consumption and investment cost criteria. In

the next section, the alternating optimization method is described in detail. The optimal sizes

λopt that are finally determined are input for the overall performance analysis with switching

Model Predictive Control (MPC) strategy in Section 6.

5.1. Alternating system optimization

Optimizing the controller and plant iteratively to converge the coupled variables can be

computationally too expensive. Therefore, an alternating architecture is followed for only one

complete loop, see Figure 7. The controller designed for a specific WHR system will give

different performance for a resized WHR system. Consequently, the feed forward controller

from Section 3.3 is applied, which calculates the pumps speeds, such that χf ≥ 1 at the outlet of

both the evaporators for given engine exhaust heat flows. Although with lower performance

Figure 6. Approach for optimal sizing and control of WHR systems.

Figure 7. Optimization architecture.
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compared to PI control or MPC, it is seen to maintain the same trend for fuel consumption with

different components sizes, without affecting the optimality of WHR system components sizes.

The standalone WHR system with feed forward controller is simulated on a 3D design grid of

different sizes of EGR evaporator, exhaust evaporator and expander for a hot-start WHTC.

WHR system performance is strongly affected by operating conditions. Therefore, besides

overall (complete cycle) performance, also optimization is performed on urban, rural and

highway driving parts, which are illustrated in Figure 8. The design grid is chosen such that:

(1) it captures the main trend in outputs due to component sizing and (2) costs and total

system mass remain acceptable. For the scaling factors, the following grid is chosen: λEGR ¼

λexh ¼ 0:4 : 0:1 : 1:5½ � and λ exp ¼ 0:4 : 0:1 : 2:5½ �.

5.1.1. Objective functions

Using exhaustive search, also referred to as brute force search, the WHR system performance is

determined for each point on the grid. To obtain the optimal size of the plant, the following

objective functions are defined:

• Fuel consumption (FC), which is determined from Eqs. (2)–(3). For the specified design

space, WHTC results are summarized in Figure 9. Note that the net fuel consumption is

normalized by using engine-only (without WHR system) results. Minimal fuel consump-

tion is found at maximum evaporator size, although the reduction in fuel consumption

decreases with increasing size. For highway conditions, where engine exhaust heat flows

are relatively high, fuel economy increases for increasing expander sizes. The exhaust

evaporator’s size has a significant impact on fuel consumption, especially in the urban

Figure 8. Engine torque, engine speed and heat flows for hot start WHTC.
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region. Due to low exhaust gas heat flows in this region, the time for the working fluid to

extract heat increases with increase in length (or surface area) of evaporator.

• Specific investment cost (SIC, in €/kJ): in this study, we focus on installation (Costlabor)

and material and production cost of the components (Costcomp) corresponding a specific

WHR energy output:

SIC ¼
Costlabor þ Costcomp

Ð tv
0 Pwhr tð Þdt

(23)

where Pwhr tð Þ is the instantaneous net WHR power output and tv is cumulative time in

vapor. For the evaporators and expander, cost correlations are taken from [17]:

Costevap ¼ 190þ 310 �Aevap � λevap

Cost exp ¼ 1:5 � 225þ 170 � V exp � λ exp

� �
(24)

These equations clearly show that the component costs are proportional to the scaling

factors to be applied. The cost of other components, such as pumps, piping, condenser

and valves, are not included in the SIC. Their sizes are assumed to be fixed in this study,

which will not affect the objective function. For SIC, similar graphs are generated as for

FC. From these results, it is concluded that λEGR has negligible effect on SIC, whereas λ exp

has the biggest impact, because of its dominant share in the total system cost. Details can

be found in [16].

Figure 9. Normalized fuel consumption for different sizes of WHR system components on different driving conditions

from hot-start WHTC.
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5.1.2. Sizing optimization problem

Having defined the objective functions for FC and SIC, the optimization problem boils down

to:

min
λexh,λEGR,λ exp

J (25)

subject to,

megr λEGRð Þ þmexh λexhð Þ þm exp λ exp

� �

≤Mmax
tot (26)

where the multi-objective function J is given by:

J ¼

Ð tf
0 _m fueldt

SIC

8

>

>

<

>

>

:

(27)

Note that mass of the WHR system is directly proportional to the components sizes and

directly affects the overall load carrying capacity of a truck. Therefore, a limit, Mmax
tot , is defined

on the component mass associated with sizing.

5.1.3. Sizing optimization for different system mass

As a next step to solve Eqs. (25)–(27), optimal λ setting is determined for different mass

constraints Mmax
tot . This is done using the lambda sweep plots for FC as well as SIC, similar to

Figure 9. For each objective function, the best λEGR,λexh and λ exp combination is determined,

which gives lowest FC or SIC while meeting a varying Mmax
tot . Figure 10 shows an example of

results for using the FC objective function. The resulting scaling parameters are given for four

different operating conditions associated with the hot WHTC. For the overall WHTC, the

corresponding fuel consumption is shown in the lower plot. Similar plots are made for SIC.

5.1.4. Best WHR sizing per objective function

Final step in the optimization approach is to select Mmax
tot . For the purpose of benchmarking, the

optimal component sizes associates with the two different optimization criteria are compared for

a mass constraint equal to the original mass of the system: Mmax
tot = 210 kg, which is indicated in

the plots of Figure 10 by the blue vertical lines. The results of this final step are summarized in

Figure 11.

The results clearly indicate that different operating conditions and different optimization

criteria lead to different component sizing. However, optimal exhaust evaporator size is

smaller (i.e., λexh < 1) than its original size for all the driving conditions and both FC and SIC

optimization. The exhaust evaporator has the biggest mass of the three scaled components.

Although longer exhaust evaporator have better performance, the increment reduces with
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increasing λexh. Hence, Mmax
tot plays a bigger role in sizing because increasing the size of other

components is much more beneficial in terms of energy recovery.

Apart from highway driving conditions, the optimal scaling of EGR evaporator is found to be

bigger than the original one. During highway driving, the amount of heat that needs to be

extracted from the exhaust gases is high, which leads to higher ethanol flows. The results

Figure 10. Optimal component sizes to realize minimal fuel consumption for different mass constraints.

Figure 11. Optimal components sizes for Mmax

tot
¼ 210kg and for different objective functions.
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indicate that the original evaporator is over dimensioned for this condition. For urban and rural

conditions, where exhaust heat flows are low, the ethanol flow needs to be low to extract the

maximum amount of heat. However, when mass flows reach the lower boundary condition and

no vapor is generated, increased evaporator length would provide more surface area and hence

more time for the working fluid to extract heat. This effect is confirmed for the EGR evaporator

with bigger optimal sizes for urban and rural regions. As these regions play an important role in

the overall cycle result, it is expected that similar λEGR is found for the overall cycle.

The optimal expander scaling is found to be bigger than the original one for all driving

conditions. This especially holds for FC optimization. For highway conditions, λ exp is twice

the original one due, in order to exploit the high heat flows. The expander has the biggest

impact on WHR system performance. With mass comparable to other components, this leaves

room for increasing λ exp .

Finally, these results also indicate that optimal sizing of a single component strongly depends

on the performance of all components. Interaction between evaporators and expander as well

as the total mass constraint play an important role.

5.2. Selected optimal scaling of WHR components

In order to make a final decision on optimal component scaling, a trade off has to be made

between the optimization criteria. Therefore, the impact on FC and SIC are analyzed for both

criteria. Focus is on the overall cycle result, since this is assumed to be representative for real-

world performance. As expected, fuel consumption can be reduced by 0.85% compared to the

originally sized system (and 2.78% compared to engine-only mode) in case of FC minimiza-

tion. In case of SIC minimization, compared to the original system, there is no FC reduction,

but system costs are reduced by 25%. The SIC of the FC optimal system is 60 €/kJ higher than

that for the SIC minimal case.

Comparison of both cases learns that the additional system costs associated with the FC

minimum case, requires an additional 1 month truck operation for return on investment.

Therefore, the final optimal components scaling for the WHR system are based on the values

for FC minimization:

λexh,opt ¼ 0:63 λEGR,opt ¼ 1:47 λexp ,opt ¼ 1:50 (28)

These values will be used in the sequel of this study.

6. Simulation results

In this section, the switching MPC strategy from [18] is applied to the standalone WHR system

with optimal component sizes. A comparison is made with the original WHR system. The

MPC strategy is first evaluated on a simple stepwise cycle data from a real Euro VI heavy-duty

diesel engine and then on a hot-start World Harmonized Transient Cycle (WHTC) [16].
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Considering the real time system dynamics of WHR system, the controller sampling time is

chosen to be Ts ¼ 0:4 seconds. The prediction and control horizon areNy ¼ 50 andNu ¼ 4 time

steps, respectively, for all the three linear models.

6.1. Controller performance validation

The proposed switching MPC strategy is validated on the highly dynamic, hot start WHTC.

Disturbances from the engine, that is, engine speed and EGR and exhaust gas heat flows, are

inputs for the simulation. The objective of the controller is to maintain vapor state. However,

due to the highly dynamic disturbances and limitations of the control input, it is challenging to

achieve this target for all the time. To avoid damage, the expander is bypassed using the

bypass valve, such that net power output: Pwhr ¼ 0.

Figure 12 shows the vapor fraction after EGR and EXH evaporators, and the mixing junction

for the original and optimized system. Vapor fraction is not meeting the reference (indicated by

dashed line) between 200 and 400 s, due to the low heat flows in the urban region. However,

the controller shows improved overall performance in terms of disturbance rejection, where

the controller specifications, χf ,mix ≥ 1, are met with short periods of time reaching at 0.9

(around 800 and 1200 s).

Figure 12. Comparison of vapor fraction after the EGR and EXH evaporators, mixing junction for MPC strategy between

original and optimally sized system (with vapor fraction according to Eq. (6)).
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The main objective of MPC tuning is to keep the vapor fraction of working fluid after both the

evaporators’ outlets close to reference data with good disturbance rejection properties. Due to

different system dynamics, the values of the weighting matrices WΔu and Wy vary from the

original to the optimally sized system. Hence, the performance of the two controllers, that is,

MPC for original system and optimally sized system, is quantified in terms of net thermal

energy recovered and total time in vapor state, tv for different parts of the WHTC. Figure 13

illustrates that the optimally sized system outperforms the original system in terms of recov-

ered thermal energy for all the driving conditions. Note that the recovered energy is almost

doubled when complete cycle is considered. This is due to the increased expander size leading

to more power output. In terms of time in vapor, both systems behave similarly, with slightly

increased tv for the optimal system over the full WHTC.

6.2. Powertrain performance validation

The net fuel consumption results for the studied cases are compared with the engine only

mode in Figure 14. The original sized WHR system gives a 1.94% reduction in fuel consump-

tion using the feed forward controller (λi ¼ 1 FFð Þ). An additional 0.8% reduction is found in

Figure 13. Performance indices in terms of recovered thermal energy (left) and time in vapor (right) compared with

original system.

Figure 14. Fuel consumption for different driving conditions from hot-start WHTC.
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case a switching MPC strategy (λi ¼ 1 MPCð Þ) is applied. The optimally sized WHR system

with feed forward control strategy (λi ¼ optimal FFð Þ) reduces fuel consumption by 2.78%.

Using a switching MPC strategy (λi ¼ optimal MPCð Þ) gives a fuel consumption reduction of

3.82% as compared to the engine only mode. In summary, by optimizing the size of WHR

system components, an additional 1.08% reduction in fuel consumption can be achieved

compared to the original WHR system using the methodology given in this study.

7. Conclusions

A methodology for optimal components sizing is presented for waste heat recovery systems

operated during dynamic engine conditions. Optimality was defined in terms of minimizing

the fuel consumption of the overall powertrain system. The main challenge in developing this

methodology is the coupling between system design and control parameters. Focus is on Euro-

VI heavy-duty engines with a mechanically coupled WHR system. Based on this work, the

following conclusions are drawn:

• An existing WHR system model [13] is extended with a detailed expander model and is

made scalable for component size. Expander volume as well as evaporator length, width

and height can be varied;

• Sensitivity analysis shows that length is the most promising route to optimize power

output for evaporators;

• An alternating optimization architecture is presented, which uses the standalone, scalable

WHR system model. This methodology combines an constrained optimization problem

based on fuel consumption, system costs and system mass considerations with a feed

forward pump controller in order to isolate system design from control design;

• This methodology is successfully followed for optimal design and control of WHR

system for transient driving conditions while satisfying safe operation. The compo-

nents scaled in this study are EGR and exhaust gas evaporator, and expander. Different

optimal component sizes are found for city, urban, rural and overall hot-start WHTC

driving conditions;

• By implementing a switching model predictive control (MPC) strategy on the optimally

sized WHR system, time in vapor state is identical, while the net fuel consumption, as

compared to the originally sized WHR system, is reduced by:

• Overall hot-start WHTC: 1.08%.

• Urban: 0.30%.

• Rural: 1.46%.

• Highway: 1.61%.
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