
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

Chapter 1

Introductory Chapter: Petri Nets in Science and
Engineering

Raul Campos-Rodriguez and Mildreth Alcaraz-Mejia

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.79309

1. Introduction

The Petri nets are one of the most widely used methods for the study of the dynamics that falls

within the category of Discrete Event Systems (DES) [1]. The DES is a class of systems that are

guided by the occurrence of events asynchronous in time, which are becoming more and more

relevant nowadays. The Petri nets are graphically represented as a directed graph, with two

classes of nodes, called places and transitions. The places allow capturing the state of a system.

They also represent the conditions required by the events to occur, or to execute, in the DES.

The transitions represent the events, or actions, executed in a system. The execution of the

transitions may require one or more conditions to be activated. Moreover, it is possible that a

transition does not include input places, as t1 in Figure 2. This class of transitions allows

capturing situations in a DES where an event may be random or stochastic, for example, the

arrival of an information package in a communication channel. The explanation of the Petri net

in Figure 2 will be addressed lather in this section, after the introduction of the system that it

represents.

Figure 1 depicts a conceptual diagram of a multitasking manufacturing system [6]. The system is

supplied with the raw material from two conveyors, C1 and C2. A robot arm distributes the raw

material to either a mill machine or to a lather machine, depending on the manufacturing recipe.

The semi-finished pieces are then moved by transporting bands to the assembly machine.

Figure 2 depicts a Petri net model for this multitasking manufacturing system. The supply of

the raw material is represented as two transitions with no inputs. In means the material may

arrive at any time that the inventory of raw pieces is able to feed the manufacturing system.

The robotic arm moves the raw pieces to the mill machine, by means of t4, or to the lather

machine, by means of t5. The semi-finished pieces are moved to the assembly station to

produce a final product.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Figure 1. A multitasking manufacturing station. The system is supplied with raw material from two inventories C1 and

C2. A robotic arm moves the raw pieces to the mill machine or to the lather machine depending on a manufacturing

recipe. The robotic arm then moves the semi-finished pieces to the assembly station (AS), where final products are

produced.

Figure 2. A Petri net model for the multitasking manufacturing system. The model is divided into a supply section, a

robot section, lather and mill sections, and assembly section. The supply raw material is handled by a robotic arm that

moves it to the lather t5ð Þ or mill t4ð Þ machine depending on a recipe. The semi-finished pieces are routed to the assembly

machine by three different ways. Once the final product is assembled, t18 moves the products to the store section.

Petri Nets in Science and Engineering2

Depending on what is the interest of study of the system, for example, the design of control

strategies or the evaluation of performance of the assembly recipe, the model in Figure 2 could

be refined or extended. Even new sections of the assembly system may be added to the Petri

net model.

The manufacturing system and assembly lines, as well as communication protocols, are some of

the most popular type of systems that are modeled and studied with Petri net models [8–10].

However, other types of systems such as workflowmanagement or logistic systems are similarly

likely to be modeled and studies by means of Petri nets [15–17]. Moreover, the design and

implementation of complex software systems is as well plausible to be addressed with Petri net

models [18, 19, 26].

The addressing of software design with Petri nets is popular because the construction of

models for complex structures and control flow is quite intuitive thanks to its graphical nature.

Moreover, the techniques developed around the Petri nets allow the construction of models

that are usually more compact than the produced by other methods, such as those developed

in graph theory. However, Petri nets and graph theory are not antagonist. On the contrary, the

theory developed in one of them is usually extended to the other. Thus, they are usually

complementary to each other.

Figure 3 depicts a block diagram of a reader and writer problem in computer sciences. The

processes share a region of memory where they can read and write. The diagram depicts the

process that can read, process that can write, and process that perform both operations,

reading and writing to the shared memory region. This situation arises in several cases in the

design of monolithic and distributed system, within the area of software design.

Figure 4 depicts a model for the above problem of readers and writers [2]. The net represents a

system with 2k readers modeled as p2. The system allows up to k parallel reads from a shared

memory region. It is represented by the marking in p3. However, the writing operation

Figure 3. The problem of readers and writers. The problem considers a set of process that can read and write to a shared

memory region. The system must allow any number of simultaneous reading operations, while the writing operation

requires that no reading operation is in execution. On the other hand, when a writing operation is in execution, no other

writing, nor reading, operation is allowed.

Introductory Chapter: Petri Nets in Science and Engineering
http://dx.doi.org/10.5772/intechopen.79309

3

requires k tokens on p3. That is, it requires that no reading operation is currently in execution.

Correspondingly, when a writing operation is in execution, no read operation is allowed. This

is represented by k weighted arc of t1. Thus, when writing operation is in execution, by the

firing of t1, the k tokens in p3 are removed. Once the reading operation is done, the firing of t2
returns k tokens to p3. The Petri net model allows any of the 2k processes to read and to write to

the shared place p3 by connecting the place p2 to the reading or writing sections of the net.

Other attractive attribute of the Petri nets is their solid mathematical basis. The incidence

matrix that represents the structure of the net in Figure 4 is represented by Eq. (1). The

incidence matrix is independent of the initial condition of the net. This structure could be

analyzed by methods from the matrix theory, linear algebra, or vector spaces, for example.

1 �1 0 0

�1 1 �1 1

�k k �k k

0 0 1 �1

2

6

6

6

4

3

7

7

7

5

(1)

The state equation of a Petri net allows a formal definition of its dynamics. The next state of a

Petri net can be computed from the current state, and a multiplication of the matrix that repre-

sents the structure of the net and a vector that represents the transitions that can fire, as follows:

Mkþ1 ¼ Mk þ Buk
!

(2)

The vector uk
!

represents one or more transitions that are allowed to fire. It is known as the

Parikh vector, in a clear relationship to the Parikh’s theorem. This theorem relates the strings in

a context-free language and the number of the occurrences of the symbols in these strings.

Figure 4. A Petri net model that represents the typical problem of readers and writers. The model allows up to 2k

processes p2
� �

that can read or write to and from shared memory resources p3
� �

. However, only k of them can be

concurrently in a reading operation. On the other hand, the writing process requires k tokens to be on the shared place

p3. That is, no reading operation must be executed by any of the 2k readers in p2 to allow the writing operation. Thus, the

writing operation must wait until all the reading operations have finished. Similarly, when a writing operation is in

execution, no reading operation is allowed, since p3 is empty.

Petri Nets in Science and Engineering4

In a similar way, the vector uk
!

represents the number of times each transition is fired at a given

stage in the evolution of the net. In this sense, the Parikh vector behaves like a “functor” in the

sense of the category theory [3], from the strings over the alphabet of events in a DES to vectors

that quantifies the occurrence of events in a DES. That is, the Parikh vector “loses” the

execution order of the events in a trajectory of a DES to obtain a pure vector which is simpler

to operate by a matrix multiplication.

There are different semantics for the execution of the transitions in a Petri net model. First,

in a single firing semantics, only one of the enabled transitions can fire at a time. Second, in

the multiple firing semantics, all the enabled transitions are allowed to fire at a time. In all

the semantic approaches, the conflicting transitions, that is, the ones whose firing disables

the firing of others are resolved by priorities, by a probability distribution, or some other

conflict resolution mechanism. Depending on the adopted semantics, the ability of the

models to capture dynamics of real systems differs. For example, if the analyzed system is

of distributed nature, such as a cluster of computers or a cloud service, then the correct

semantics is that of multiple firing. The expressiveness of the different semantic mecha-

nisms is a theoretical question that lies around the computer sciences. The next subsections

detail some theoretical aspects of the Petri nets and application in science and theory of

systems.

2. Petri nets in science

As mentioned, the Petri nets are a very versatile tool that turns it useful in science, as well as in

engineering. In the science field, a wide developed aspect is related to the study of Petri nets as

a system and their associated abstract properties.

For example, the study of properties of the Petri net models in terms of vectors and matrices is

complemented with the linguistic study in terms of strings and formal languages. The well-

developed theory of matrices, linear algebra, and vector spaces are well suited to the analysis

of properties in the net models, providing efficient solutions. However, other studies such as

the reachability analysis, requires the partial expansion of the state space of the models, which

turns the investigation in an inverse direction, from a vector space to string over a language.

Though, the advantages of the study of the Petri net properties in terms of vectors, matrices,

and linear algebra in general are considerable, and many of the theory developed for Petri nets

relies on them.

Indeed, by restricting the marking of a Petri net to be non-negative, the state space entirely lies

in the positive cone of Z+. Thus, some of the theory of positive linear systems could be applied

[7]. Figure 5(a) depicts the state space, in R
3, of the Petri net model in (b) for two different

initial conditionsM0 ¼ 1 0 0½ � andM0 ¼ 2 0 0½ �, the two hyperplanes are orthogonal to the

unitary vector u ¼ 1 1 1½ �. Moreover, if the net is conservative (i.e., the number of tokens

over all its places remains constant for any evolution trajectory), then it is easy to show that the

entire state space of the Petri net lives in one of the hyperplanes orthogonal to a vector in R
n,

where n is the number of places of the net.

Introductory Chapter: Petri Nets in Science and Engineering
http://dx.doi.org/10.5772/intechopen.79309

5

One of the most active areas of the applications of the Petri nets in science is in the field of the

modern control theory. The study of control techniques for discrete event system, including

Petri net models, covers the range of applications from design of discrete event controller,

design of state observers, analysis of fault tolerant systems, analysis of Lyapunov-like stability,

detectability analysis, isolation, and failure recovery techniques, among others [4–6].

In this context, considering a Petri net as an input-output system, as in classical control theory,

is useful. Figure 6 depicts the state equation of a Petri net given by a block diagram. The input

vector uk
!

is operated by the matrix B to produce a marking increment that is added to the

current marking. The sum of these two quantities becomes the new marking reached by the

current evolution of the net. A unit delay block allows the new marking becoming the current

marking for the next evolution of the net.

Considering the state equation of a Petri net as a block diagram as in Figure 6 allows studying

the dynamics of the model as in the control theory [4]. Techniques for the construction of

feedback controller or state observers could be addressed [6]. Performance analysis is as well, a

usual analysis stage in the design of the class of systems that could be modeled by a Petri net [5].

Figure 7 depicts a block diagram of a classical control scheme for a DES modeled as a Petri net.

The scheme considers two models, one of the system and the other of a reference. The

controller receives the difference of the output of the system and the reference in order to

compute the control actions. The objective of the control scheme is to achieve zero error, by the

actions that the controller can exert over the system. If the system to be controlled is a software,

Figure 5. A Petri net model and its respective state space shown as a hyperplane. The solid arrows show the flow of the

marking by the firing of the corresponding transition. Dashed arrows represent the marking change by the firing of a

single transition. Increasing the number of tokens in the initial marking represents an orthogonal movement of the

hyperplane away of the origin. The figure illustrates two hyperplanes. The lower one represents the initial marking with

one token at p1, while the upper one represents the initial marking with two tokens as p1.

Petri Nets in Science and Engineering6

for example, either distributed or monolithic, then the reference is a specification or recipe that

the software must meet. Then, the controller is another software responsible for computing the

required parameters and configurations in order to adapt the main software system to the

required behavior in an autonomous fashion. There is a huge trend in cloud computing and

artificial intelligence to transform current software systems, such as database clusters, into

autonomous intelligent systems that automatically adapts to user requirements and that are

even able to predict future workloads and adapt to them [11, 12].

The next section reviews some illustrative use of Petri net models in engineering applications.

3. Petri nets in engineering

The usability of the Petri nets in engineering applications is as well widely accepted. The stages

of the design, the implementation, and the validation of systems are suitable addressed with

Figure 6. The state equation of a Petri nets as a block diagram. The input vector uk is multiplied by the matrix B to

produce an increment of marking ΔMk. This increment is added to the current marking Mk to produce the new marking

Mkþ1. This new marking becomes the current marking for the next evolution of the net.

Figure 7. A control scheme for Petri nets. The system is modeled as a Petri net model. The required behavior for the

system is modeled as other net model called reference. The objective of the controller is to achieve zero error in

the difference of the outputs of the system and reference. If the system is a database software, for example, then the

reference is a specification that the database manager requires in the database. The controller is another software that

makes the overall scheme autonomous.

Introductory Chapter: Petri Nets in Science and Engineering
http://dx.doi.org/10.5772/intechopen.79309

7

Petri net models. The covered applications include communication protocols, distributed sys-

tems, distributed database, concurrent and parallel programming and systems, industrial control

systems, multicore processor platforms, dataflow-computer systems design, workflows and

process-driven systems, fault-tolerant systems, and to mention a few. Properties practical interest

such as fairness in the execution of tasks, deadlock avoidance, state reachability, process

interlocking, among others, are possible to be analyzed within the Petri net framework.

For example, Figure 8 illustrates a very simple and conceptual communication protocol. The

communication act is analyzed from the sending process point of view. A sender process sends

a message by the output buffer and blocks its activity while waiting for an acknowledgement

by the input buffer. A receiver process is blocked while waiting for an input message. Once a

message has arrived, the receiving process reads the message and sends an acknowledgment

by the input buffer. After the communication act has finished, the process restarts its logic to be

ready for the next communication. This model could be extended to include faulty communi-

cation channels, which may lose the messages, acknowledge expiration periods, or other

characteristics of practical interest. The analysis and design of communications protocols has

been widely addressed with the use of Petri net models [9, 10].

There are some extensions to the Petri nets to handle specific aspects of different engineering

problems. Some of the extensions add structure and information to the tokens, transitions, and

places of a net. These extensions allow the construction of models that are quite compact

Figure 8. A Petri net representing a communication protocol. Process 1 sends a message by the output buffer and waits

for an acknowledgement buy the input buffer. Process 2 reads the message from the output buffer and sends an

acknowledgment by the input buffer. After the communication protocol is completed, the both processes restart their

logics to get ready for the next communication act.

Petri Nets in Science and Engineering8

compared to the models obtained with the traditional approach. These models are called

Colored Petri Net (CPN) [18].

As an illustration, Figure 9 depicts a CPN for a task scheduling problem. The structure of the

net represents the different stages of the working processes in a distributed multitasking

environment. The left-hand side of the net structure represents the stages that the processes

perform to acquire a job. The right-hand side represents the stages that the working processes

perform to release the resources and update the state of the overall scheduling problem. The

simulation of the model depicted in the figure allows to study the performance of different

scheduling policies over different workload conditions. For example, it is possible to approxi-

mate the optimal number of process required by the scheduling problem for a fixed number of

tasks. Even more, it is possible to study an optimum rate in the increment of the working

processes given a rate in the increment of the tasks over discrete interval of times [27].

Recently, with the increase of the cloud computing and the massive data content in the social

networks, the machine learning techniques and the methods related to the data analytics are

essential tools in the study and investigation of the big data. There are several proposals to

allow the Petri net models learn some kind of fuzzy reasoning and decision making [22–24].

Similar approaches as that of the supervised and unsupervised learning have been addressed

[21, 25].

Figure 10 shows a Petri net representing a workflow pattern for a customer reclaim system.

The customer may initiate a request at any time. Two activities are launched in parallel once a

request is in the system. First, a ticket check process is executed. Second, an examination of the

request is performed. At this point, based on the machine learning, data analytics and/or

Figure 9. A colored Petri net model of a task scheduling problem. The structure of the net represents the different stages

of the processes in a multitasking environment. The working processes compete among them to acquire the jobs that need

to be executed. Each token is a composite unit that carries the information about the state of the working process. The

simulation of this model allows us to study the performance of different scheduling policies.

Introductory Chapter: Petri Nets in Science and Engineering
http://dx.doi.org/10.5772/intechopen.79309

9

statistical learning mechanisms, guards for the transitions b and c are constructed. The guards

allow deciding when it is more convenient to execute an in-deep examination process or a

casual examination process. On the one hand, it saves time by executing a casual examination

when the guard determines that it is more likely that the characteristics of the request are that

of a genuine customer request. On the other hand, it saves money by executing a thoroughly

examination process when the guard determines that the current request is more likely to be a

fraudulent request.

Other important area of the engineering where the Petri nets have been successfully used is in

the automatic code generation. The exponential growth of the cloud computing and prolifera-

tion of solutions based on the Internet of Things have made the design of the system software

supporting them become more challenging. The set of requirements that this type of systems

must address includes the sensing of signals in soft and hard real-time and the traditional

support for media-reach services. This mixture of requirements turns the design of a correct

and efficient system of this type a whole challenge. Approaches based on model-based design

promise useful solutions for these challenges. The complex behavior and set of conditions that

this class of software must address can be well represented with Petri net patterns. Synchroni-

zation mechanisms, message passing, rise conditions, critical sections, parallel and concurrent

process, task activation conditions, and user interactions, to mention a few, could be easily

represented with intuitive Petri net blocks. Then, a simulation process may allow the study of

the performance of the solution and the adjustment of parameters for a fine-tuning process.

Figure 10. A Petri net model for a workflow pattern of a customer request. The customer may initiate a new request at

any time. Two activities are launched in parallel for every request. One activity is to check the ticket. The other is to

examine the request. At this point, a decision is made about how deep to examine the request. At this point, a guard based

on the machine learning and data analytics is constructed for the transitions b and c. A decision process then comes,

where either a compensation payment, a request rejection, or a request reinitiating may apply.

Petri Nets in Science and Engineering10

Figure 11 represents a Petri net model for three parallel processes. The transition t1 launches

the execution of the processes in parallel. Each process runs freely until they end its activities.

In this design, the transition t5 synchronizes the end of the processes. That is, if one process

ends its activities, then it must wait the others to end. Once all the processes have finished, the

loop repeats infinitely. The transitions t2, t3, and t4 represent the activity load of each process.

There are different approaches to add an amount of time to these transitions [13–15]. Within a

suitable simulation process, this allows to investigate the performance of the system under

different work load conditions, which is a must in the development of real world solutions.

Once the parameters of the model have been tuned and its performance evaluated, the next

step consists on the synthesis of the code in a target programming language for a specific

platform.

For example, Figure 12 shows a section of code in C/C++ implemented from the model in

Figure 11. The code implements a set of joinable posix threads. A for loop launches a number

of threads defined by the global constant NUM_THREADS. Other for loop waits for the end of

the threads. Once all the threads have finished, the loop repeats indefinitely. The automatic

code generation from Petri net models has recently been investigated with promissory results

[19, 20].

Figure 11. A Petri net model representing three parallel threads. The threads are launched in parallel by the firing of t1.

Each thread runs free to complete its activity. In this design, the end of the threads is synchronized at t5. That is, if one

thread finishes its work before the others, it must wait until the other threads end its activities. Once all the threads have

finished, they are reinitialized to repeat the loop.

Introductory Chapter: Petri Nets in Science and Engineering
http://dx.doi.org/10.5772/intechopen.79309

11

4. Conclusions

This chapter aims to briefly review the applications of the Petri nets in science and engineering.

It not pretends to be a deep review of the applications with complete detail and mathematical

foundation. Rather, the objective is to provide an illustrative introduction to Petri nets and its

potential applications, as intuitive as possible, avoiding the use of complex mathematical

notation and formulation. The focus of this chapter was in the graphical nature of the Petri

nets and the intuition about them, and with some emphasis in its mathematical foundation.

Also, the intention is that this chapter serves as an introduction to this book entitled Petri Nets

in Science and Engineering. The authors hope you find this book illustrative for your different

activities in science and engineering.

Sincerely,

R. Campos-Rodriguez, M. Alcaraz-Mejia.

Figure 12. A section of code in C/C++ implemented from the Petri net in the figure above. An infinite loop initializes a set

of joinable threads. A for loop launches the number of threads specified by the constant NUM_THREADS. A for loop

waits for the end of all the launched threads. This cycle repeats forever.

Petri Nets in Science and Engineering12

Acknowledgements

The authors want to thank Jose Valerio, from Oracle Guadalajara Development Center, for his

valuable comments in the review of this chapter and for his experience and comments in

Machine Learning and Data Analytics.

Author details

Raul Campos-Rodriguez1* and Mildreth Alcaraz-Mejia2

*Address all correspondence to: rr_campos@hotmail.com

1 Monterrey Institute of Technology and Higher Education, Guadalajara Campus,

Tlaquepaque, Jalisco, Mexico

2 ITESO University, Tlaquepaque, Jalisco, Mexico

References

[1] Reisig W. Petri Nets: An Introduction. Vol. 4. Luxemburgo: Springer Science & Business

Media; 2012

[2] Murata T. Petri nets: Properties, analysis and applications. Proceedings of the IEEE. 1989;

77(4):541-580

[3] Mac Lane S. Categories for the Working Mathematician. Vol. 5. Berlin: Springer Science &

Business Media; 2013

[4] Roxin EO. Control Theory and its Applications. Gordon and Breach; 1997

[5] Cassandras CG. Discrete Event Systems: Modeling and Performance Analysis. Aksen

Associates Series in Electrical and Computer Engineering, IFAC Proceedings Volumes.

2000:33(13):313-318

[6] Cassandras CG, Lafortune S. Introduction to Discrete Event Systems. Berlin: Springer

Science & Business Media; 2009

[7] Farina L, Rinaldi S. Positive Linear Systems: Theory and Applications. New York: John

Wiley & Sons; 2011

[8] Viswanadham N, Narahari Y. Performance Modeling of Automated Manufacturing Sys-

tems. Englewood Cliffs, NJ: Prentice Hall; 1992. pp. 497-508

Introductory Chapter: Petri Nets in Science and Engineering
http://dx.doi.org/10.5772/intechopen.79309

13

[9] Merlin P, Farber D. Recoverability of communication protocols—Implications of a theo-

retical study. IEEE Transactions on Communications. 1976;24(9):1036-1043

[10] Bochmann G, Sunshine C. Formal methods in communication protocol design. IEEE

Transactions on Communications. 1980;28(4):624-631

[11] Pavlo A, Angulo G, Arulraj J, Lin H, Lin J, Ma L, et al. Self-Driving Database Management

Systems. In: CIDR. 2017

[12] Available from: https://www.oracle.com/corporate/pressrelease/oow17-oracle-autonomous-

database-100217.html

[13] Wang J. Time Petri nets. In: Timed Petri Nets. Boston, MA: Springer; 1998. pp. 63-123

[14] Popova-Zeugmann L. Time Petri nets. In: Time and Petri Nets. Berlin, Heidelberg: Springer;

2013. pp. 31-137

[15] Ling S, Schmidt H. Time Petri nets for workflow modelling and analysis. In: 2000 IEEE

International Conference on Systems, Man, and Cybernetics, Vol. 4. IEEE; 2000. pp. 3039-

3044

[16] Yu J, Buyya R. A taxonomy of workflow management systems for grid computing.

Journal of Grid Computing. 2005;3(3–4):171-200

[17] Van der Aalst WM. The application of Petri nets to workflow management. Journal of

Circuits, Systems, and Computers. 1998;8(1):21-66

[18] Jensen K. Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use. Vol. 1.

Berlin: Springer Science & Business Media; 2013

[19] Philippi S. Automatic code generation from high-level Petri-nets for model driven systems

engineering. Journal of Systems and Software. 2006;79(10):1444-1455

[20] Mortensen KH. Automatic code generation from coloured Petri nets for an access control

system. In: Second Workshop on Practical Use of Coloured Petri Nets and Design/CPN;

Aarhus, Denmark. October 1999. pp. 41-58

[21] Shen VR, Chang YS, Juang TTY. Supervised and unsupervised learning by using Petri

nets. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans.

2010;40(2):363-375

[22] Bugarin AJ, Barro S. Fuzzy reasoning supported by Petri nets. IEEE Transactions on Fuzzy

Systems. 1994;2(2):135-150

[23] Konar A. Machine learning using fuzzy Petri nets. Computational Intelligence: Principles,

Techniques and Applications. Berlin Heidelberg: Springer-Verlag, 2005. pp. 521-546

[24] Looney CG. Fuzzy Petri nets for rule-based decision making. IEEE Transactions on Sys-

tems, Man, and Cybernetics. 1988;18(1):178-183

Petri Nets in Science and Engineering14

[25] Bulitko V, Wilkins DC. Machine learning for time interval Petri nets. In: Australasian Joint

Conference on Artificial Intelligence. Berlin, Heidelberg: Springer; December 2005. pp.

959-965

[26] Badouel E, Bernardinello L, Darondeau P. Petri Net Synthesis. Heidelberg: Springer; 2015.

p. 339

[27] Alcaraz-Mejia M, Campos-Rodriguez R, Caballero-GutierrezM.Modeling and simulation

of task allocation with colored Petri nets. In: Computer Simulation. London: InTech; 2017

Introductory Chapter: Petri Nets in Science and Engineering
http://dx.doi.org/10.5772/intechopen.79309

15

