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1. Introduction

Next generation humanoids are expected to successfully coexist within human
environments. This imposes very difficult challenges to the robot controller in the form of
complex and flexible gait planning, truly dynamic movements, balance maintenance under
unexpected environmental forces and disturbances. Manual programming of every gait and
balance strategy is an extremely tedious proposition and is not practically implementable.
Formulation and implementation of generic autonomous behavior, however, need a deep
intuitive understanding of the fundamental humanoid dynamics.

In this regard, reduced biped models, such as the different variations of the inverted
pendulum models (Kajita et al, 1992; Kajita et al, 2002; Sugihara & Nakamura, 2003; Komura
et al., 2005), have been very beneficial. These models allow us to ignore the movements of
the individual limbs of the humanoid, and instead, focus on two important points - the
center of pressure (CoP) and the center of mass (CoM) - and the line joining them. It is
customary to employ a reduced model during the planning and analysis stage and map the
planned control strategy into the usual joint-level controller of the full humanoid for an
implementation-ready control law. By focusing attention to the fundamental aspects of
humanoid dynamics, such models open the way to new classes of control laws, which
would otherwise be difficult or impossible to conceive.

A limitation of the above-mentioned reduced models is that they represent the entire
humanoid body only as a point mass and do not characterize the significant centroidal
moment of inertia of the humanoid body (except (Komura et al., 2005a)). The centroidal
moment of inertia is a property of the distributed masses of the robot limbs (head, arms, legs,
etc). We have earlier demonstrated that a humanoid’s state of balance is closely related to its
rotational equilibrium which, in turn, is dependent on its angular momentum rate change
(Abdallah & Goswami, 2005). The centroidal moment of inertia directly contributes to the
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168 Humanoid Robots

centroidal angular momentum and its rate change. Direct manipulation of momenta is
becoming a reasonable, and sometimes preferable, way to control a robot (Kajita et al., 2003;
Vermeulen et al., 2006; Hofmann, 2005). The Reaction Mass Pendulum (RMP) model (Lee &
Goswami, 2007), which we describe in this paper, is expected to be useful for these
controllers.

Fig. 1: Conceptual diagram of the RMP model of a humanoid. The RMP consists of a “leg”
connecting the robot's CoM and CoP. The reaction mass ellipsoid, signifying the aggregate
spatial inertia of the robot at its CoM, sits atop the leg. As the robot moves, the shape, size
and orientation of the ellipsoid changes in a manner described in Section 2.

As shown in Fig. 1, an RMP consists of two components, a “leg” that joins the CoP and the
CoM, and an ellipsoidal “body” - the abstracted reaction mass - that characterizes the
inertia of the entire robot projected at the CoM. As the robot moves in space, so does the
RMP, resulting in a movement of the CoP and CoM. All limb movements of the robot affect
its centroidal moment of inertia, which is captured by the changing shape, size and
orientation of the ellipsoidal reaction mass.

The rest of this chapter is as follows: We first provide detailed introduction and insights to
the mathematical preliminaries used in this chapter (Section 2), and then derive the
equations for the RMP model of a humanoid (Section 3) as well as the description of the
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parameters and properties of the mechanical realization of RMP model (Section 4). Finally,
we present demonstrations of the application of inertia shaping technique (Section 5)
followed by conclusions and future work (Section 6).

2. Mathematical Background

In this paper, we have used a Lie Group based approach (Murray et al., 1994) to derive the
details of the RMP model. In this section we introduce preliminary geometric quantities
and use them to define the spatial inertia of a single rigid body. Spatial inertia is a critical
quantity in our model and we later generalize this concept to a multi-body system.

2.1 Geometric Preliminaries

«w

\

.
L —
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Fig. 2: A rigid body moving in space. R and p are the orientation and position of the body
frame with respect to a spatial frame {s}, respectively. w and v are its angular and linear
velocities expressed with respect to the body frame.

Let us consider a moving rigid body such as in Fig. 2. T = [g 11’] € SE(3) denotes the

homogeneous transformation matrix of the body frame with respect to a spatial frame {s},
any frame fixed in space. When the body frame is moving in space, its spatial velocity!
expressed with respect to the body frame (hence called body velocity) is defined as a twist

1 Per (Featherstone, 1987), we use a term “spatial” to the definitions that combine angular
and linear properties. For instance, a spatial velocity is the combination of the angular and
linear velocities. Likewise, we will use a spatial force (the combination of torque and linear
force), spatial inertia (rotational inertia and mass), and spatial momentum (angular and
linear momenta). Note that in (Murray et al., 1994), the spatial velocity has different
meaning; it refers to a velocity expressed with respect to a spatial frame, as opposed to the
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170 Humanoid Robots

g=117 =[5 V] M

which is an element of se(3), the Lie algebra of SE(3), and expressed as a 4X 4 matrix where
w and v are its angular and linear velocities. The quantities w and v are expressed with
respect to the instantaneous body frame. S(w) denotes the skew-symmetric matrix
representation of w = [w,, wy, w,]"; i.e.,

0 —W; Wy
Sw)=|w, 0 —o. ()
—W, Wy 0

Note that, when multiplied with a vector, the skew-symmetric matrix yields the cross
product, ie., S(w)v = w X v. Although represented as a 4 X 4 matrix, a twist has only 6
components; we can express a twist V as a 6 dimensional vector v=[wT,vT]T for
convenience.

For all s € se(3), exp (8) is an element of SE(3) and there exists a closed-form formula of the
exponential map exp:se(3) — SE(3) (see Murray et al., 1994). When s € se(3) and q € R refer
to a screw parameter of a joint and its joint angle, exp (§q) represents the transformation
that is made by the joint motion.2

Coordinate transformation of the twist is achieved by the so-called adjoint mapping. Given
T € SE(3) and some g=[p’,@"]" €se(3), the adjoint mapping Adr:se(3) - se(3) is
defined as Ady g =T g T ~1, or in matrix form as

wire = |sor & |lo] ®)

The spatial velocity v with respect to {s} is given by °v = Adyv.3 Another useful operator
that we use in this chapter is the Lie bracket ad,:se(3) — se(3) and it occurs when Ady is
differentiated. The Lie bracket is defined as adg v, = ¥, V, — V,V;, or in matrix form

_[S(wy) O w
ady, v, = S(ull) S(wl)] [vzz] @)

body velocity, which is expressed with respect to a body frame. However, we continue to
use the term spatial frame to mean a ground reference frame, a frame rigidly attached to the
ground.

: For instance, s = (a”,07) for a revolute joint, where a unit vector a € R3 is the joint axis
with respect to the body frame, and s = (07, a")” for a prismatic joint, where a is the axis of
translation.

3 Left superscript s indicates the symbol is expressed in a spatial frame {s}. Likewise, we will
use left superscript 0 and g to indicate a spatial frame that coincides with the base frame
and a frame located at CoM of the humanoid robot, respectively. No left superscript is used
when a symbol is expressed in the body frame.

www.intechopen.com



The Reaction Mass Pendulum (RMP) Model for Humanoid Robot Gait and Balance Control 171

One can easily verify that Ad;' = Ady-1 and ad,v = 0.

The spatial force f = [m7, fT]7 is an element of se*(3), the dual space of se(3), where m € R3
and f € R3 represent a moment and linear force, respectively. Corresponding to the adjoint
mappings in se(3) space, the dual adjoint mappings Adr :se*(3) — se*(3) and adg:se*(3) —
se*(3) are also defined and, in matrix form, they are the transposes of Ady and ady; i.e.,

Ad; = AdF, ©)

adj = adf.

The spatial force with respect to {s} is given as °f = Ad,-: f.4

2.2 Spatial inertia of a single rigid body

The spatial inertia of a body represents its aggregate inertial property by combining its
translational mass and rotational inertia.

When a body frame is located at the CoM of a rigid body, its kinetic energy takes the

following simple form,
1

Ey =-m viv + % X PRV (6)
where m is the mass, I,y € R3*3 is the rotational inertia matrix, and v and w are linear and
angular velocities. We use the subscript CoM to stress that the reference frame is at the CoM.
In terms of its spatial velocity, the kinetic energy is expressed as follows:

1T
Ey =3 Veom Icom Veom ()

0

where I,y = [I CoM 1] is called the spatial inertia of the rigid body. Now we consider an

0 m
arbitrary body frame that is not located at the CoM. Let G = (R,c) € SE(3) denote a

transformation matrix from this (arbitrary) body frame to a frame at the CoM where c is the
position of the CoM. Since the kinetic energy is coordinate-independent,

_1l.r _1.T
Ey = 5 Vcom Icom Veom = SV Iv. 8)

Substituting the relation v = Adyv¢,y, we can derive the structure of the spatial inertia with
respect to an arbitrary body frame:

I = Ad*G—1 ICOM AdG -1
_ [RI;ouRT — mS(c)? mS(c)]

—-mS(c) ml
_ I mS(c)
B [—mS (¢ mi1 [V )

4 Note that Ady-1 = [I; S(Q)R].
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172 Humanoid Robots

where I = Rl;,yRT — mS(c)? is the rotational inertia matrix with respect to the body frame.
Similarly, one can verify that the coordinate transformation of the spatial inertia is
accomplished by pre and post multiplying the adjoint matrices. For instance, the spatial
inertia with respect to the spatial frame is as follows:

S| = Adj-1 I Ad g -1. (10)

Note that I and I are both symmetric positive definite matrices.
Having defined the spatial inertia, we can define the spatial momentum of the rigid body as
an element of se*(3) as follows:

h = [’l‘] = Ivese'(3), (11)

where k and I are the angular and linear momenta, respectively. Substituting (9) into (11),
we can derive the expressions of the angular and linear momenta; k = Iw + mc X v and
l = m(v — ¢ X w). Note that, since the spatial momentum is an element of se*(3), coordinate
transformation of the spatial momentum is achieved through the dual adjoint mapping. For
instance, the spatial momentum with respect to {s} is *h = Ady-1 h.

3. Generating the RMP Model of a Humanoid

We generate the RMP model of a humanoid by extending the concept of spatial inertia to an
articulated chain. In this section we derive the necessary equations to exploit the concept of
composite rigid body (CRB) inertia and show how it relates to the momentum of a
humanoid. In the next section we will outline a mechanical realization of the RMP.

3.1 CRB inertia of a humanoid robot

We assume that a humanoid robot model consists of n + 1 links with the base link, usually
the pelvis, indexed as 0 (Fig. 3).

Let Ty € SE(3) denote the transformation matrix of the body frame of the base link (base
frame hereafter) and q = (qy, ...,q,)" € R" the joint angle vector of the robot, then @ =
(T, ,q) defines the position and orientation of the humanoid robot. Subsequently, ® =
(Vo ,q ) will denote the body velocity of the base frame and joint velocities.>

T; denotes the transformation matrix from the spatial frame to the body frame of link i. For
a non-base link, T; (i > 0) is determined by T, and the joint angles q, i.e., T;=T, G;(q),
where G; = T;'T; is the transformation matrix from the base frame to link i. Note that G;
does not depend on T and is entirely determined by q . For simplicity, we assume that,
except for the base link, each link is connected to its parent link by a 1-DOF joint. Then

5 Note that © is a slight abuse of notation because v, is not T, but TyT,. In this
representation, © is not generalized coordinates because a 4x4 matrix T, has only 6 DOFs.
Another, more common way to represent the configuration of a robot is using 6 numbers (3
for the orientation and 3 for the position) instead of using a 4x4 matrix T. An advantage of
this representation is that the configuration vector is generalized coordinates as its
dimension is same as the DOFs of the robot. However, since this uses 3 numbers to
represent the orientation, it has singularities at certain configurations.
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T, = Tp(i)Hiegiql' holds for i = 1...n where p(i) denotes the parent link of link i, H; € SE(3)
is the transformation from p(i) toi atq; = 0, and s; € se(3) is the screw parameter of the
joint.

Fig. 3: T; denotes the transformation matrix of a link i and the base link is indexed as 0. G; is
the transformation of link i as seen from the base frame and it is determined by the joint
angles. The centroidal momentum of a humanoid robot ?h is computed as the sum of the
momenum of each link h; expressed with respect to the CoM.

The composite rigid body (CRB) inertia (Walker & Orin, 1982) of a humanoid robot is its
instantaneous spatial inertia, assuming that all of its joints are frozen. It has the same
structure as the spatial inertia of a single rigid body (Eq. 9). CRB inertia is identical to the so-
called locked inertia, a term that is used in geometric mechanics (Ostrowski, 1999).
Mathematically, CRB inertia of a humanoid with respect to its base frame is expressed as

follows:
oy — Z of,

Next, we show how CRB inertia is related to the momentum of a humanoid robot. To this
end, we first define the link Jacobian J; of a link i that is similar to the manipulator Jacobian
as follows;
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Ji = [Adg-1, Jigls (13)
]i,q = []i,l! "'f]i,n] € R6Xn’ (14)
where Jij =T *(0T;/ 0q;) = G7'(0G;/ aq;).

As in Section 2.1, J; ; is the twist, a 4 X 4 matrix while J; ; denotes its 6 dimensional vector
form. Note that J; j can be computed efficiently in a recursive manner as follows;

]i,j = Ad_1 ]p(i),j + Si6i,j for i=1 N P (15)

H;ebidi

where §; ; is the Kronecker delta function and J,; = 0. In (13) and (14), Adg-: and J; 4 are the

Jacobians due to the change of the base frame and joint angles respectively. Using the link
Jacobian, we can decompose the velocity of {i} into the sum of the velocity due to the base
link and the one due to the joint velocities;

V; = ]l@ = AdGi—IVO +]i,qq . (16)

The spatial momentum h of the humanoid robot is the sum of spatial momentum of each
link. The one with respect to the base frame ¢ is

op — Z O, :Z of, Oy,
i i
= OIVO + Zi Ad*al‘lll ]i,qq (17)

= I (vy+Aq)

where A(q) is the so-called mechanical connection (Ostrowski, 1999). As can be seen in (17),
the CRB inertia contributes directly to the spatial momentum of a robot via the mechanical
connection.

While the CRB inertia can be expressed with respect to any frame, it is particularly
interesting to express it at the CoM since it is related to the centroidal angular momentum
(Fig. 3). The CRB inertia expressed at the humanoid CoM is called the centroidal CRB inertia.
To denote this we use I in the RMP model.

3.2 Equimomental ellipsoids

The association of the rigid body inertia to an ellipsoid is well known and has been
thoroughly exploited in physics and engineering (Crandall et al., 1982). As a straight-
forward extension we determine the ellipsoid associated with the centroidal CRB inertia of
an articulated chain. Instead of using the kinetic energy ellipsoid, which is traditionally
described with an inertia, we derive the equimomental ellipsoid corresponding to a CRB
inertia.

Two inertias are said to be equimomental if their moments of inertia about any arbitrary
axis are equal (Beer & Johnson, 1984). The equimomental ellipsoid of a rigid body is an

6 . . . . .
More precisely, a spatial frame that instantaneously coincides with the base frame.
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ellipsoid with a uniform density set as the mean density of the body and having the same
rotational inertia about any arbitrary axis as that of the rigid body. Kinetic energy ellipsoid
characterizes the torque needed to rotate the body about an axis whereas the equimomental
ellipsoid reflects the mass distribution along an axis.

We prefer the uncommon equimomental ellipsoid over the well-known kinetic energy
ellipsoid because the shape of the former approximates the mass distribution of the overall
multi-body system. For example, the ellipsoid for an upright humanoid will be long and
narrow, thereby rendering some gross geometric resemblance to the humanoid. This is not
the case for the kinetic energy ellipsoid.

Let (04, 0;,03) denote the eigenvalues of the rotational inertia, and (a4, a,, as) denote the
semi-axes of the equimomental ellipsoid. From the relationships o; = m(a} + az)/5 and
m = 4ma,a,azp/3, where p is the mean density, we can derive the following:

a; 8mp 1/10 (18)

( 15 )1/5 (~oi+0j+0y)?/®
{

(O‘i—O'j+0'k)(O'i+0'j—O'k)}

fori,j,k=1..3andi #j # k.

3.3 Simulation results

Fig. 4: Snapshots of HOAP2 robot performing Sumo-style motion superposed with
corresponding RMP models. The reaction mass geometry undergoes significant changes
during this motion.
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The process of mapping a humanoid to its corresponding RMP involves the computation of
1) CoM, 2) CoP, and 3) centroidal CRB inertia, using robot kinematic and dynamic
parameters, as well as motion data.” Refer to the Appendix for the computation of the CoP.
We simulated the Fujitsu HOAP2 biped model, for which the parameters for some dramatic
movements are available (Cominoli, 2005). The simulation is implemented using Webots
(www.cyberbotics.com), a commercial simulation software.

Fig. 4 shows snapshots of HOAP2 executing Sumo-style movements. Notice the significant
changes in the shape, size and orientation of the reaction mass ellipsoid?® as the robot moves
through different phases of its motion. Since the robot>RMP is a mapping to a lower
dimension, different poses of the robot, at least theoretically, may get mapped to the same
RMP.

4. Properties and Parameters of RMP

We have now shown how a humanoid robot can be reduced to an RMP. In this section we
will discuss the realization of a mechanical model of the RMP. The RMP is the generalized
3D version of the 2D reaction wheel pendulum which has been studied before (Astrom et al.,
2001; Olfati-Saber, 2001; Spong et al., 2001). A reaction wheel pendulum can be constructed
by attaching an actuated reaction wheel to a rigid rod. The inclination angle of the
pendulum can be controlled by controlling the angular acceleration of the reaction wheel.
The reaction wheel, which is also called an inertia wheel, is one of a number of standard
momentum exchange devices that are used to control satellite orientation (Sidi, 1997).

4.1 Description of RMP

The present work can be identified with those of [18, 19], where the benefit of a reaction
mass feature of the humanoid as a mean to stabilize lateral biped dynamics is indicated. The
current work is closest in spirit to the recently introduced inverted pendulum model with
angular momentum properties (AMPM) (Komura et al., 2005 (a; b)). We seek to propose a
physical model characterizing angular momentum.

The RMP mathematical model discussed here is not to be confused with the actual placement
of a physical reaction mass device for the control of humanoid balance, as was done in
(Mayer et al., 2005).

The 3D reaction mass may have continuously variable spatial inertia. At any given
configuration of the robot, the centroidal CRB inertia can be reduced to an ellipsoid. This is
modeled, as shown in Fig. 5 by three pairs of point masses linearly actuated along the three
principal orthogonal directions of the ellipsoid. Along each axis k, the distance between the
point masses is 2r,. The masses of each pair are always equi-distant from the ellipsoid
center. The CoM of the ellipsoid is therefore always fixed at its center. The six point masses
can have equal mass, i.e., m = M/6, so that they sum up to total mass of the humanoid robot.
The distance between the masses depends on its corresponding rotational inertia, as each
axis generates a moment of inertia mr{.

7 Refer to Appendix for equations to compute CoP.
8 Reaction mass ellipsoid is synonymous with the equimomental inertia ellipsoid derived
from the centroidal CRB inertia matrix.
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Fig. 5: (left) Conceptual mechanical realization of the 3D RMP. The gyrating ellipsoid is
dynamically equivalent to three pairs of equal point masses at different radial distances that
are actuated to slide on their linear tracks. The overall frame consisting of the three pairs of
mutually perpendicular linear tracks form the skeleton which can be rotationally actuated in
three DOFs. (right) 2D Reaction Wheel Pendulum Model. The distance between the two
point masses is 2r.

Physical description Generalized coordinates (forces)
2D 3D

Radial distances of three pairs of r (f) 1, 1o, 13 (fi, f2, f3)
point masses forming the ellipsoid
and their actuation on linear tracks
Orientation angles of the ellipsoid a (1) a, B,y (t1, Ty T3)
body and their actuation
Leg length and its actuation 1 (f1) 1 (f1)
Leg orientation angles and their 0 (1) 0,9 (te, T¢)
actuation
CoP position and ground reaction Xcop (Rx, Ry) Xcopr Ycop
force (Rx, Ry, R;)

Table 1: Generalized variables of RMP. 2D reaction wheel pendulum model has 5 DOFs
whereas 3D RMP has 11 DOFs.
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The radial movement of the point masses only affects the shape and size of the ellipsoid.
When 1, = 0 for k = 1,2,3 the ellipsoid reduces to a point mass and the RMP reduces to a 3D
inverted pendulum. The list of all eleven generalized coordinates and nine generalized
forces are listed in Table. 1.

4.2 2D Reaction wheel pendulum model

The 2D version of the RMP is equivalent to a reaction wheel pendulum, for which a
realization is shown in Fig. 5(right). The generalized coordinates and generalized forces for
this model are (8, a,7;,7) and (74, 7, f;, f), respectively. The total mass of the pendulum is
0.5M + 0.5M = M, whereas its rotational inertia about CoM is I = Mr?. The kinetic energy
Ei and the potential energy E, of the system are as follows,

Ex = sM(72 +12) + - Mr62 + - Mr? (62 + ¢?), (19)

E, = Mgrsing.

From the above relations, the equations of motion of this model are derived using
Lagrangian techniques.

fi = M# — Mr,6% + Mgsin@ (20)
f = M¥ — Mr(6 + &)? (21)
Tp = M178 +‘Mr2(é + &) + 2Mn740
+2Mr7(6 + a) + Mgr;cosf (22)
T=Mr?(6 + &) + 2Mri (0 + @). (23)

The ground reaction force to the reaction mass pendulum is f. = M(7; — g). We can also
relate the rate of change of the angular momentum in terms of the generalized coordinates;
ie,T=k; and 1y = kp + Mgricosf, where the angular momentum at CoM, k; = I(8 + &)
and the one at CoP, kp = kg + Mr6.

As known, a reaction wheel pendulum can have interesting dynamics. For example, if we
set 1p=0, 6 =0 =0, then we can compute T that keeps 6 = 6, stationary, ie., T =
—Mgrcosf.. The torque creates an angular acceleration & which cannot continue indefinitely
due to robot joint limits. However, the example showcases the situation where the robot
“leg” can be in static stability while the CoM ground projection is outside of the support
base.

5. Inertia Shaping: an RMP-Based Controller

A humanoid robot has a large number of DOFs: for example, the Fujitsu HOAP2 robot has
25 DOFs and the Honda humanoid Asimo has 27 DOFs. In order to kinematically transform
an RMP back to a humanoid robot, one needs to generate a map from the 11 dimensional
RMP space to the much larger robot kinematics space. A unique mapping will need
additional constraints, such as in the form of desired hand or foot position.

In this section, we introduce the inertia shaping technique, an iterative method to compute
joint angles to create the desired CRB inertia. To this end, we first derive the relationship
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between the joint angles and the CRB inertia of a humanoid robot. We call this the CRB
inertia Jacobian. Specifically, since the number of independent joint angles of a humanoid
robot differs according to its ground contact configuration due to the geometric constraints
induced by the ground-robot contact, we formulate the CRB inertia Jacobian per each
ground contact case.

5.1 CRB inertia Jacobian

Since the CRB inertia has the form of a matrix, its Jacobian should be a multi-dimensional
tensor. Therefore, we string out the nonzero elements of a matrix of the CRB inertia so as to
simplify the form of its Jacobian. The “strung out” vector corresponding to the spatial
inertia matrix is I = (I, mr")T € R? and 1 = (I, Leys Lz Ly, Lygy 1,,)T . The  first six
elements correspond to rotational inertia and the last three elements to CoM multiplied by
its mass.

In order to express the relation between a small change in CRB inertia and that of the
generalized coordinates, we define the CRB inertia Jacobian J; such that

551 = J;50. (24)

Later on, the CRB inertia Jacobian will be used for solving the inverse problem, i.e., finding
generalized coordinates corresponding to the given CRB inertia. In the following sections,
we use I in the spatial frame without using superscripts. The CRB inertia Jacobian is
decomposed into two parts, J; =[ Jio J14], Where J;; € R®*® and J;, € R%™ map the
motion of the base frame and the joint angles, respectively, to the rate of change of the CRB
inertia; i.e.,

8T = J1o(T5 8To) +J1469 - (25)

Specifically,

Jio = Urg1 - Jrye) where Jr ;i =T |y_e, a-0

Jig = (]ql,"-,]qn),where]qi =0l/ aq;.

Using the relations dAdg,/dq; = Adg,adj, . = ad S]i,,-AdGi where ]i,j = G;10G;/ dq; °as

defined in (14), we can derive analytical expression for I and 91/ dq;; i.e.,

Ilg-0 = —ad%, °T— °Iads, (26)
d1/dq; = — Y7, (ad*s]i,j I, + Iad s,u). (27)
TR pr9pi
9 One can easily prove the relations by using J; = [ Yaq; ! aq;| where G; = (R;,p;). Also,
0 0

note that %AdT = Adgad, = ad s,Ady where ¢ = T~1T.
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Note that the CRB inertia Jacobian includes the CoM Jacobian, i.e., the mapping from the
rate of change of generalized coordinates to that of the CoM position. If we partition J; into
=1 ]7T JEIT where J¢ consists of the bottom 3 rows of J;, we get

J¢ maps the generalized velocity to the linear momentum of the system. In fact, it is the
same as the CoM Jacobian scaled by the total mass.

5.2 CRB inertia Jacobian of humanoid

If the humanoid robot is not in contact with any external environment, (25) completely
describes the CRB inertia Jacobian. Otherwise, however, geometric constraints arise among
the generalized coordinates, and it is advantageous to describe the CRB inertia Jacobian in
terms of independent coordinates.

Let us assume q comprises q = (g7 q] q¢)" , where qg.;; € R® are joint angle vectors for
right and left legs, respectively, and q, is for the rest of joints. We also decompose J;
accordingly; i.e.,

i, Ji, Ji, Tn,
Ji= Je, Je, Jg, ]Gt]' 29)

We describe CRB inertia Jacobian for each ground contact case.

5.2.1 Free floating
When a humanoid robot is floating in the air, all components of the generalized coordinates
are independent. Rewriting (25), we get

81 = J5,(To*8To) + [ J1, J5, J1,184 (30)
mérg = Jg,(Tg'6To) + [Je, Jg, J6,19a (31)

Note that since we compute the CRB inertia with respect to a spatial frame, the
configuration of the base frame affects the CRB inertia Jacobian. If we were only interested
in the local “shape” of inertia, we need to transform the reference frame to the base frame, in
which case the CRB inertia Jacobian is wholly determined by joint angles.

5.2.2 Single support by left or right foot
Let us suppose the humanoid robot is supported by one foot link, left foot link for example,
which is stationary with respect to the ground. Then we can describe the constraint as
follows,

T;'6T, =0 (32)

where T is the transformation matrix for the left foot link. Eq. 32 constrains that the left foot
link should not move. From T, = T, G,(q), where G;(q) expresses the forward kinematic
relation between the base frame and the left foot link, we can derive the following relation
by plugging the relation into (32),
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T;'6T, = —AdgJ,5q . (33)

Defining J; such that Adg J;6q = J16q,, the CRB inertia Jacobian is written with respect to
the joint angles,

§1 =[J;, (5,-JiJ) Ji)oa (34)
mére =1[J¢, U¢ — JeJ1) J¢,109- (35)

5.2.3 Double support

When both feet are stationary to the ground, we have an additional constraint J;6q; =
J76q,, where J; of the right foot link corresponds to J; of the left foot. This constraint yields
5q, = J: 7' J;8q,. Therefore,

of = [0+ 0™ = 1y ) [5] (36)
morg = (e, + UeJi™ = Ja I Ja) [5] ©7)

5.3 Inertia shaping

An interesting application of our RMP modeling approach is what we call inertia shaping of
an articulated chain (Lee & Goswami, 2007). Inertia shaping is a high-level approach to
precisely control the aggregate kino-dynamic characteristics of an articulated chain by
controlling its CRB inertia. Given a desired CRB inertia I; of the robot, the inertia shaping
controller seeks to determine the proper configuration of the robot that attains it. This can be
posed as an inverse kinematics problem with the desired CRB inertia constraints. Since we
have derived the CRB inertia Jacobian, the inverse kinematics problem can be solved by any
suitable optimization algorithm. One solution will be to iteratively update the desired joint
angles using pseudo-inverse of the centroidal CRB inertia Jacobian (24), i.e.,

50, =Jis(Iq - 1), (38)

where 0, is the vector of independent generalized coordinates and ]}L =JI(JJHL. This is
the simplest form of inertia shaping that does not consider additional constraints such as
obstacles in the environment or self-collision.

For the inertia shaping algorithm to be applied to actual humanoid robots, more
sophisticated algorithm can be developed. For example, we may need to incorporate inverse
kinematics problems into the inertia shaping process. The CRB inertia Jacobian provides
useful information on the rate of change of the CRB inertia as a function of generalized
coordinates, which is necessary in any iterative gradient-based algorithms for computing
optimal joint angles to achieve desired inertia.

Fig. 6 presents three examples of inertia shaping on a non-contacting Asimo-like floating in
space (say, a humanoid astronaut). The robot is given three different commands, shown in
series a, b, and c, respectively, to try to match its own CRB inertia to a desired CRB inertia.
Starting from an initial configuration, the robot moves its joints such that the cost function,
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considered to be the Frobenius norm of the difference between the two inertia matrices, is
minimized. Specifically, we deal with the inertia with respect to the base frame, hence
controlling joint angles is sufficient.

©)
Fig. 6: Demonstration of the inertia shaping technique on a non-contacting biped robot
floating in space. A floating robot has no CoP, so the RMP reduces to simply the ellipsoidal
reaction mass.

In Fig. 6 (a) the desired inertia components along all three axes are equal and large. Hence
the robot tries to “expand” in all directions. In Fig. 6 (b) the desired inertia in Y-component
(vertical) is big, and the other components are very small. In Fig. 6 (c) robot tries to make its
inertia in X and Z-components large.

This simulation demonstrates the important point of effectively controlling a complex biped
with a very simple control law. While the robot model has 27 dofs, the control law deals
with only three variables which are the three diagonal elements of the robot's rotational
inertia.

In Fig. 7, we specify only desired CoM (Eq. 37) while keeping desired rotational inertia (Eq.
36) unconstrained. The inertia shaping algorithm computes optimal joint angles that creates
specified CoM. In this example, we kept the joint angles for the arm and head fixed and
moved only leg joints. Since we keep the ground projection of CoM within the support
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polygon, the humanoid robot maintains balance even in relatively extreme pose (e.g.,
bottom right figure).

Fig. 7: Given desired CoM position, the inertia shaping algorithm computes optimal joint
angles to achieve the goal. In this demonstration, desired CoM is specified such that it
moves gradually backward (top), forward (middle), and downward (bottom). Blue line
segments connect CoP to CoM and radius of the green circle represents rotational inertia at
CoM about Z-axis which is pointed towards the reader.

6. Conclusions and Future Work

We have introduced the reaction mass pendulum (RMP) model of a humanoid robot. The
RMP model contains an actuated ellipsoidal reaction mass to explicitly model the robot’s
angular momentum. The ellipsoid represents the composite rigid body (CRB) inertia of the
robot computed at its CoM. The reaction mass is an addition to the existing inverted
pendulum humanoid models that only consider a point mass, and is also a mechanical
realization of the AMPM model that accounts for the presence of centroidal angular
momentum. The RMP is an instantaneous 3D capture of the aggregate kinematics and
dynamics of a general humanoid robot. As a lower-dimensional (n = 11) dynamic equivalent
of a high dof humanoid it lends itself to more probing analysis for dynamics and planning.
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We presented the technique of inertia shaping, which can be thought of as a kino-dynamics-
based higher-level control for humanoid. We have provided detailed formulations for each
ground contact configuration and demonstrated the successful application to a free floating
case as well as the CoM control in double support case.

RMP is introduced mainly as an analysis tool. For it to be a worthwhile successor to the very
useful linear inverted pendulum (LIPM) or AMPM models, one need to develop an
algorithm to compute desired trajectory of RMP. Our mechanical realization of the RMP
model can be useful for developing such control laws. Also, we feel that analyzing RMP
motion of human walking motion may provide a useful insight for this.

Once the planning is performed, one need to formulate control laws to apply desired RMP
motion to humanoids. Inertia shaping can be used for this process, but more factors such as
joint limits, collision with external objects, and prioritization of joints would have to be
considered for a humanoid robot to perform various tasks while interacting with the
environments (e.g., walking while holding a cup with the hand). This work is ongoing.

7. Acknowledgement

We appreciate Kangkang Yin for correcting errors in the original paper (Lee & Goswami,
2007). Ambarish appreciates fruitful discussions with Jerry Pratt, David Orin and especially
with Stefano Stramigioli.

8. Appendix

8.1 Computation of CoP and ground reaction force/moment

Since the CoP is an important ground reference point for humanoid balance, equations to
compute ground reaction force/ moment and CoP are provided in numerous literatures (e.g.,
Abdallah & Goswami, 2005). However, for completeness we derive equations to compute
CoP and ground reaction force/ moment again using the notations used in this chapter.

The CoP is the point where the horizontal components of the moment generated by the
ground reaction force (GRF) about the point vanish. The stationary humanoid robot can
maintain balance when CoP is inside the supporting polygon given by the contact of feet
and the ground. Since the GRF is unilateral, CoP is always in the support polygon.

Assuming gravity g and GRF are the only external forces, GRF is f, = M(i"¢ — g) where
1

rg = - X m;T;c; is the CoM of a humanoid robot.
From the relations between the rate of change of angular momentum about the CoM kg and
the moment about the same point mg; i.e., k¢ = mg = (rp — r¢) X f, + m,. where rp is CoP,
and assuming the ground normal #n is parallel to the gravity vector and locating spatial
coordinate frame on the ground (i.e, rp L n), we can compute the CoP and the vertical

component of m,.:

Tp = nx (kg +1g X fr)

1
n'fr

n-mrzn-(k6+(r6—rp)><fr).
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