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Abstract

New development of original approach to the equilibrium problem in a linear exchange
model and its variations is presented. The conceptual base of this approach is the scheme
of polyhedral complementarity. The idea is fundamentally different from the well-known
reduction to a linear complementarity problem. It may be treated as a realization of the
main idea of the linear and quadratic programming methods. In this way, the finite
algorithms for finding the equilibrium prices are obtained. The whole process is a succes-
sive consideration of different structures of possible solution. They are analogous to basic
sets in the simplex method. The approach reveals a decreasing property of the associated
mapping whose fixed point yields the equilibrium of the model. The basic methods were
generalized for some variations of the linear exchange model.

Keywords: exchange model, economic equilibrium, fixed point, polyhedral
complementarity, optimization problem, conjugate function, algorithm

1. Introduction

It is known that the problem of finding an equilibrium in a linear exchange model can be

reduced to the linear complementarity problem [1]. Proposed by the author in [2], a polyhedral

complementarity approach is based on a fundamentally different idea that reflects more the

character of economic equilibrium as a concordance the consumers’ preferences with financial

balances. In algorithmic aspect, it may be treated as a realization of the main idea of linear and

quadratic programming. It has no analogues and makes it possible to obtain the finite algo-

rithms not only for the general case of classical linear exchange model [3], but also for more

complicate linear models, in which there are two sets of participants: consumers and firms

producing goods [4] (more references one can find in [5]). The simplest algorithms are those for
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a model with fixed budgets, known more as Fisher’s problem. The convex programming

reduction of it, given by Eisenberg and Gale [6], is well known. This result has been used by

many authors to study computational aspects of the problem. Some reviews of that can be

found in [7]. The polyhedral complementarity approach gives an alternative reduction of the

Fisher’s problem to a convex program [2, 8]. Only the well-known elements of transportation

problem algorithms are used in the procedures obtained by this way [9]. These simple pro-

cedures can be used for getting iterative methods for more complicate models [5, 10].

The mathematical fundamental base of the approach is a special class of piecewise constant

multivalued mappings on the simplex in Rn, which possesses some monotonicity property

(decreasing mappings). The problem is to find a fixed point of the mapping. The mappings in

the Fisher’s model proved to be potential ones. This makes it possible to reduce a fixed point

problem to two optimization problems which are in duality similarly to dual linear program-

ming problems. The obtained algorithms are based on the ideas of suboptimization [11]. The

mapping for the general exchange model is not potential. The proposed finite algorithm can be

considered as an analogue of the Lemke’s method for linear complementarity problem with

positive principal minors of the restriction matrix (class P) [12].

2. Polyhedral complementarity problem

The basic scheme of the considered approach is the polyhedral complementarity. We consider

polyhedrons in Rn. Let two polyhedral complexes ω and ξ with the same number of cells r be

given. Let R⊂ω� ξ be a one-to-one correspondence: R ¼ Ωi;Ξið Þf gri¼1 with Ωi ∈ω, Ξi ∈ ξ.

We say that the complexes ω and ξ are in duality by R if the subordination of cells in ω and the

subordination of the corresponding cells in ξ are opposite to each other:

Ωi ≺Ωj () Ξi ≻Ξj:

The polyhedral complementarity problem is to find a point that belongs to both cells of some

pair Ωi;Ξið Þ:

p∗ is the solution () p∗ ∈Ωi ∩Ξi for some i:

This is natural generalization of linear complementarity, where (in nonsingular case) the

complexes are formed by all faces of two simplex cones.

Figure 1 shows an example of the polyhedral complementarity problem. Each of two complexes

has seven cells. There is a unique solution of the problem—the point x∗ that belongs toΩ6 and Ξ6.

The polyhedral complementarity problem can be reformulated as a fixed point one. To do this

the associated mapping is introduced as follows:

G pð Þ ¼ Ξi ∀p∈Ω
∘

i ,

where Ω ∘

i is the relative interior of Ωi.

Now p∗ is the solution of complementarity problem if p∗ ∈G p∗ð Þ.
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3. Classical linear exchange model

We demonstrate the main idea of the approach on the classical linear exchange model in the

well-known description [13].

Consider a model with n commodities (goods) and m consumers. Let J ¼ 1;…; nf g and

I ¼ 1;…;mf g be the index sets of commodities and consumers.

Each consumer i∈ I possesses a vector of initial endowments wi
∈Rn

þ. The exchange of com-

modities is realized with respect to some nonnegative prices pj, forming a price vector p∈Rn
þ.

The consumer i∈ I has to choose a consumption vector xi ∈Rn
þ maximizing his linear utility

function ci; xi
� �

under budget restriction:

ci; xi
� �

! max,

p; xi
� �

⩽ p;wi
� �

,

xi ⩾ 0:

�

�

�

�

�

�

�

¼) The problem of consumer i:

Let ~xi be a vector xi that solves this program.

A price vector ~p 6¼ 0 is an equilibrium price vector if there exist solutions ~xi, i ¼ 1,…, m, for the

individual optimization problems such that

Figure 1. Polyhedral complementarity.
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X

i∈ I

~xi ¼
X

i∈ I

wi
:

In what follows, we normalize the initial endowment of each commodity to 1, that is,P
iw

i ¼ 1;…; 1ð Þ∈Rn. The sum of pj is also normalized to 1, restricting the price vector p to lie

in the unit simplex

σ ¼ p∈Rn
þj

X

j∈ J

pj ¼ 1

8
<

:

9
=

;:

For the sake of simplicity assume ci > 0, ∀i∈ I. It is sufficient for existence of equilibrium [13].

4. The main idea of the approach

The equilibrium problem can be considered in two different ways.

1 ∘
: The traditional point of view: supply–demand balance.

Given a price vector p, the economy reacts by supply and demand vectors:

p
↗ demand D pð Þ

↘ supply S pð Þ
:

The goods’ balance is the condition of equilibrium:

bp is equilibrium price vector () S bpð Þ ¼ D bpð Þ:

2 ∘
: Another point of view.

The presented consideration is based on the new notion of consumption structure.

Definition. A set B⊂ I � J is named a structure, if for each i∈ I there exists i; jð Þ∈B.

Say that a consumption prescribed by xi
� �

is consistent with structure B if

i; jð Þ∉B ¼) xij ¼ 0:

This notion is analogous to the basic index set in linear programming.

Two sets of the price vectors can be considered for each structure B.

We name them zones:

B
↗ the preference zone Ξ Bð Þ

↘ the balance zone Ω Bð Þ:
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Ξ Bð Þ is the set of prices by which the consumers prefer the connections of the structure,

ignoring the budget conditions and balances of goods. Ω Bð Þ is the set of prices by which the

budget conditions and balances of goods are possible when the connections of the structure are

respected, but the participants’ preferences are ignored.

Now, it is clear that

p is an equlibrium price vector () ∃Bð Þp∈Ω Bð Þ ∩Ξ Bð Þ:

We show that in this way the equilibrium problem is reduced to polyhedral complementarity

one.

The question is as follows: What kind of the structures B∈B should be considered and what should

be the collection B?

3 ∘
: The parametric transportation problem of the model.

Given a price vector p consider the following transportation problem of the model:

X

i∈ I

X

j∈ J

zij ln c
i
j ! max

under conditions

zij
� �

∈Z pð Þ

X

j∈ J

zij ¼ p;wi
� �

, i∈ I,

X

i∈ I

zij ¼ pj, j∈ J,

zij ⩾ 0, i; jð Þ∈ I � J:

�

�

�

�

�

�

�

�

�

�

�

The equations of this problem represent the financial balances for the consumers and com-

modities. The variables zij are introduced by zij ¼ pjx
i
j.

This is the classical transportation problem. The price vector p is a parameter of the problem.

Under the assumption about wi
� �

this problem is solvable for each p∈σ.

The answer on the question about B reads: B is the collection of all dual feasible basic index sets of

the transportation problem and of all their subsets being structures.

4 ∘
: Polyhedral complexes of the model.

For B∈B, we obtain the description of zones Ω Bð Þ and Ξ Bð Þ in the following way.

B∈B )

aÞ Ω Bð Þ⊂σ is the balance zone of the structure :

Ω Bð Þ ¼ p∈σj∃z∈Z pð Þ; zij ¼ 0; i; jð Þ∉B
� �

;

bÞ Ξ Bð Þ⊂ σ
∘ is the preferance zone of the structure :

Ξ Bð Þ ¼ q∈σ
∘ max

k

cik
qk

¼
cij

qj
; ∀ i; jð Þ∈B

�

�

�

�

�

)

:

(

�

�

�

�

�

�

�

�

�

�

�

�
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Here, σ ∘ is the relative interior of σ.

It is easy to give these descriptions in more detail.

For q∈Ξ Bð Þ, we have the linear system

qk
cik

¼
qj

cij
i; kð Þ∈B, i; jð Þ∈B, (1)

ql
cil

⩾
qj

cij
i; lð Þ∉B, i; jð Þ∈B: (2)

Thus, Ξ Bð Þ is the intersection of a polyhedron with σ ∘ .

To obtain the description of Ω Bð Þ, we should use the well-known tools of transportation

problems theory. Given B∈B, introduce a graph Γ Bð Þ with the set of vertices

V ¼ 1; 2;…;mþ nf g and the set of edges i;mþ jð Þj i; jð Þ∈Bf g. Let τ be the number of compo-

nents of this graph, let Vν be the set of vertices of ν th component, Iν ¼ I ∩Vν and

Jν ¼ j∈ Jj mþ jð Þ∈Vνf g:. It is not difficult to show that the following system of linear equa-

tions must hold for p∈Ω Bð Þ:

X

j∈ Jν

pj ¼
X

i∈ Iν

p;wi
� �

, ν ¼ 1,…, τ: (3)

Under these conditions, the values zij can be obtained from the conditions z∈Z pð Þ and

zij ¼ 0, i; jð Þ∉B,

presenting linear functions of p: zij ¼ zij pð Þ. Now, for p∈Ω Bð Þ, we have in addition the system

of linear inequalities

zij pð Þ⩾ 0, i; jð Þ∈B:

Thus, Ω Bð Þ is described by a linear system of equalities and inequalities. Therefore, it is also a

polyhedron.

It is easy to see that each face of the polyhedronΩ Bð Þ is also a polyhedronΩ B
0

� �

with B
0

⊂B .

Therefore, we have on the simplex σ a polyhedral complex ω ¼ Ω Bð ÞjB∈Bf g. The polyhedrons

Ξ Bð Þ form on σ another polyhedral complex ξ ¼ Ξ Bð ÞjB∈Bf g. It is clear that

Ω B1ð Þ⊂Ω B2ð Þ ¼) Ξ B1ð Þ⊃Ξ B2ð Þ:

Thus, the complexes ω, ξ are in duality, and we obtain the reduction of the equilibrium

problem to a polyhedral complementarity one.

Example. In the model, there are 3 commodities and 2 consumers:
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c
1 ¼ 1; 2; 3ð Þ, w

1 ¼ 1=2; 1=2; 1=2ð Þ,

c
2 ¼ 3; 2; 1ð Þ, w

2 ¼ 1=2; 1=2; 1=2ð Þ:

We need c1 and c2 only up to positive multipliers:

c
1 � 1=6; 2=6; 3=6ð Þ, c

2 � 3=6; 2=6; 1=6ð Þ:

Thus, c1 and c2 can be considered as points of the unit price simplex σ.

Figure 2 illustrates the polyhedral complexes of the model. Each of both complexes has 17 cells.

Figure 3 illustrates the arising complementarity problem. The point c12 is its solution: c12 ∈Ω12.

Thus, the corresponding vector p∗ ¼ 3=8; 2=8; 3=8ð Þ is the equilibrium price vector of the model.

Figure 2. Polyhedral complexes in exchange model.

Figure 3. Complementarity problem: c12 is the solution.
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5. The Fisher’s model

1 ∘
: Reduction to optimization problem

A special class of the models is formed by the models with fixed budgets. This is the case when

each consumer has all commodities in equal quantities: wi
j ¼ λi for all j∈ J, and thus,

p;wi
� �

¼ λi for all p∈σ. Such a model is known as the Fisher’s model. Note that we have this

case in the abovementioned example.

The main feature of these models is the potentiality of the mappings G associated with the

arising polyhedral complementarity problems.

Let f be the function on Rn that f pð Þ for p∈ σ is the optimal value in the transportation problem

of the model, and f pð Þ ¼ �∞ for p∉ σ. This function is piecewise linear and concave. It is

natural to define its subdifferential using the subdifferential of convex function �fð Þ:

∂f pð Þ ¼ �∂ �fð Þ pð Þ.

Let G be the mentioned associated mapping.

Theorem 1. The subdifferential of the function f has the representation:

∂f pð Þ ¼ ln qþ tejq∈G pð Þ; t∈Rf g,

where e ¼ 1;…; 1ð Þ and ln q ¼ ln q1;…; ln qn
� �

. (The addend te in this formula arises because it

holds
P

j∈ J pj ¼ 1 for p∈σ.)

Consider the convex function h, defining it as follows:

h pð Þ ¼

p; ln pð Þ, for p∈ σ ∘ ,

0, for p∈ ∂σ,

�∞, for p∉ σ:

8

>

<

>

:

9

>

=

>

;

Introduce the function

φ pð Þ ¼ h pð Þ � f pð Þ (4)

Theorem 2. The fixed point of G coincides with the minimum point of the convex function φ pð Þ on σ ∘ .

Another theorem for the problem can be obtained if we take into account that the mapping G

and the inverse mapping G�1 have the same fixed points. For the introduced concave function

f , we can consider the conjugate function:

f ∗ yð Þ ¼ inf
z

y; zð Þ � f zð Þf g

(see [14]) With this function, we associate the function ψ qð Þ ¼ f ∗ ln qð Þ, which is defined on σ ∘ .
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Proposition 1. For the Fisher’s model, the following formula is valid:

f ∗ ln qð Þ ¼ �
X

i∈ I

λi max
j∈ J

ln
cij

qj
(5)

Theorem 3. The fixed point of G is the maximum point of the concave function ψ qð Þ on σ ∘ .

For the functions φ pð Þ and ψ qð Þ, there is a duality relation as for dual programs of linear

programming:

Proposition 2. For all p, q∈σ ∘ the inequality

φ pð Þ ≥ψ qð Þ

holds. This inequality turns into equality only if p ¼ q.

Corollary. φ rð Þ ¼ ψ rð Þ if and only if the point r is the fixed point of the mapping G.

Thus, the equilibrium problem for the Fisher’s model is reduced to the optimization one on the

price simplex. It should be noted that this reduction is different from well-known one given by

Eisenberg and Gale [6].

2 ∘
: Algorithms

The mentioned theorems allow us to propose two finite algorithms for searching fixed points.

Algorithmically, they are based on the ideas of suboptimization [11], which were used for

minimization quasiconvex functions on a polyhedron. In considered case, we exploit the fact

that the complexes ω and ξ define the cells structure on σ ∘ similarly to the faces structure of a

polyhedron.

For implementation of the algorithms, we need to get the optimum point of the function φ pð Þ

or ψ qð Þ on the affine hull of the current cell.

Consider a couple of two cells Ω∈ω, Ξ∈ ξ corresponding to each other.

Let L⊃Ω, M⊃Ξ be their affine hulls. It will be shown that L ∩M is singleton.

Let be rf g ¼ L ∩M.

Lemma. The point r is the minimum point of the function φ pð Þ on L and the maximum point of the

function ψ qð Þ on M.

Now, we describe the general scheme of the algorithm [8] that is based on Theorem 2. The

other one using the Theorem 1 is quite similar [9].

On the current k-step of the process, there is a structure Bk ∈B. We consider the cells

Ωk ¼ Ω Bkð Þ,Ξk ¼ Ξ Bkð Þ and have the point qk ∈Ξk. Let Lk ⊃Ωk, Mk ⊃Ξk be the affine hulls of

these cells. We need to obtain the point of their intersection rk.

Polyhedral Complementarity Approach to Equilibrium Problem in Linear Exchange Models
http://dx.doi.org/10.5772/intechopen.77206

35



Return to the transportation problem of the model and to the descriptions of cells. Consider the

graph Γ Bkð Þ. This graph can have more than one connected components. Let τ be number of

connected components, and i∈ Iν, mþ jð Þ for j∈ Jν be the vertices of ν-th component. It is easy

to verify that the linear system (3) for Lk is going to be equivalent to this one:
X

j∈ Jν

pj ¼
X

i∈ Iν

λi, ν ¼ 1,…, τ: (6)

The linear system (1) for the cell Ξk defines coordinates qj on each connected component up to

a positive multiplier:

qj ¼ tνq
k
j , j∈ Jν:

To obtain the coordinates of the point rk, we need to put pj ¼ qj in corresponding Eq. (6), which

gives the multiplier tν.

For the obtained point, rk can be realized in two cases.

(i) rk ∉Ξk. Since r
k is a maximum point onMk for the strictly concave function ψ qð Þ, the value of

the function will increase for the moving point q tð Þ ¼ 1� tð Þqk þ trkÞ when t increases in [0,1].

In considered case, this point reaches a face of Ξk at some t ¼ t∗ < 1. Some of corresponding

inequalities (2) for p ¼ q t∗ð Þ is fulfilled as equality. Choose one of them. Corresponding edge

l;mþ jð Þ will be added to graph. It unites two of connected components. We obtain

Bkþ1 ¼ Bk∪ l; jð Þf g, accept qkþ1 ¼ q t∗ð Þ and pass to the next step.

It should be noted that the dimension of the cell Ξ reduces. It will certainly be rk ∈Ξk when the

current cell Ξk degenerates into a point, and we have rk ¼ qk. But it can occur earlier.

(ii) rk ∈Ξk. In this case, we can assume qk ¼ rk. Otherwise, we can simply replace qk by rk with

an increase of the function’s ψ qð Þ value. We verify qk ∈Ωk? For this, we obtain from the

equations of the transportation problem the variables zij, i; jð Þ∈Bk, as linear functions zij pð Þ

and check zij q
k

� �

≥ 0. If it is true, the point qk is the required fixed point. Otherwise, we have

zsl q
k

� �

< 0. We accept Bkþ1 ¼ Bk s; lð Þf g, qkþ1 ¼ qk and pass to the next step.

Figure 4. Illustration of one step of the algorithm.

Optimization Algorithms - Examples36



Theorem 4. If the transportation problem of the model is dually nondegenerate, the described

suboptimization method leads to an equilibrium price vector in a finite number of steps.

Figure 4 illustrates two described cases on one step of the algorithm. The point q∈Ξ is the

current point of the step.

6. Illustrative example

We show how the described method works on the Fisher’s model example of Section 3.

For the start, we need a structure B
1
∈B and a point q1 ∈Ξ B

1
� �

: We depict the structures as

matrices m� n with elements from �; �f g, and � corresponds to an element of B. For example,

the structure B12 ¼ 1; 2ð Þ; 1; 3ð Þ; 2; 1ð Þ; 2; 2ð Þf g will be depicted as the matrix

B12 ¼
� � �

� � �

	 


(this is the structure for the cell Ω12). Let us start with the structure

B
1 ¼

� � �

� � �

 !

It means that both consumers prefer only first good. Let us choose as q1 the price vector

q1 ¼ 0:05; 0:35; 0:6ð Þ. It is easy to verify that B1
∈B and q1 ∈Ξ B

1
� �

.

Step 1. The graph Γ B
1

� �

has three connected components and the system (6) has the form

p1 ¼ 1, p2 ¼ 0, p3 ¼ 0:

Thus, we have r1 ¼ 1; 0; 0ð Þ. The cell Ξ B
1

� �

is given by the system

q1
1

≤
q2
2
, (7)

q1
1

≤
q3
3
, (8)

We have q1 ∈Ξ B
1

� �

and r1 ∉Ξ B
1

� �

. It is the case (i) in the description of algorithm. We have to

move the point q1 to the point r1. For the moving point q tð Þ it will be:

q1 tð Þ ¼ 0:05þ 0:95t, q2 tð Þ ¼ 1� tð Þ0:35, q3 tð Þ ¼ 1� tð Þ0:6:

This point reaches a face of Ξ B
1

� �

at t ¼ t∗ ¼ 0:1111: the inequality (7) for q ¼ q t∗ð Þ is fulfilled

as equality. We obtain B
2 ¼ B

1
∪ 1; 2ð Þf g and q2 ¼ q t∗ð Þ.
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B
2 ¼

� � �

� � �

 !

q2 ¼ 0:1556; 0:3111; 0:5333ð Þ:

Step 2. The graph Γ B
2

� �

has two connected components and the system (6) has the form

p1 þ p2 ¼ 1, p3 ¼ 0:

For the point r2, we have to consider this system with the additional equation

p1
1
¼

p2
2
,

corresponding to (7), this gives r2 ¼ 0:3333; 0:6667; 0ð Þ. We have r2 ∉Ξ B
2

� �

since the inequality

(8) is violated. The new moving point q tð Þ ¼ 1� tð Þq2 þ tr2 has the coordinates:

q1 tð Þ ¼ 0:1556þ 0:1777t, q2 tð Þ ¼ 0:3111þ 0:3556t, q3 tð Þ ¼ 0:5333� 0:5333t:

At t∗ ¼ 0:0625 this point reaches the boundary of the cell Ξ B
2

� �

. It is the point c1 in the simplex

σ. The inequality (8) for q ¼ q t∗ð Þ is fulfilled as equality. Thus, we obtain:

B
3 ¼

� � �

� � �

 !

q3 ¼ 0:1667; 0:3333; 0:5ð Þ:

Step 3. Now, we have the case (ii) in the description of algorithm: the cell Ξ B
3

� �

contains

unique point q3 and thus r3 ¼ q3. We have to verify r3 ∈Ω B
3

� �

? For this, we obtain from the

equations of the transportation problem the variables zij, i; jð Þ∈B
3, and check zij q

3
� �

≥ 0. For

these variables, we have the system:

z12 ¼ q32, z13 ¼ q33, z21 ¼ 0:5, z11 ¼ q31 � 0:5

We obtain z11 = 0.1667–0.5 = �0.3333 < 0. Thus the element 1; 1ð Þ should be removed from the

structure B3:

B
4 ¼

� � �

� � �

 !

q4 ¼ q3:

Step 4. We have to obtain the point r4. The graph Γ B
4

� �

has two connected components and the

system for this point has the form:

p1 ¼ 0:5, p2 þ p3 ¼ 0:5,
p2
2
¼

p3
3

:
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Hence,

r4 ¼ 0:5; 0:2; 0:3ð Þ:

It is easy to see that the description of the cell Ξ B
4

� �

has the form:

q2
2
¼

q3
3
,

q1
1

≥
q3
3
,

q1
3

≥
q2
2

:

(9)

For q ¼ r4, the inequality (9) is violated, so r4 ∉Ξ B
4

� �

. For the new moving point q tð Þ we have:

q1 tð Þ ¼ 0:1667þ 0:3333t, q2 tð Þ ¼ 0:3333� 0:1333t, q3 ¼ 0:5� 0:2t:

At t∗ ¼ 0:625 the inequality (9) becomes equality, the point q tð Þ attains to the point

c12 ¼ 0:375; 0:25; 0:375ð Þ that is the boundary of Ξ B
4

� �

. We obtain the new structure:

B
5 ¼

� � �

� � �

 !

and new point q5 ¼ c12. It is easy to verify that we obtain the equilibrium of the model.

The equilibrium price vector is

~p ¼ 0:375; 0:25; 0:375ð Þ

Figure 5. Movement to equilibrium in the example model.
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The optimal solutions of the consumer’s problems are:

~x1 ¼ 0; 0:5; 1ð Þ, ~x2 ¼ 1; 0:5; 0ð Þ:

Figure 5 shows the moving of the point q tð Þ to the equilibrium.

7. Method of meeting paths

The described algorithms are nonapplicable for the general linear exchange model, when the

budgets of consumers are not fixed. In this case, the associating mapping G no longer has the

property of potentiality. But, the complementarity approach makes possible to propose a

modification of the proses [3]. We name it a method of meeting paths.

As mentioned earlier, on the current k-step of the process, we have a structure Bk ∈B. We

consider two cells Ωk ¼ Ω Bkð Þ,Ξk ¼ Ξ Bkð Þ and two points pk ∈Ωk, q
k
∈Ξk. Let Lk ⊃Ωk, Mk ⊃Ξk

be the affine hulls of these cells. For the points of their intersection Lk ∩Mk, we obtain from (1),

(3) the common system:

pk
cik

¼
pj

cij
i; kð Þ, i; jð Þ∈Bk, (10)

X

j∈ J
ν

pj ¼
X

i∈ Iν

p;wi
� �

, ν ¼ 1,…, τ, (11)

where the sets J
ν
, J

ν
correspond to ν-th connected component of the graph Γ Bkð Þ.

Under some assumption about starting structure this system has rank n� 1ð Þ and under

additional condition
P

j∈ J pj ¼ 1 the system defines uniquely the solution rk ¼ r Bkð Þ. This is

the intersection point of the affine hulls of the cells Ω Bð Þ and Ξ Bð Þ: It can be shown that rk ∈σ.

If rk ∈Ω Bkð Þ, rk ∈Ξ Bkð Þ, we have an equilibrium price vector.

Otherwise, we consider for t∈ 0; 1½ Þ two moving points:

p tð Þ ¼ pk þ t rk � pk
� �

, q tð Þ ¼ qk þ t rk � qk
� �

It can be shown that in consequence of the assumption ci > 0, ∀i∈ I, there exists t∗ ¼ max t

under the conditions p tð Þ∈Ω Bkð Þ, q tð Þ∈Ξ Bkð Þ:

It is the case when t∗ < 1. The two variants may occur:

(i) t∗ is limited by someof the inequalities zij p tð Þð Þ ≥ 0, i; jð Þ∈Bk. Corresponding pair i; jð Þ should be

removed fromBk:Bkþ1 ¼ Bk\ i; jð Þf g.We accept qkþ1 ¼ q t∗ð Þ, pkþ1 ¼ p t∗ð Þ andpass to thenext step.

(ii) t∗ is limited by some of the inequalities (2) in description of the cell Ξ Bkð Þ. Corresponding

pair i; lð Þ should be added to Bk: Bkþ1 ¼ Bk∪ i; lð Þf g. We accept qkþ1 ¼ q t∗ð Þ, pkþ1 ¼ p t∗ð Þ and

pass to the next step.
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We consider the situation when t∗ is limited by both above conditions as degenerate.

Nondegeneracy condition. Only one of the above two cases can occur.

This condition will be satisfied if a bit to move the starting points p0, q0.

Under this condition, it holds t∗ > 0. To justify this, the following lemma was proved [3].

Lemma Let A be a nonnegative and indecomposed matrix, and x is its positive eigenvector, λ is the

corresponding eigenvalue. If for a positive vector ~x the vector ~z ¼ λ~x � A~x has all components equal

zero except ~zi1 , ~zi2 , then the following two conditions are equivalent:

~zi1 ≥ 0 ()
~xi1
~xi2

≥
xi1
xi2

:

Theorem 5. Under nondegeneracy condition, the process of meeting paths is always finite.

Figure 6 illustrates one step of this method. In the figure, the point p tð Þ reaches the face of its

cell earlier than the point q tð Þ does. For the next step the cell Ω will be reduced, the cell Ξ will

be extended.

It should be noted that for the model with variable budgets, an iterative method was

proposed [10] that uses the developed simple algorithm for Fisher’s model in each step of

the process.

8. Generalizations

1. The models with upper bounds: the considered approach permits to develop the algo-

rithms for deferent variations of the classical exchange model. The simplest of those

models is the model in which the costs are limited for certain goods (the spending

Figure 6. Illustration of a meeting paths step.
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constraints model [7]): pjx
i
j ≤ βij. In this case, the mappings G associated with the arising

polyhedral complementarity problem are potential too. Some modifications of the devel-

oped algorithms are needed. More difficult is the model with upper on the purchase

volumes of goods. In this case, the mappings G are not potential and algorithm becomes

more complicated. Such a model arises if the functions of participants are not linear, but

piecewise linear concave separable [5].

2. The generalized linear exchange model: the polyhedral complementarity approach is

applicable to models with the production sector too. Some firms are added, those supply

goods to the market. Describe more in detail one of those models.

The model with n products, m participants-consumers, and l participants-firms is considered.

Let J ¼ 1;…; nf g, I ¼ 1;…;mf g, and K ¼ mþ 1;…;mþ lf g be the sets of the numbers of prod-

ucts, consumers, and firms. Thus, S ¼ I∪K is the set of numbers of all participants.

The consumer i∈ I has the initial endowments wi
∈Rn

þ and also the initial money stock αi. His

total budget after selling the initial endowments is equal to αi þ p;wi
� �

. Thus, the i th consumer

will choose the purchase vector xi looking for an optimal solution to the following problem:

ci; xi
� �

! max

under the conditions

p; xi
� �

≤αi þ p;wi
� �

,

xi ≥ 0:

The firm k∈K plans to deliver to the market the products to a total sum of at least λk. If

xk ¼ xk1;…; xkn
� �

denotes a plan of k th firm then the total cost of such a supply at the prices pj

equals p; xk
� �

. The quality of the plan is estimated by the firm in tending to minimize the

function ck; ; xk
� �

. Here, ck ¼ ck1;…; ckn
� �

is a fixed nonnegative vector whose components

determine a comparative scale of the “undesirability” of various products for the firm (e.g.,

their relative production costs).

Thus, the k th firm makes its choice according to a solution of the optimization problem:

ck; xk
� �

! min

under the conditions

p; xk
� �

≥λk,

xk ≥ 0:

An equilibrium is defined by a price vector ~p and a collection of vectors ~xi and ~xk i∈ I and

k∈K, representing some solutions to optimization problems of the participants for p ¼ ~p and

satisfying the balance of products:
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X

i∈ I

~xi ¼
X

k∈K

~xk þ
X

i∈ I

wi
:

From this follows that we have to suppose
P

i∈ I αi ¼
P

k∈K λk. As before, we suppose also that
P

j∈ J pj ¼ 1 and
P

i∈ I w
i ¼ e with e ¼ 1;…; 1ð Þ. Thus, in the equilibrium, we have

X

i∈ I

~xi ¼
X

k∈K

~xk þ e: (12)

The polyhedral complementarity approach can be used for this generalized model as well. The

main results remain valid [4], but the consideration becomes more complicated. Some features

are discussed.

The structure notion is generalized:

Definition. A set B⊂ S� J is named a structure, if for each s∈ S there exists s; jð Þ∈B.

As before, we suppose that all vectors cs, s∈S are positive. The parametric transportation

problem of the model is changed and becomes a net problem:

X

i∈ I

X

j∈ J

zij ln c
i
j �

X

k∈K

X

j∈ J

zkj ln c
k
j ! max

�
X

j∈ J

zij ¼ �αi � p;wi
� �

, i∈ I,

X

i∈ I

zij �
X

k∈K

zkj ¼ pj, j∈ J,

X

j∈ J

zkj ¼ λk, k∈K,

zij ≥ 0, zkj ≥ 0, i∈ I, j∈ J, k∈K:

It can be shown that this problem is solvable for all p∈σ.

As mentioned before, we consider the family B of structures B: it is the collection of all dual

feasible basic index sets of the transportation problem and of all their subsets being structures.

For each B∈B, we define the balance zoneΩ Bð Þ and the preference zone Ξ Bð Þ. The description

of these sets is quite similar to those of the classical case. Thus, in this way, we again obtain two

polyhedral complexes.

Theorem 6. A vector ~p ∈σ
∘ is an equilibrium price vector of generalized linear exchange model if and

only if ~p ∈Ω Bð Þ ∩ Ξ Bð Þ for some B∈B.

The generalized model can be considered with fixed budgets, and in this way, we obtain the

generalization of the Fisher’s model. The budget condition of the consumer i remains the same:

p; xi
� �

≤λi. But for the λi, i∈ I and λk, k∈K, we obtain the condition
P

i∈ I λi ¼ 1þ
P

k∈K λk.
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For this variant of model, we have the reduction to optimization problems as well. To do this,

we consider the function f pð Þ, which gives the optimal value of the transportation problem by

given price vector p. Having this function, we introduce as before the functions φ pð Þ ¼

p; ln pð Þ � f pð Þ and ψ qð Þ ¼ f ∗ ln qð Þ. For these functions, the main results of classical case

remain valid.

Theorem 7. A vector ~p is an equilibrium price vector if and only if ~p is a minimum point of the function

φ on σ ∘ .

Theorem 8. A vector ~p is an equilibrium price vector if and only if ~p is a maximum point of the function

ψ on σ ∘ .

The finite algorithms developed for Fischer’s model do not require any significant changes and

are applicable for this generalized model.

3. The production-exchange models Arrow-Debreu type: these are modifications of previous

model. Describe the simplest variant of the model. On the market, there is one unit of each

good. The firms produce additional goods, spending some resource that is limited and seek

to maximize revenue from the sale of manufactured goods. Thus, the k th firm solves the

following problem:
X

j∈ J

pjx
k
j ! max

X

j∈ J

dkj x
k
j ≤ ζk,

xkj ≥ 0, j∈ J:

Here, ζk is allowable resource and dkj indicate the resource cost per unit of product j.

Let λk pð Þ be the optimal value of this problem. The consumer i∈ I has the initial money stock

αi,
P

i∈ I αi ¼ 1. The revenues of the firms are divided between consumers in some propor-

tions, those are given by θik. The total budget of i th consumers becomes αi þ
P

k∈K θikλk pð Þ.

Thus, the i th consumer has the following problem:

ci; xi
� �

! max

under the conditions

p; xi
� �

≤αi þ
X

k∈K

θikλk pð Þ,

xi ≥ 0:

The condition of good balances in equilibrium is given as before by the equality (12).

The polyhedral complementarity approach is applicable for this model too, but the consider-

ation becomes much more complicated. An iterative method can be developed that uses the

abovementioned generalized linear exchange model as an auxiliary in each step of the process.
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