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Chapter

Application of ICA and Dynamic
Mixture Model to Identify
Microvasculature Activation
in fMRI
Yongxia Zhou

Abstract

The emphasis of this work is on developing novel data-processing techniques to
achieve a higher spatiotemporal resolution in dynamic functional magnetic reso-
nance imaging (fMRI). Due to partial volume effects, a pixel in fMRI may contain
signals from a mixture of micro- and macrovasculature, with very different tempo-
ral characteristics. This mixture effect provides a way to separate microvasculature
from macrovasculature in fMRI. A multi-component model representing a mixture
of many reference functions is used to fit the time course of pixels in fMRI. The
results suggest that it may be possible to separate the micro- and macrovasculature
fractional contributions to pixels by this approach. Compared to the classical single-
component model, the multi-component model fits the measured fMRI time course
with a higher correlation coefficient and also detects voxels with low latencies more
efficiently. Spatial independent component analysis (ICA) as a preprocessing step is
implemented to remove major physiological noise and artifacts. The results of
mixture model fitting after ICA cleaning show better results for microvasculature
detection.

Keywords: fMRI microvasculature, ICA, dynamic mixture model, neuronal
detection

1. Introduction

Functional magnetic resonance imaging (fMRI) is the most widely used modal-
ity to map brain function because it can be easily implemented, is noninvasive, and
has a relatively high spatial resolution. The dynamic fMRI signal change is regulated
by the local changes in cerebral blood flow (CBF), cerebral blood volume (CBV),
and blood oxygenation. CBF studies have suggested that a local increase in oxygen
delivery beyond metabolic demand occurs in active cerebral tissue, which results in
a higher concentration of oxygenated blood and a decrease in deoxyhemoglobin
concentration within the microvasculature of metabolically active brain regions.
Due to the four unpaired electrons, deoxyhemoglobin maintains a larger observed
magnetic susceptibility effect and is paramagnetic relative to oxyhemoglobin and
the surrounding brain tissue. The decrement in this paramagnetic substance in the
activated brain leads to an increase in the local magnetic homogeneity and reduces
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dephasing of spins. This increases the T2* contrast in the activated brain and results
in increases of MR signal relative to the resting state. A fast MRI data acquisition
sequence known as the echo-planar imaging (EPI) sequence is commonly used to
acquire fMRI signals. The physiological contributors to the fMRI signal changes
include the blood-oxygenation-level-dependent (BOLD) and in-flow effects such as
the increase in local CBF and arterial oxygenation. The signal in the functional area
reflects the local changes in the CBF and oxygen consumption rate due to the task or
stimulus [1]. And finally, the quantitative fMRI image indicates the spatiotemporal
mapping of the hemodynamic in response to a given task at specific brain areas.

The coupling between the BOLD hemodynamic effect and the underlying neu-
ronal activity has been studied and emphasized recently [2–4]. The first question is
whether the BOLD effect can reflect neuronal activation. Experiments have been
done with both animals and humans to verify that the BOLD contrast directly
reflects the neural responses elicited by a stimulus [5, 6]. The second question is
how the BOLD signal reflects the underlying neuronal activation. The exact nature
of the neurovascular coupling is not known yet. The studies by Logothetis suggest
that the BOLD signal is more likely to reflect the input and local neuronal processing
in a given area [5], whose weighted average of dendro-somatic components is
measured as the local field potential (LFP). However, because of the slow-brain
hemodynamics and the draining effects of vessels and veins, the BOLD activation
detected in fMRI is temporally delayed and spatially blurred from the actual site of
neuronal activation. The third question is then how to detect the neuronal activa-
tions from fMRI. Because of the unknown nature of the neurovascular coupling,
how to detect neuronal activation remains an open question. Since neuronal activa-
tion originates in tissue subserved by the microvasculature, the detected microvas-
culature will be co-localized or at least closer to neuronal activation.

The fMRI BOLD effect originates within the microvasculature but also spreads
into veins that drain blood from the activated brain tissue. And fMRI-based BOLD
contrast consists mainly of activations in the microvasculature, large venules, and
draining veins [7–10]. Because the BOLD signal is largely contaminated by the
signals in large veins and noise, extracting earlier microvasculature activation is
difficult and several issues need to be resolved. One major problem is the
compounding effects from the physiological cardiac and respiratory noise, random
noise, and also the contamination of head and vessel motion artifacts [11]. The
percentage signal changes triggered by the stimuli typically is 1–10% in 1.5–3 T
scanners [7]. Averaging scans for all events can improve signal-to-noise ratio (SNR)
in fMRI by canceling random noise. Low-pass and high-pass filtering for the data
can also improve SNR by removing the slow physiological processes such as subject
habituation, learning or fatigue, subject motion, machine calibration drift, and
scan-to-scan baseline variability [12]. However, artifacts in fMRI are often corre-
lated with the signal of interest. Thus, classical average and filtering methods are
not very effective. Noise-removing methods that are based on the intrinsic structure
of the measured signals are more effective.

Another challenge is the partial volume effect (PVE) within one fMRI voxel.
Because of the relatively large size of the voxel at the scale of mm compared to the
size of veins and microvasculature, a mixture of micro- and macrovasculatures is
present in the activated voxel with different temporal characteristics. Since the
actual site of neuronal activity could be masked by signals from macrovasculature, a
technique to separate micro- and macrovasculature within a voxel would be of great
significance to fMRI to improve spatial specificity as well.

The vascular contributions to the BOLD signal depend on magnetic field
strength as well as on data acquisition methods. Many previous works have been
done to enhance the detection of microvasculature. In Chen and Ugurbil [13],
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a higher field at 7 T was used to increase the relative contribution of
microcomponent to the BOLD signal. In spin-echo fMRI [14], large vessel contri-
butions were suppressed because the 180° radiofrequency (RF) pulse in spin-echo
(SE) sequence refocused the dephasing effect of the static field inhomogeneity
around large vessels. A fast response that may be attributed to an increased oxygen
consumption had been observed [15, 16]. This fast dip might be more sensitive to
microvasculature. Also, previous approaches to separate the microvasculature have
relied upon post-processing techniques that utilize the fact that the phase of the MR
signal often reflects the presence of larger vessels in a voxel [17, 18]. Thus, larger
vessels could be removed in the frequency domain or K-space. Our group has
presented a study of segmenting fMRI pixels into microvasculature, venules, and
large veins using intensity, phase, and temporal delay as features [17].

Independent component analysis (ICA) was first applied to fMRI in 1998 by
McKeown et al. using INFORMAX [19] and has been shown to be superior to
principle component analysis (PCA) in determining the spatial and temporal
extents of task-related activation. ICA can also be used to identify the nontask-
related components, such as physiological noise and movement artifacts. Initially,
ICA methods assumed that the sources were naturally occurring sources and mostly
had a super-Gaussian probability density function. Later on, the super-Gaussian
assumption was expanded to a combination of super-Gaussian and sub-Gaussian
distribution assuming that the source distribution was either sub-Gaussian or super-
Gaussian [20]. Recently, a mixture density model for the sources has been proposed
that enables the unknown sources to have a flexible density distribution [21]. The
advantages of ICA over PCA, the correlation of spatial ICA and temporal ICA to
fMRI, and some other issues have been discussed in many papers for the past
decade [22, 23]. In this study, ICA is implemented as an advanced preprocessing
step in fMRI activation detection to remove artifacts by identifying and then
removing some unrelated noisy components. ICA can also be used to identify
temporally independent sources by implementing temporal ICA to fMRI signals
within the region of interest (ROI). Sources identified by temporal ICA provide
extra information regarding the segmentation of microvasculature and macrovas-
culature mixtures within one voxel.

Temporal characteristics of the BOLD response had been investigated by using a
series of time-shifted reference functions [7, 24]. A better localization of the acti-
vated sites and temporal relationships among different brain regions within selected
clusters of activated voxels was achieved using this dynamic correlation method.
But this dynamic fitting used only a one-reference function at a time. Our method is
to use a multi-component model representing a mixture of many vascular compo-
nents to account for partial volume effect within one voxel [25, 26]. Because of
physiological and random noises in the fMRI signal, the multiple components fitting
of the dynamic mixture model can be further improved with both spatial and
temporal ICA methods to improve SNR. Our purpose is to implement dynamic
fitting in the proposed mixture model to account for different temporal character-
istics of vascular components and to improve SNR with ICA integration for better
microvasculature detections and a higher spatiotemporal resolution.

2. Methods

2.1 Experiment

To test the methodology, an Institutional Review Board (IRB)-approved human
study was conducted with fMRI on two normal subjects aged 25 and 40 years.
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A 480-volume of event-related EPI was acquired on a GE 1.5 T LX system from two
continuous slices (i.e., two images per volume) through the visual cortex. The
stimulus was a reversing checkerboard flashing with a 2-Hz frequency for 2 s every
20 s. The pulse repetition time TR = 275 ms, effective echo time TE = 45 ms, 45° flip
angle, 64 � 128 acquisition matrix, and 20 � 40 cm field of view. A total of seven
events were acquired.

2.2 Model

A multi-component reference function with a variable latency and a variable
time separation between adjacent components was fitted to the time course of each
voxel within the visual cortex, as shown in Eq. (1)

y tð Þ ¼ ∑
N

i¼1
aisi tð Þ þ n ) Y ¼ SAþ n, t ¼ 1,⋯T (1)

where y is the normalized time course of a voxel, n is fMRI noise, N is the
number of component, si is the ith component, ai is the contributions or the mixture
coefficient of si in y,T is the number of time points in the time course.

Each vascular component is modeled by a reference function with a latency
parameter (2):

ST�N t;Nð Þ ¼ X1 t� T1ð Þ;X2 t� T2ð Þ;⋯;XN t� TNð Þ½ � (2)

where X(t) is the reference function to best represent BOLD response, and Ti is
the latency parameter for the ith component to account for delay. Since latency is
the most important and influential parameter in dynamic fitting, a dual-component
model was investigated in this chapter for simplicity.

2.3 Estimation algorithm

Assuming the noise in fMRI is Gaussian white noise and the components (or
mixtures) can be explicitly modeled by a series of reference functions, there are
several ways to estimate the mixture coefficient and the latency of each component.

A non-negative least square (NNLS) solver [27] can be used to estimate the
contribution coefficients of each component after normalizing both the time course
and the components. At each iteration, only the column of S where the associated
entry of A > 0 was used for least square estimation as in Eq. (3)

A
ið Þ
NN ¼ SJ

þY, J ¼ jjAj
i�1ð Þ ¼ 0

n o

(3)

If the non-negative constraint is removed from the estimation, then a standard
minimum norm method can be used to estimate the contribution coefficients of
each component. The model falls in the general linear model (GLM) fitting problem
[28]. Thus, the estimation of the coefficient and hypothesis testing for the estima-
tion can be done using Eq. (4)

AGLM ¼ STS
� ��1

ST � Y

AGLM � N SþY; σn
2 � STS

� ��1
� � (4)
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Recently, a first-order Taylor approximation for the temporal derivative of the
reference function is used to estimate the delay of the fMRI response and the
latency difference in different regions [29, 30]. Assuming that there is a slight time
delay T0 between the reference function and the measurement, the delay T0 can be
estimated as listed in Eq. (5)

y tð Þ ¼ a � r t� T0ð Þ þ n tð Þ

r t� T0ð Þ ≈ r tð Þ � T0 � r
•
tð Þ ) y tð Þ ¼ β1r tð Þ þ β2r

•
tð Þ þ n tð Þ

) a ≈ β1, T0 ≈ β2=β1

(5)

where r tð Þ is a one-reference function and r
•
tð Þ is the temporal derivative of the

reference function. Both are used as two basis functions in a GLM. The beta-
parameters β1 and β2 are estimated using the GLM algorithm. In case of a dual-
component model, the derivative of only one component or the derivatives of both
components are tested.

After the mixture coefficients are estimated for any combination of two (or
more) different reference functions, the combination of the two-reference func-
tions that has the minimum fitting error or a maximum correlation coefficient with
regard to the original time course of each voxel is the estimate of the two compo-
nents with different latencies.

To account for the relatively small microvasculature signal compared to veins at
1.5 T, a weighting factor can be used to estimate the relative fractions of micro- and
macrovasculature inside a voxel from the fitted coefficients. For two components,

assume is the estimate of fraction coefficient from each component

in one voxel using NNLS method, and is the weighting factor for

each component. Then, the percentage contribution of each component in this
voxel is computed as in Eq. (6)

ð6Þ

2.4 Simulation

In Eq. (2), each component comes from a reference function with certain laten-
cies. The reference function mimicking the BOLD response is represented by the
convolution of the stimuli function and the hemodynamic response function
(HRF), assuming that the brain response is linear to the input (7)

r tð Þ ¼ h tð Þ∗I tð Þ, I tð Þ ¼ ∑
trial

δ t� Ttrialð Þ (7)

HRF is the brain response to an impulse stimulus and is modeled as the differ-
ence between two gamma functions as in Eq. (8) [31]

h t; τ1; τ2; δ1; δ2ð Þ ¼
t

τ1

� �δ1

e� δ1=τ1ð Þ� t�τ1ð Þ � c �
t

τ2

� �δ2

e� δ2=τ2ð Þ� t�τ2ð Þ (8)
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where τ1 controls the rising time to peak, τ2 controls the peak time of the
undershoot, δ1, δ2 determine the dispersion of the two peaks, and c controls the
influence of the undershoot.

Firstly, the influences of the HRF parameters τ1, τ2, δ1, δ2, c and the reference
function latency parameter T0 were studied. These parameters were in the range of
as listed in the study:
τ1 ¼ 3:4 : 7:4, δ1 ¼ 5 : 7, τ2 ¼ 12, δ2 ¼ 2δ1, c ¼ 0:35, T0 ¼ �10 : 10 [24]. Then, the
reference function with all these parameters was fitted to one time course in the
activated brain. The correlation coefficient between time course and the reference
function as a function of shape parameter δ1 and delay parameter τ1 at one latency
parameter T0 is used as a criterion for optimization, similar to the dictionary-based
finger-printing method. Except for the latency parameter T0, all the other parame-
ters of HRF are found to have a minor influence on the correlation coefficient, and
thus, only the latency parameter is used as a variable for each reference function in
this work. And HRF parameters are the same as in SPM software
τ1 ¼ 5:4, τ2 ¼ 12, δ1 ¼ 6, δ2 ¼ 12, c ¼ 0:35 [28].

Secondly, a Monte-Carlo study was conducted to test the fitting algorithm and to
study the influence of noise on the latency estimations. The simulated time course
was a mixture of one- or two-reference functions at different latencies from a series
of reference functions. The mixture coefficient W i, i ¼ 1, 2 of each reference func-
tion (or component) had a uniform distribution of W i � U 0; 1½ �. A Gaussian white
noise was added to the mixed time course with different SNR. The latencies of the
components were estimated by different GLM and NNLS with or without deriva-
tive algorithms. The sampling step for the reference functions was dt ¼ 105 ms in
the case studied based on maximal temporal resolution that fMRI could achieve.
The process of adding random Gaussian noise to the mixture of one or two compo-
nents with a random uniform coefficient was repeated 1000 times for each SNR.
The SNRs were tested at level from 1 to 10, 20, and infinite which is noise-free. The
results were obtained for a traditional one-reference function condition and a mix-
ture of two-reference function condition.

For the simulated time course coming from one-reference function case, the
tested algorithms are GLM method for one component and one derivative (i.e., two
basis functions), GLM method with only one component, and NNLS method with
only one component. The results show that the estimation is unbiased for both
NNLS and GLM methods for all SNRs, and the standard deviation (STD) for the
estimation is relatively small (less than 100 ms) for both methods at SNR larger
than 3. For the GLM plus the derivative component method, the estimation error is
non-zero for larger SNR. This is because the method uses the first-order derivative
as an approximation, assuming that the delay is very small and the assumption is
not always valid. The result is consistent with Hensen [29]. So only, the GLM and
the NNLS without derivative were tested for the mixture of two components.

For the case in which the simulated time course came from two mixed reference
functions, the latency of first component and separation of the two reference
functions were estimated. First, only the latency of the first component was esti-
mated and the separation of the two reference functions was initialized and fixed.
Then, the separation of the two reference functions is also set as a variable. The
Monte-Carlo simulation shows that both fixed and variable separations between
two reference functions give a small bias in the estimation of latency as a function of
SNR in case of mixture fitting. However, the NNLS estimation algorithm produces
smaller bias than GLM. Also, a variable separation gives a higher STD than a fixed
separation for latency estimation. Therefore, NNLS with a fixed separation is used
for this work.
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2.5 ICA denoise preprocessing

To improve the fitting using the multi-component model, spatial ICA (SICA)
was implemented first to improve SNR. Temporal ICA (TICA) had also been
applied to the cleaned data within a region of interest to extract the possible intrin-
sic temporally independent sources. TICA has also been used on functional MRI by
several groups [32, 33].

In SICA, the assumption is that all the intrinsic spatial independent components
are mixed temporally and measured at different time (which has the same meaning
as “channel”). In order for spatial ICA to work, the measured fMRI EPI 2D or 3D
image will be transformed to 1D vector in the same order at each time. The whole
fMRI data are formulated as a 2D matrix: Xij, i ¼ 1, 2,⋯, N; j ¼ 1, 2,⋯, V. N is the
number of EPI volumes and V is the number of voxels in each volume. Assuming
SM�V are the M independent components, the independent components are mixed
in the following way (9):

XN�V ¼ W�1
N�M � SM�V ) Xi ¼ ∑

M

m¼1
W�1

im � Si, i ¼ 1, 2,⋯, N

Xi ¼ Xi1, Xi2,⋯, XiV �
0�

(9)

where W�1
N�M is the mixing matrix and WN�M is called the unmixing matrix.

In order to get a good estimation of unmixing matrix and source components,
the number of samples or voxel number (V) and the number of sources (M) should
satisfy V≥M∗ Mþ 1ð Þ=2. The number of sources should not exceed the number of
channels: M≤N [19]. In the ICA algorithm, the number of sources by default is set
to be the number of channels (time points in case of spatial ICA and voxel number
in case of temporal ICA). The source numbers are usually very large and can
increase the computational complexity and lead to unstable solution [21]. One way
to solve this problem is to estimate the number of sources (or model order) using
the probability PCA such as Bayesian information criterion (BIC) [34].

In this chapter, we used PCA to estimate the number of the sources (M) in the
data based on the eigen decomposition of the covariance matrix of the data. The
number of components is estimated to maintain >95% of non-zero eigenvalues [33]
to contain a majority of data information. After PCA preprocessing, the data that
maintain the first M largest components were used for the spatial ICA decomposi-
tion using the ICA INFORMAX software [35]. The unmixing matrix and indepen-
dent components are obtained as the output.

Three features are extracted for each independent component (IC) in order to
select the artifacts components: (1) Spatial ICA map obtained by superimposing
activated voxels on the anatomy for the ith IC, Si, i ¼ 1, 2,⋯, 30. Each IC is scaled

by the variance after removing mean: Zij ¼
Sij�mi

σi
, i ¼ 1, 2,⋯, 30; j ¼ 1, 2,⋯,480.

The active voxels are selected such that Zj j ≥ 1:96 corresponds to statistical p = 0.05.
(2) The associated time course of the spatial IC. Based on Eq. (9), the contribution

of the ith IC to the original data is the ith column of the mixing matrix W�1 :; ið Þ.

W�1 :; ið Þ is called the associated time course for the ith IC, and it reflects the
temporal pattern of this source. The correlation coefficient (CC) and the statistical
P-value between the associated time course of sources and the single-shifted refer-
ence function are also calculated. (3) The power spectrum density (PSD) function
for the associated time course for the ith component with sampling frequency
f ¼ 1=TR ¼ 3:64 Hz.
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To clean the data, the noise independent components are removed by setting the
associated columns of the noise components in the mixing matrix to be zero. Data
are reconstructed from the possible signal components as shown in Eq. (10)

XV�N ¼ W�1
V�M � SM�N ) ~X i ¼ ∑

M

m¼1

~W�1
im � Si, i ¼ 1, 2,⋯, V

~W�1 :; jð Þ ¼ 0, if j ∈ noise; ~W�1 :; kð Þ ¼ W�1 :; kð Þ, otherwise

(10)

3. Results and discussion

3.1 Microvasculature estimation before ICA cleaning

Microvasculature estimation based on the methods described was applied to the
original data and the data after ICA cleaning. The histogram of voxels was detected
as a function of latency in steps of TR = 275 ms for the single component (Figure 1).
The histogram was fitted by a Gaussian distribution with the estimated mean and
standard deviation. Since pixels containing mostly microvasculature would have a
shorter latency among all detected voxels, the time separation from the peak of the
Gaussian to its baseline on the left side would be a reasonable estimate of the time
separation between the micro- and macrocomponents. The peak level was 22
(number of pixels) and Gaussian baseline is chosen at 10% of peak level which was
2.2. These correspond to indexes of 20 and 12, respectively, in units of TR. There-
fore, a separation of 8*TR = 2.2 s was selected between the components of the two-
component model.

Figure 2 shows the histogram of dual-component models using separation
time = 2.2 s. The histogram is a combination of two Gaussian distributions. The
latency boundary of micro- and macrovascular classes is chosen based on the sepa-
ration between two classes. The vertical line at �15 shows the separation boundary
(Figure 2).

Figure 3a shows the voxels (numbering 34) localized from fitting indexes 2–15
with earlier latency (latency up to 15, Figure 2) and has >50% fractional

Figure 1.
Histogram showing the number of voxels as a function of latency (each point in X-axis is 275-ms unit) for best
fitting time of a one-component model.

Figure 2.
Histogram showing the number of voxels as a function of latency for best fitting time for a dual-component
model.
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contribution from the earlier component. These voxels are likely to contain a
microvasculature component. The relative fractional contribution of these compo-
nents in the 34 voxels is shown in Figure 3b. Figure 3c shows the distribution of
voxels indexed with a high latency (after 15 shown in Figure 2) likely to be veins.
The relative contributions of the two components in these voxels are plotted in
Figure 3d. In Figure 3c, a large vein structure can be seen that may contain a
mixture of two macrovasculature components. In Figure 3a, the microvasculature
estimated in the V5 region (marked by circle) is in gray matter, though a couple of
pixels are likely to be macrovasculature and thus contain two vascular components
as shown in Figure 3b. For macrovasculature voxels estimated in Figure 3c, since
there might still be two vascular components (venules and veins) with different
latencies, the fractional contributions shown in Figure 3d were not equally distrib-
uted as in Figure 3b.

3.2 Microvasculature estimation after ICA cleaning

To further improve the mixture model, ICA is used as a preprocessing operation
for denoising. PCA was used to estimate the number of the sources, and the number
of components was chosen to be 30 (Figure 4) that contains ≥95% data variation
and information. After PCA preprocessing, the data that maintain the first 30
largest components were used for the spatial ICA decomposition using the ICA
INFORMAX software.

Figure 5 shows the features of a one-source component. The first row is the
spatial map of the 15th IC. V1, V2, and V5, expected to be activated, can be seen in
the spatial map. The second row is the associated time course and the averaged time
courses of original data. The associated time course matches well with the averaged
original time course. The correlation coefficient between the associated time course
and the reference function is 0.4 with P < 0.0001. The third row is the PSD of the
associated time course shown in the unit of Hz. Since the stimulus is presented
every 20 s, the corresponding frequency is 1/20 s = 0.05 Hz. The peak at 0.05 Hz can
be seen in the PSD; however, there are also some large peaks around 0.1 Hz and
lower frequencies that may come from the alias of the physiological noise. This
component is mostly likely to be task-related based on the high CC of 0.4 and a
distinct peak at 0.05 Hz in PSD. Figures 6 and 7 show two examples of components

Figure 3.
Results of mixture model for microvasculature estimation. (a) Voxels corresponding to indexes up to 15 in
Figure 2, (b) Fractional contributions from microvasculature (blue line) and macro-vasculature(green line).
(c) Voxels corresponding to indexes after 15 in Figure 2. (d) Fractional contributions from two components in
the macrovasculature.
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attributed to physiological noise. For instance, the source that is most likely from
the heart-beating with a dominant peak in 1.2 Hz is shown in Figure 6, and the
source that is from breathing and heart beating activation in the ventricles with
distinct frequencies at 0.27 and 1.2 Hz as in Figure 7. Figure 8 demonstrates an
example of the motion artifact component. The associated time course shows a
gradual drift along time. This component is likely to be movement-based low-
frequency drift. The activations have a “ring-like” spatial distribution that is coming
from head movement.

Figure 4.
SVD decomposition of fMRI data. Cutoff horizontal line was chosen to discard less than 5% data variation with
the corresponding number of components at 30.

Figure 5.
Representative result of one component from spatial ICA that is task related. (a) Spatial map of the 15th IC.
V1, V2, and V5, expected to be activated, can be seen in the spatial map. (b) Associated time course (red) and
the averaged time courses of original data (blue). The associated time course matches well with the averaged
original time course. The correlation coefficient between the associated time course and the reference function is
0.4. (c) Power spectrum density (PSD) of the associated time course shown in the unit of Hz. Since the stimulus
is presented every 20 s, the corresponding frequency is 1/20 s = 0.05 Hz as seen with the large peak in the
spectrum.
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Eight noise components were identified based on the three features, and data
were reconstructed by removing these components. We applied both multi-
component model and TICA to the original data and the data after ICA cleaning to
the visual cortex. Dynamic mixture model was used to fit the data after ICA
cleaning. The same time separation, 2.2 s, of “before ICA” was used for “after ICA”
fitting.

Figure 6.
One noisy component from heart beating.

Figure 7.
Another noisy component from both breathing and heart beating with distinct frequencies at 0.27 (from
breathing) and 1.2 Hz (from heart beating).

11

Application of ICA and Dynamic Mixture Model to Identify Microvasculature Activation in fMRI
DOI: http://dx.doi.org/10.5772/intechopen.79222



Figure 9 shows the histogram of a dual-component model using component
separation time = 2.2 s after ICA cleaning. The separation of micro- and
macrovascular classes was �12. The shape of the Gaussian distribution is narrowed
compared to Figure 2 before ICA. This is because ICA has removed the noisy voxels
and thus the distribution is less Gaussian.

Figure 10a shows the voxels (numbering 50) localized from low latency (up to
12, Figure 4) and has >50% fractional contribution from the earlier component.
These voxels are likely to contain a microvasculature component. Figure 10b shows
the relative fractional contribution of these components. Figure 10c shows the
distribution of voxels indexed with a high latency (after 12 in Figure 9) likely to be
veins. The relative contributions of two components in these later voxels are plotted
in Figure 10d.

3.3 Comparison of results before and after spatial ICA

The average correlation coefficient for the fitting after ICA cleaning has
increased around 70% compared to the original fitting (Figure 11). The number of
voxels at an earlier latency (up to 15 in Figure 2 and up to 12 in Figure 9) also
increased. The number of voxels that are most likely to be microvasculature has

Figure 8.
Result of motion artifact component from spatial ICA.

Figure 9.
Histogram showing the number of voxels as a function of latency for best fitting time for a dual-component
model after ICA cleaning.
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increased from 34 to 50 (�50%) after ICA. The regions marked by a circle in
Figure 10 identified microvasculature in V5 region on the left side which was
missed by the estimation before ICA.

For all the estimated microvasculature, the fractional contribution coefficients
of two components after ICA (Figure 10b) are the same, suggesting all the voxels
are in the microvasculature. The fractional contribution coefficients of two compo-
nents in the macrovasculature are different with venules and veins.

3.4 Comparison microvasculature estimation with temporal ICA

We have implemented further temporal ICA to the data after spatial ICA
cleaning in the cluster that has a higher correlation (≥0.3) to the reference function.
The assumption is that the concurrent active voxels may still be mixed with differ-
ent types of temporally independent components.

The number of components was set to be 10 based on the PCA of the cleaned
data within the activated cluster. There is an associated spatial map for each tem-
poral component that reflects the spatial contribution of the component. The spatial
map of each temporal IC is shown in Figure 12. Compared to the micro and
macrovasculature images, temporal IC #9 and IC #1 in Figure 12 have activation
patterns similar to the macrovasculature image in Figure 10c, while the spatial map

Figure 10.
Results of microvasculature estimation after ICA cleaning. (a) Voxels corresponding to indexes up to 13 in
Figure 9. (b) Fractional contributions from micro- and macrovasculature. (c) Voxels corresponding to indexes
after 13 in Figure 9. (d) Fractional contributions from two components in the macrovasculature.

Figure 11.
Correlation coefficient (CC) before ICA (blue) and after ICA (red). Average CC of all voxels improved 70%
after ICA compared to original fitting without ICA denoising.
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of temporal IC #10 and IC #4 has similar distributions with the microvasculature
image in Figure 10a.

3.5 Discussion

We have described a novel multiple-component model that takes into consider-
ation vascular mixtures in the fMRI BOLD signal and partial volume effect and
developed methods to estimate the contribution of each component. Experimental
studies have shown that compared to the traditional single-component model, our
method achieves a better match to the original time courses of fMRI and thus
reduces the fitting errors. Another advantage of the method is that it allows us to
estimate microvasculature. The microvasculature is closer to the site of neuronal
activation and validated with the temporal ICA method, as expected [36]. Spatial
ICA has been used as a preprocessing step in the mixture model to remove noise and
improve the microvasculature detection with a higher CC and more voxels with
lower latencies detected. The spatial and temporal distributions of all these noisy
components were consistent with the results of other studies [32, 34, 37].

We use a series of reference functions to model the brain vascular components.
Compared to the classical single-component model, the multi-component model fits
the measured fMRI time course with a higher correlation coefficient and also
detects voxels with low latencies more efficiently. Different vascular components
will have different HRF shapes. Therefore, how the brain vascular components can
be modeled more accurately needs to be investigated in the future. Also, the multi-
ple reference functions are not orthogonal to each other; some de-correlation
methods can be further implemented to improve the robustness of the fitting.

Figure 12.
Ten associated maps of temporal independent components (IC) identified by TICA.
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Temporal ICA decomposition in the activated regions could overcome these prob-
lems with good spatial correspondence results between temporal ICA and mixture
models. One limitation is that temporal independent assumption might not be fully
satisfied in fMRI data since hemodynamic responses evolve with time [29].

4. Conclusion

In conclusion, we had used two new methods (i.e., ICA and dynamic mixture
model) to improve microvasculature detection in fMRI that is closer to true neuro-
nal activation and therefore improve the specificity of the fMRI microvasculature
detection in both functional and structural ways [38]. Further integration and
validation with other modalities such as EEG and PET are warranted in the near
future. Further imaging of the full dynamic spatiotemporal multi-parametric func-
tional and neurophysiological profile including BOLD microvasculature activation,
couplings between BOLD and CBF/CBV, between BOLD, and oxygen extraction/
metabolism [39] are expected in the near future [40].
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