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Abstract

Polyesters occupy an important place in the group of polymers as engineering materials 
to be used in electrotechnology and electronics. These polymers are characterized by 
excellent electro-insulating properties, showing mechanical strength, thermal resistance, 
and easiness in processing at the same time. The chapter presents the behavior analy-
sis of the following polyesters in electric field: poly(ethylene terephthalate), poly(lactic 
acid), and polycarbonate. The effect of polymer microstructure on electric properties is 
presented, including its susceptibility to polarization that makes it possible to use poly-
esters as electrets materials. The second trend of the study presents the possibilities of 
transforming the electro-insulating properties of polyester fabrics to conductive proper-
ties with the use of modern processing methods such as PVD, CVD, and digital print. 
The functionalization of polyester fabrics extends their application range, for example, 
in e-textiles and reduces the fabric susceptibility to static electricity, increasing the safety 
of use.

Keywords: polyesters, electrical conductivity, polarization, electrets, static electricity

1. Introduction

Polyesters constitute an important group of polymers widely used in many branches of econ-

omy, such as electrical, electronic, building, clothing and packaging industries, and medi-

cine. These polymers are characterized by excellent electro-insulating properties, mechanical 

strength, thermal resistance, and susceptibility to multiple processing. A common feature of 

polyesters is the presence of ester group in the main chain structure. This group imparts 

a polar character to polyesters. Aromatic groups in the repeatable units of polyester chain 

impart to the polymers an increased physical resistance, such as thermal (increased melt-
ing point and glass transition temperature) and mechanical resistance (increased mechanical 
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parameters such as elasticity and strength). The content of aromatic structures in polyesters is 
different and has been used for the internal classification of these polymers into aliphatic, ali-
phatic-aromatic, and aromatic polyesters. Aliphatic polyesters contain no aromatic structures, 

for example, poly(ethylene adipate). This group includes biodegradable polyesters, such as 
poly(lactic acid) (PLA) (Figure 1B), polyesters of butyric acid (PHB), and poly(butylene suc-

cinates) (PBS) widely used in medicine and technology. Aliphatic-aromatic polyesters contain 
both the aliphatic and aromatic structures (e.g., poly(ethylene terephthalate), polycarbonates) 
(Figure 1C, D). These polyesters show very good thermo-mechanical, impact, tribological, 
and optical properties, as well as resistance to atmospheric and functional conditions, which 

qualify them for mass production and versatile use. Finally, polyesters with “purely” aromatic 

structures—polyarylates (poly(4-hydroxybenzoate), poly(bishfenol-A-terephthalate), liquid 
crystal polyester) that show excellent thermal and dimensional stability, impact resistance, 
fire resistance, and nonlinear optical properties (NLO) [1]. Aromatic polyesters are used in 

the production of membranes, films coatings for electronic and electrical industries, optical 
waveguides and devices doubling the frequency of electromagnetic waves [1].

The chapter presents the behavior analysis of the following polyesters in DC electric field: 
aliphatic-aromatic polyesters with the example of poly(ethylene terephthalate) (PET) and 
polycarbonate (PC) and aliphatic polyester with the example of poly(lactic acid).

The processes of nonstationary current flow in polyesters and possible mechanisms that gen-

erate the nonstationary states are presented. Using the example of PET film tests, the ionic 
character of current conduction is shown. It is the effect of air humidity in the environment 
where a product is used that is connected with the ionic character of current conductance. 

There observed a well-known effect of deteriorating the PET film electro-insulating properties 
with increasing the content of water vapor in air [2]. In this study, it has been shown that this 

effect additionally depends on the form of product, and it is particularly intensified in fibrous 
structures, where the conduction is increased by about 1000 times. The effect of the physico-

chemical state and coarseness of surface on the level of static electricity charge is shown. The 

processes of static electricity of polyesters, electricity conditioning, and hypotheses explain-

ing these processes with a particular consideration of the static electricity of polyester-metal 

contact are discussed. The polyesters are important precursors for making electrets. The vari-

ous techniques of electrets making and the issues of the electric charge relaxation that are of 

Figure 1. Structures of chemical groups in polyesters.
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great importance for the electrets stability are presented. Information about the development 

trends of polyester and new fields of application are also included.

2. Electrical conductance of polyesters in a DC field

Polyesters are real dielectrics with a low electric conductance, polarizability in electric field, 
and a strong susceptibility to static electricity. Electric properties are determined by the pres-

ence of connected charges and trace quantities of free electric charges that are generated by 

defects, impurities, technological additives, or injected from electrodes or environment (e.g., 
low-temperature plasma). During the interaction of DC field, free charges undergo migration 
and connected charges are polarized. Migration and polarization processes occur in parallel, 

shaping a characteristic, nonstationary image of the polymer electric conductance.

The current that flows in a real polymeric dielectric under DC field is transient in nature 
and called absorption current. The density of absorption current decreases in time to reach 

a steady-state value called conductance current. The transient (absorption) current “j(t)” is 

presented as a sum of the steady-state conduction current “j
c,
” the transient current (displace-

ment current) “j
p
(t),” and diffusion current “j

d
“:

  j (t)  =  j  
c
   +  j  

d
   +  j  

p
   (t)   (1)

In many polymers, the decreasing transient polarization current is in a direct relation with 

the function of polarization decay P(t). The polarization decay occurs according to the 
dependence:

  P (t)  =  P  
o
   ⋅ exp (  t __  τ  

p
    )   (2)

where: t—time and τ
p
—macroscopic relaxation time of electrical polarization. The decrease in 

current in dielectric polymer can be approximated by Curie function:

  j = A ⋅  t   −n   (3)

where: A—coefficient of proportionality dependent on temperature, n—power coefficient 
dependent on relaxation processes, n < 1 for times t > τ, while n > 1 for t < τ. With the use of the 
above approximation to transient conduction processes in PET, the following values of power 
coefficient are obtained: n = 0.75 [3], n = 0.33 [4], and n = 0.79 [5]. The transient character of 

current indicates a complicated behavior of electric charges in dielectric polymers. The values 

of conductance current are lower by one to several orders compared to the initial absorption 

current and the time of reaching a steady-state value is from several minutes to dozen hours 

depending on polymer. To metrologically characterize a polymer, it is indispensable to deter-

mine the isochronal absorption current (i.e., current at constant times).
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Test results indicate that the transient character of current depends on the factors connected 

with the object tested (chemical structure and the presence of polar groups, physical micro-

structure, thermal and electric history of a sample) and test conditions (field intensity, tem-

perature and relative humidity of the medium, and electrode material and the presence of 

residual charge in the material tested).

Das-Gupta in his studies [7–9] has presented several mechanisms explaining the transient cur-

rent flow in polymers. His intention was to indicate a method of identifying the mechanism 
type. The identification consists in performing a series of tests for the given polymer: relation-

ship between electric field and the isochronal current transient, temperature dependence, effect 
of electrode material, thickness dependence, and time dependence of transient current. Then, 

the test results are analyzed with respect to the probability of the given mechanism. Das-Gupta 

characterizes the features of five mechanisms potentially generating transient current flows:

1. Electrode polarization: isochronal current proportional to field, a strong effect of the elec-

trode material by blocking the flow, the process is thermally activated, power coefficient: 
initially n = 0.5 followed by n > 1.

2. Orientation of dipoles uniformly arranged through the polymer volume: isochronal cur-

rent proportional to field, the process is thermally activated, electrode materials and thick-

ness sample independent of isochronal current at DC field, power coefficient 0 ≤ n ≤ 2.

3. Charge injection forming trapped space charge: isochronal current is controlled by injec-

tion method (electronic, corona discharge, and glow discharge methods), the thickness 
sample independent of isochronal current at DC field, dependence electrode material 
related to injection method, thermally activated process related to injection method, power 

coefficient 0 ≤ n ≤ 1.

4. Charge tunneling from electrodes to empty traps: (isochronal current proportional to field, 
thickness sample inversely proportional dependent of isochronal current at DC field, the 
process is thermally independent, strongly dependence electrode material, power coef-

ficient 0 ≤ n ≤ 2

5. Hopping of charge carriers from one localized state to another: isochronal current propor-

tional to field, the process is thermally activated, thickness sample and electrode materials 
independent of isochronal current at DC field, power coefficient 0 ≤ n ≤ 2.

The starting point of recognizing the conductance process is the determination of charge car-

rier nature (electrons, ions). The assessment of carrier types is carried out by direct testing 
through comparing the charge transferred with the mass of substance released on electrodes 

in contact with the polymer (mass spectrometry and neutron activation analysis). Indirect 
methods include: tests of voltage-current and current-temperature characteristics [5, 10, 

11], dielectric tests [12], tests of photo-electric and electro-chemical effects as well as tests of 
the dependence of polymer conductance on pressure [13]. The image of the pure polymer 

conductance significantly differs from that of polymer containing ionogen compounds (e.g., 
stabilizers, catalyst residues, impurities, other additives, and products of chemical decompo-

sition). Compounds of this type (e.g., water) easily dissociate in volume or on the polymer 
surface imparting an ionic character to conductance.
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In studies carried out on a pure PET, their authors present divided views: Amborski [10], 

Saito [13] declare themselves in favor of the ionic conductivity mechanism in PET. Based 
on testing the electro-chemical effect with the use of thermally stimulated currents (TSC), 
Sawa [14] concludes that electronic conduction occurs at temperatures to Tg and ionic 

conductance at temperatures above Tg. The concept of ionic conductance in polymers is 

based on the assumption of the presence of molecules capable of dissociating in the poly-

mer structure and various structural effects that determine the available internal volume of 
polymer and are responsible for the diffusion processes and ion transport in the polymer 
volume. The migration of free ions consists in specific, hopping change in ion positions 
[15] Charge motion is given by the carrier hopping over the potential barrier. It takes place 

from one to the other position, in which the ion achieves the minimal value of potential 

energy. The mobility of free ions is limited by the value of potential barrier WB, which 

should be defeated by the ion during migration. The electric field reduces the barrier by 
the value “Δ“:

  Δ =   1 __ 
2
   e ⋅ a ⋅ E  (4)

where: E is DC field intensity, e—electron charge, and a—hopping dislocation path of ion. 
Based on the calculations of the probability of change in ion position in the polymer during 
migration and the rate of ion dislocation from one to the other position [15], the current den-

sity of conduction under the conditions of the DC action can be given as follows:

  j = z ⋅ e ⋅ n ⋅  (a ⋅ ν ⋅ exp [−   
 W  
B
  
 ___ 

kT
  ]  ⋅ 2 ⋅ sinh [  z ⋅ e ⋅ E ⋅ a _________ 

2kT
  ] )  = G ⋅ sinh (H ⋅ E)   (5)

where: z—number of elementary charges, e—electron charge, n—density of dissociated mol-
ecules, a—path of the charge hopping dislocation, k—Boltzmann constant, WB—barrier of the 

charge potential energy, E—DC field intensity, T—temperature, G and H—constants in the 
generalized form of Eq. (5).

2.1. Electrical conductivity of poly(ethylene terephthalate) films

Poly(ethylene terephthalate) is a commonly used polymer in electrical engineering and elec-

tronics, where its electro-insulating properties are successfully used. In this study, commercial 

PET films, Estrofol type, containing indispensable additives, such as catalysts and stabiliz-

ers: manganese acetate (0.035% by wt.), calcium acetate (0.052% by wt.), antimony trioxide 
(0.040% by wt.), and phosphorus compounds (0.035% by wt.) were tested. Three variants of 
PET film with different supermolecular structures were tested: oriented films technologically 
drawn in a single-axis direction in a ratio of 2×, 3.5×, and 4×.

Al electrodes with a protective ring were evaporated on the purified film surface. The kinetics 
of absorption/desorption (depolarization) currents were examined for 20 min with the use of 
the measurement system described in paper [16]. Figure 2 shows the kinetics of the volume 

absorption current in PET film (Table 1, draw ratio 4.0×) measured for 10 min. After this time, 
DC field was turned out and with earthed electrodes, the depolarization current (desorption 
current) was recorded for 10 min.
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Current-voltage characteristics were determined on the basis of the absorption current cor-

rected by the desorption component according to the procedure of Badiana [17]. The char-

acteristics j = f(E) shown in Figure 3 indicate linear behavior of the films and a shift into 
nonlinear state at an intensity of 3.5 × 107 V/m. Based on the nonlinear range of field intensity 
that in the case of samples B and C is developed within a high range of the intensity of field E, 
the analysis of the ionic conductance of the films was carried out.

The experimental current-voltage characteristics of samples B and C were approximated with 
the Eq. (5). The approximation consisted in directing the function: j = G.sinh H.E to a linear 
form, that is, to develop it into Taylor series according to the procedure given in monograph 

[18], taking into account only the linear elements of this solution. In calculations based on the 

minimization procedure, the following parameter values were obtained:

• for PET (R = 3.5×) G = 7.20 × 10−13 m/V, H = 2.4 × 10−8 m2/A, a = 1.24 nm

• for PET (R = 4.0×) G = 7.41 × 10−13 m/V, H = 2.4 × 10−8 m2/A, a = 1.24 nm

a—path of the hopping shift of charge between successive equilibrium positions.

* determined by the densitometric technique.

Table 1. Characteristics of PTE films.

Figure 2. Decay of the transient (A) and depolarization (D) currents I
v
 = f(t) in a PET film (R = 4.0×) under a DC field (Al 

electrodes, t = 23°C, RH = 25%).
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Parameter “H” characterizes the migration of the charge carriers in the process of conduction. 
With an assumption of one carrier type (e.g., proton, z = 1), the path of protons in the PET 
tested amounts to 1.24 nm and is the same for the film stretched 3.5 and 4.0 times. The value 
calculated is probable if we consider the distances between PET macromolecules. The inves-

tigations of PET films by the method of wide-angle diffraction [19] prove that the phenyl ring 

planes of macromolecules in the crystalline areas are oriented in parallel to the film plane. The 
distance between the phenyl ring planes perpendicular to the film plane (i.e., toward field E)— 

thus toward the motion of charge carriers according to the calculation [19], it amounts to 

0.32 nm. If the migration of charge carriers occurs in the noncrystalline areas of polymer, where 
the intermolecular distances are higher than 0.32 nm, the value of the charge hopping shift is 
real. Figure 4 shows the comparison of theoretical and experimental j = f (E) characteristics of 
PET films.

The conformity of current-voltage courses allows one to think that in the PET films tested, 
the conduction of charges is of ionic character. The resistivity of PET films calculated 
for the proportional range of characteristics I = f(U) is for R = 2.0× lg ρ

V
 = 15.400 ± 0.157, 

for R = 3.5× lg ρ
V
 = 15.500 ± 0.128, and for Rx = 4.0 lg ρ

V
 = 15.277 ± 0.177. It seems that the 

structural differences in the films tested do not influence the DC conductance in a statisti-
cally significant way.

Urbaniak-Domagala has presented in her study [16] the tests results of DC conductance in 

polylactide film. The tests were carried out with the use of Al and Au rigid electrodes within 
the range of DC field from 8.3 to 33.3 MV/m. In DC field, polylactide behaves as PET, showing 
a low conductance, a transient in nature current flow, dependence of current density on the 
electrode material j PET-Al-PET > j PET-Au-PET and a low energy of the conduction activation energy 

(0.4–0.7) eV that increases in the area of glass transition (0.9–1.1) eV.

Figure 3. Characteristics of PET films. Films denotation according to Table 1.
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Figure 4. Comparison of theoretical and experimental density current - DC field intensity characteristics of PET films.

2.2. Effect of the medium relative humidity (RH) on the electric conductance of PET 
products in DC field

There are many examples of end products (films woven and knitted fabrics, nonwovens) 
designed for protective applications, such as electro-insulating barriers and protective cloth-

ing that are used under variable environmental conditions. Environmental factors bring 
about polymer aging [2]. Qualitative and quantitative tests of the polyester product aging 

have shown a significant effect of water vapor in air as an ionogenic factor that is perma-

nently present during operational use, while the content of water vapor is variable as the 

relative humidity in the medium. The interaction of water vapor is dependent not only on the 

polymer absorption properties, but also on the product structure. This effect is particularly 
distinct in textile fabrics, where the fabric structure has a hierarchic character determined by 

complex systems of fibers with micrometric thickness, forming a yarn and the yarn threads 
form a higher structure such as thread repeat. The textile fabric structure intensifies absorp-

tion processes due to capillary processes that do not occur in monolithic products such as 

films or foils.
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Figure 5. Effect of relative humidity (RH) of air in an isothermal medium on the volume resistivity “ρ
V
” of PET woven 

fabric: (A) absolute humidity of woven fabric “W” = f(RH), (B)ρ
V
 = f(RH), (C) log ρ

V
 = f(W).
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The importance of the problem of the air humidity effect in environment on the processes of 
current flow in a product in DC field was presented using an example of woven fabric made 
of 100% PET fibers. In order to do that, the isochronal current absorption and current depolar-

ization in the woven fabric for 10 min were examined using an electrostatic field intensity of 
E = 1 kV/mm. The fabric was first purified and its surface weight was 100.0 g/m2 and thickness 

of 0.2 mm. They used rigid electrodes with a diameter 50 mm and a constant unit load accord-

ing to EN 1149-2:1999 + Ap1:2001, in a standard screened measurement system [16]. Before the 
tests, the woven fabrics were preheated to constant weight “m

s
” considered as dry mass. Then, 

isothermal environment conditions were established (t = 23°C) under which the air relative 
humidity was changed from 25 to 88% followed by return to the initial humidity 25%. For each 
variant of RH in the range of 25–88%, the samples were air conditioned for 24 h and then tested 
under these conditions. The tests were carried out in an air conditioning chamber Feutron. In 

parallel to the absorption and depolarization currents, the mass of moist fabric “m
w
” was deter-

mined and then the absolute humidity of fabrics “W” was calculated from the dependence:

  W =  (  
 m  
w
   −  m  

s
  
 ______  m  

s
    )  ⋅ 100%  (6)

Figure 5 presents the effect of relative humidity (RH) of air in the isothermal medium on the 
volume resistivity “ρ

V
 “of PET woven fabric in the process of sorption followed by desorption.

Figure 5A shows that with increasing RH from 25 to 88%, the volume resistivity of PET 
woven fabric is decreased by about 1000 times. Changes in resistivity are nonlinear and 

conditioned by the modifying interaction of the molecules of water absorbed from air and 

physico-chemically and physically added to the fabric as shown by the sigmoidal character of 

the sorption and desorption isotherms (Figure 5B). Moreover, it is observed that the humidity 
and resistivity “ρ

V
“ depend on the way of reaching the physical equilibrium of sample by wet-

ting or drying, which results in the hysteresis of humidity of fabrics and hysteresis of volume 

resistivity. The occurrence of hysteresis parameters proves how important is the definition of 
the fabric pre-conditioning and its acclimatization for tests.

The absolute humidity of woven fabric is an important factor influencing the processes of 
charge conductance and depolarization. For the PET woven fabric tested in the electrostatic 
field E = 1 kV/mm, the volume resistivity “ρ

V
“ of the fabric as a function of humidity “W” 

(Figure 5C) satisfy the generalized dependence:

  log  ρ  
V
   = − aW + b  (7)

where: W—absolute humidity of fiber, a = − 10.559, b = 16.150 (Figure 5C), which is consistent 
with the results of Morton and Hearle [20]. Based on the above dependence, one can estimate 
the volume resistivity of PET woven fabrics in the state of humidity W = 0% at a level of log 
ρ

V
 = 16,150 with correlation coefficient R2 = 0.98.

3. Static electricity of polyesters

Polyesters form a group of polymers with a high susceptibility to static electricity and a 

long lifetime of charges generated on surface and in volume. This feature results from a low 
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number of free charges and a low electric conductance. On account of a high Debye radius, 
a charge can be formed in both the polymer top layer and volume [21]. The mechanism of 

static electricity of polymers is complex since the electric loading state attained constitutes 
a resultant effect of three partial processes: charge generation, charge storage on polymer 
surface, and in its volume and charge decay by relaxation and transport. Each of these par-

tial processes proceeds differently in the case of so-called contact electricity, triboelectric, 
induction, injection in corona and glow discharges, γ-irradiated, laser–irradiated, and UV-
irradiated electricity [22, 23]. It is the contact electricity that has been best known, particularly 

in polymer-metal systems, on account of the possible specification of molecular and energetic 
parameters for metals. Already in studies [24, 25], attempts have been undertaken to model 
contact electricity with the assumption that in the polymer counter-surface contact, the charge 

carriers are transferred from one surface to the other contacting surface, while the direction 

of charge transfer depends on parameters such as: work charge exit from contacting surfaces, 
surface temperature, and initial concentration of charge carriers.

The next question to be solved is the assessment of the carrier nature responsible for elec-

tricity. Many authors believe that electricity depends on the injection of electrons from/to 

the polymer surface [26, 27]. The mechanism of contact electricity with the polymer-metal 

system is considered when we use the notions of band structure of a solid body (insulator or 
semiconductor) to describe the polymer energetic structure. For polymers, the occurrence of 
a wide band of forbidden positions and a specified work of electron exit are assumed. A char-

acteristic feature is the occurrence of discrete donor and acceptor energetic states in the band 

of forbidden energies. These states are localized at the edges of conduction and valence bands. 

The succession of the presence of discrete states is the broadening of band edges. According 

to Fuhrmann [28], Fabish [25], and Mizutani [29], these states can trap the charge carriers and 

take part in contact electricity.

Energetic states localized in the polymer top layer are energetically different as a result from 
the presence of impurities, free radicals, absorbed molecules, products of polymer oxidation, 

ends and branches of macromolecules, and structural defects. The nature of localized ener-

getic states is also modified by the polymer physical microstructure, mainly by the content of 
crystalline phase, shape, and perfectness of crystallite and interphase structures: crystallite-
amorphous zone. The use of the notion of trapping states is convenient for the description of 

the processes of charge displacement and accumulation in polymeric dielectrics. The filling of 
traps with various charges leads to a permanent presence of charges in polymer.

An open issue is the investigation method of the distribution of the charge generated in poly-

mers. The knowledge of charge distribution is indispensable for the identification of electric 
conductance processes, strength of polymeric dielectrics, and their aging as well as the mecha-

nisms of polarization in polymeric electrets. The classic methods of investigating the distribu-

tion of charges and electric relaxation of polymers include the methods thermally stimulated 

currents (TSC) and thermally stimulated depolarization currents (TSDC) [30]. The drawback 

of TSC and TSDC methods is their destructive character in relation to the sample tested. 
Apart from the thermally stimulated method, they developed acoustic methods suitable for a 

direct use in testing polymeric insulations under voltage, measurements of the distributions 

of electric fields [31, 32], and tracing the development of polarization in polymers under high 

field voltage. Three types of acoustic methods using different techniques of acoustic wave 
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generation are now under improvement: laser induced pressure pulse (LIPP) [32], pressure 

wave propagation (PWP) [33], and electrically stimulated acoustic wave (ESAW) [34–36]. The 

analysis of signals from polymers affected by impulsing allows one to diagnose the space 
distribution of charge in polymers. According to the opinion of Motyl [37], the use of two 

measurement methods, for example, PWP and ESAW increases the reliability of results and 
extent the range of diagnosis. In PWP method, the deformation wave causes local changes 
in free and polarization charges in time, which is a source of the signal observed. In ESAW 
method, the applied voltage impulse to sample generates a signal from the whole charge and 

the homogeneously distributed dipoles are not detected.

3.1. Contact electricity in the PET film-metal system

Hennecke et al. [24] have proposed an analog model of polymer electricity consisting in 

contacting with metals in the interrupting way repeated until the charge is established. The 

qualitative interpretation is based on the concept of the band polymer model, where the 

occurrence of the energetic levels of forbidden bands and heights of barrier between these 

levels in polymer were taken into account. The static electricity of polymers with the repeti-

tion of contacts has been also analyzed by Fuhrmann [28], Fabish and Duke [25], Lowell [26] 

and Mizutani et al. [29]. Fabish and Duke have observed a reversible change in the sign of 

charge transferred on polymer from metals after successive contacts. These authors explain 

this phenomenon with the presence of charges in the form of molecular ions in the polymer 

top layer. These ions form local energetic states.

Mizutani et al. [29] have determined the properties of the metal-polymer contact by means of the 

photo-injection of electrons from metal (Cu, Al) to PET, indicating the existence of energetic states on 
the surface of PET. These researchers also assessed the density of surface states amounting to 1.7 ×  
1014 (cm−3 eV−1) and confirmed a strong dependence of the contact energetic barrier on atmospheric 
conditions, including the presence of adsorbed oxygen molecules on the PET surface. Oxygen mol-
ecules, on account of a high affinity of electrons, can form surface states and act as electron traps. 
According to the opinion of Brennan et al. [38], during single and multiple contacts of polymer with 

counter-surface a charge is created whose range is limited to a depth of maximum 3 nm.

Lowell [26, 27] proposes a mechanism of charge transfer from metal to polymer (PET and 
PTFE). In the case of a single contact of polymer and metals (Al, Pt, and Hg), Lowell has found 
that the charge density does not depend on the type of metal. He puts forward a thesis that 
during a single contact, the tunneling of electrons occur from metal to traps in the polymer top 

layer, but the system does not reach thermodynamic equilibrium. The difference in electro-

static potentials created in the charge layer is inadequate to increase the energy of trap levels 

up to the Fermi energy of the metal. Only with a multiple contact, the charge is transferred to 
a higher depth. Then, it is possible to reach the equilibrium state. Lowell predicts the achieve-

ment of equilibrium charge density that will be linearly dependent on the metal work-function.

3.1.1. Contact electricity in the PET film-Al, PET film-Au systems

In this study, the susceptibility of PET film to static electricity in contact with metals (Al and 
Au) was investigated. Two pairs of cylindrical electrodes made of brass with a diameter of 
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50 mm and a height of 30 mm were used. Au and Al metals were evaporated onto the polished 
cylinder surface in the glow discharge aided with Argon. The coatings obtained were charac-

terized by a high stability of the joint with the substrate, which made it possible to purify the 

surfaces before the tests of contact electricity. The PET films purified and devoid from charges 
were located between earthed electrodes in the following systems: Au-PET-Au and Al-PET-Al 
for 60s and then the electrodes were taken off in a frictionless way. The measurements of the 
sample surface charge were carried out in a contactless way by means of the probe of field 
intensity meter in the system described in paper [16]. During repeated contacts, the surface 

charge increased up to the saturation state that was obtained with the number of contacts of 

at least 100. The contact electricity was performed for PET film samples described in Table 1. 

The test results obtained are listed in Table 2.

3.1.2. Contact electricity of activated PET surface films

In this study, we also attempted to answer the question how the activation of PET surface 
influences its susceptibility to electricity. To that end, the films were subjected to an activating 
plasma treatment. The process was realized in a low-temperature plasma, in glow discharge 

RF under reduced pressure air with the use reactor system described in paper [39]. The test 

results were supplemented with the examinations of the sample volume and surface resistiv-

ity in DC field with the use of rigid Al electrodes.

In Table 2 are listed the test results of volume and surface resistivity in contact with Al elec-

trode, surface density of the charge were generated in contact with Au and Al metals. The 

resistivity was calculated on the basis of absorption and depolarization currents according 

to proceeding Badian [17]. The polarization component of the PET film surface free energy 
before and after the plasma treatment is also shown.

Based on the tests of the surface and volume resistance of untreated films (Table 2), one can 
think that the structural changes expressed by the crystallinity degree ranging from 7.4 to 

Table 2. Results of testing the surface properties of untreated and air plasma-treated PET films (power 100 W, flow 
100sccm, pressure 20mTr).
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Figure 6. Electron microscopy images of PET film surface, (A) untreated; treated with air plasma (power 100 W, flow 100 
sccm, pressure 20 mTr): (B) 1 min, (C) 3 min, (D) 30 min. The arrows show the direction of films orientation.

19.8% and the Herman’s coefficient of orientation from 0.12 to 0.58 do not influence, in a sta-

tistically significant way, the DC conduction in the top layer and volume of the films. Also, no 
significant effect of changes in physical structure on the level of charge generated in contact 
with Al and Au metals was found. On the other hand, a significant effect of the metal type 
on the charge value is observed. The density of charge generated on the PET film surfaces 
in contact with aluminum is higher than that in contact with gold. Let us assume Lewell 
hypothesis [26] that the value of static charge depends on the difference in the exit works 
of materials in contact. According to Davies [40], the values of the exit work of the material 

tested are arranged in the following sequence PET > Au > Al. This relation of exit works justi-
fies the negative sign of charge generated on the PET surface in contact with metals, as well 
as the higher charge density in contact with aluminum compared to that in contact with gold.

The processes of static electricity of polymers are typical surface processes. The physico-

chemical and physical states of surface are of importance for the course of contact electricity 

processes. In this study, the physicochemical and physical properties of the PET film top layer 
were modified by air plasma treatment. The physicochemical properties of PET films were 
assessed by measuring the contact angle with water and methylene iodide and the free energy 

calculated according to procedure of Owens and Wendt [41]. In Table 2 are listed the values 

of the polar component of the surface energy of films treated with plasma. The dispersion 
component was unchanged and therefore it was omitted. The plasma treatment was carried 
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out for 1–30 min. Already from 1 minute to 3 minutes, the plasma treatment strongly increases 
the  polar component of the top layer of the PET films. The physicochemical changes result in 

a negligible decrease in the value of surface and volume resistivity of the films. The PET film 
surfaces modified with plasma in contact with Al and Au metals still show a negative charge, 
but the surface density of charge in PET films is significantly decreased. The generation of 
charges is the more weakened, the longer the surface was treated with plasma. These changes 

can be related to the surface physical state. The plasma interaction causes significant physical 
changes in the film surface microtopography. Figure 6 shows the electron microscopic images 

of the PET film surfaces treated with plasma for 1, 3, and 30 min.

The effect of etching the polymer in its top layer that intensifies with increasing the plasma 
treatment time is observed. The surface is curved to form groove cavities located crosswise to 

the direction of stretching the film. The height of microroughness of surface subjected to plasma 
exposure for 30 min. With the strongest effect of etching can be assessed to about 0.04 μm. The 
character of surface carving is conditioned by the physical microstructure of PET. Based on the 
hypothesis of the polymer semi-crystalline structure, they are distinguished into two principal 

phases: crystalline and amorphous phases. The crystalline phase is characterized by a high 
energy of molecular cohesion that conditions its particular resistance to destructive factors, 

such as heat and the forces of interactions with plasma molecules. Considerably less resistant 

is the amorphous phase, in which the interaction between molecules are statistically incidental, 

and this phase is etched in the first place. In the image of the etched top layer, the protrusions 
seem to be formed by the crystalline phase of PET periodically occurring with long period in 
macro-fibrils. The etching effect generates the coarseness of surface that intensifies with pro-

longing the plasma action. The surface coarseness determines the real surface of film contact 
with metals. The coarser the surface, the lower is the charge that was found in measurements.

4. Polyester electrets

Electrets are materials in which a permanent electric charge occurs. The charge in electrets is 
stable for a longer time and its stability depends on the type of materials and exploitation con-

ditions. It can last for years, while the material is an active source of electric field. The electrets 
are widely used in dust and gas filters, micro-machines, xerography, electro-acoustic trans-

ducers. Many electro-insulating polymers are used as electret precursors, including dipole 

(PET, PMMA and PS) and nondipole polymers (PTFE, PP and PE). The use of precursors in 
the form of films allows one to miniaturize the devices based on electrets. The charging state 
of electret material is obtained in various ways [22, 32, 46] using triboelectric effect (triboelec-

trets), DC electric field (thermo-electrets), UV and VIS radiations (photo-electrets), β and γ 
radiation (radio-electrets), glow and corona discharges (corona electrets).

Polyesters are materials with potential use as electret precursors owing to their susceptibility 

to dipole polarization and good mechanical parameters. Thermoelectrets are made by polymer 

polarization in DC electric field under conditions above the glass transition temperature and 
then after charging, they are refrigerated to freeze the state of oriented dipoles. The surface 
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charge formed is called heterocharge if its sign is opposite to the sign of electrode potential 

in contact and is connected with ordering the dipole polarization or the separation of already 

existing free charges. The homocharge has a sign consistent with the electrode potential sign 

in contact during the electret formation and shows the incorporation of charge carriers from 

electrode. During the formation of thermo-electret in the external electric field, the relaxation 
polarization component influences the process of dipole polarization.

Two types of the relaxation mechanisms were found: α- and β-relaxation. The former one 
occurs at temperatures above the glass transition temperature of PET or at a low field fre-

quency, while β-relaxation appears at lower temperatures below the glass transition tempera-

ture of PET or at higher field frequencies. According to the present views, α-relaxation results 
from the co-operative motion of the kinetic units of macromolecule chain with discrete changes 

in the energy of orientation positions in the electric field. Groups ▬O▬CH
2
▬CH

2
▬O▬ and 

p-phenyl bonds are the kinetic units in PET. According to Saito et al. [13], the active kinetic 

units of polymer contain more than one mer macromolecule. Peruccini et al. [42] present the 

opinion that α-relaxation is an isotropic process and occurs in amorphous areas.

The process of β-relaxation occurs under conditions of a limited mobility of the main chain of 
macromolecule as a result of the rotation movements of single groups of atoms ▬(CO▬O)▬ 

[6, 13, 43] with a stable dipole moment around the axis consistent with the axis of polymer 

orientation. Because of a considerable intermolecular interaction of the group of atoms, the 
process of β-relaxation shows an anisotropic nature [6, 13, 44, 45] and occurs in both amor-

phous and crystalline areas. Time changes leading to the stabilization of electret caused by 

relaxation processes and also by the effect of environmental conditions are known as aging 
[46, 47]. The study [16] describes the formation of thermo-electret from the PLA film precur-

sor by isothermal polarization and demonstrates a stabilized density of surface charge and 

the dependence of charge level on the polarization intensity of filed E
polar

. and charging time. 

In the case of field intensity E
polar

. < 20 MV/m, the heterocharge is observed that is stabilized 

in the processes of dipole relaxation and volume charge within 30 days. The use of higher 
field intensities E

polar
. > 20 MV/m results in the transition of homocharge into heterocharge, 

which can be caused by the process of an additional injection of charge from electrodes or 

a change in the direction of dipole moment of molecular dipoles [48]. The prolongation of 

the PLA isothermal charging results in an increased charge density on the surface, which is 
consistent with the theory of isothermal dipole polarization, according to which the charge 

density exponentially depends on the charging time and relaxation time.

In the method of electret formation by irradiation with UV, VIS or ionizing β and γ, in the 
precursor electrons are excited from the basic state and the deep traps to the conduction band. 

The precursor in that time is in electric field, where a directed transport of charge carriers and 
trapping in new positions take place. Once the field and irradiation are turned off, the precur-

sor shows a stable heterocharge. Zllangr et al. [23] analyzed the state of energetic traps the 

PET radio-electret made during the exposure to γ irradiation. The authors quantitatively char-

acterized the average depth of trap level, density and distribution of traps by the technique 

of thermally stimulated currents (TSC). As precursor they used PET from various stages of 
production: an amorphous film, oriented in two directions and film crystallized in the process 
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of heating. The processes of molecular orientation, increasing the content of crystalline phase 

and irradiation caused an increase in the depth of localized states from 1.36 to 2.15 eV linearly 
with increasing the molecular orientation, from 1.20 to 1.40 eV with increasing the content 
of the PET crystalline phase and from 1.30 to 1.70 eV with increasing the dose of γ radia-

tion. In the interpretation of authors [23], the processes of polymer crystallization, orientation 

of macromolecules and ionizing radiation cause new structural defects: on the crystallites-
noncrystalline border, along the border of oriented and nonoriented areas as well as cracked 

polymer macromolecules due to radiation, confirmed by a decrease in the molecular weight. 
An increase in defects generates new types of localized energetic levels, an increase in their 

number, decomposition, and depth. In the study [23] three models of traps are proposed, in 

relation to three methods of the PET treatment on the basis of quantitative data of TSC.

Currently, a great importance is ascribed to electrets in which a permanent charge is incor-

porated by the injection from external sources by means of corona or glow discharge [22, 49]. 

A charge is incorporated into polymer located in the zone of the electrode of crow discharge. 

Blade electrodes with a high potential generate in space electrons and various types of ions 
[50, 51] that recombine on the polymer surface, causing chemical changes and the residue 

diffuses into the polymer top layer and is trapped. During corona discharge, double bonds 
C〓C and carbonyl groups are formed that can constitute additional traps for current carriers. 

Charges are accumulated near the polymer surface. The relative depth of charge localization 

related to the film thickness is assessed to 5%. Charging at increased temperature increases 
the stability of electret, which is exploited in the formation of pneumo-thermal nonwovens. 

The process effects are closely dependent on the gas composition and air humidity, if it pro-

ceeds under atmospheric conditions [52]. The mechanism of a permanent charge in material 

proceeds as in glow discharge. A decrease in the process pressure makes it possible to per-

form the synthesis of polymer and the simultaneous charging of the polymer that shows the 

features of electret [53].

5. Imparting electro-conductive and antistatic properties to 
polyesters

Polyesters (PET) have found their use as antistatic and electro-conductive materials. An 
increase in electric conductance of polyesters has been obtained to provide an effective dis-

sipation of electrostatic charges and reduce electrostatic discharges. Owing to that, the use 
of polyester materials/fabrics has become safe, particularly in areas endangered with explo-

sion and for workers using protective clothing. A high level of polyester conductance can 

be obtained by making polymeric composites. Composites are made according to two con-

ceptions. The first one consists in combining at least two components, where the polymeric 
matrix is formed by polyester in which a conducting phase is scattered. The conducting phase 
can consist of: metal particle, carbon black, carbon fibers or nano-tubes, graphene, metal-
lized fibers, conducting salts, and organic conductors, for example, conjugated polymers. The 
type of the scattered phase determines the electric conduction of composite. The scattered 
phase should be used in a quantity not lower than the percolation threshold. The value of 
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percolation threshold depends on the coefficient of the shape of conducting particles, their 
dimensions and arrangement in the matrix [54–56]. Particularly beneficial is the use of nano-
phase scattered in PET and PLA [57–64]. The lower the value of percolation threshold, the 

more beneficial are the mechanic properties of composite.

The other conception of making composites consists in coating the polyester surface (sub-

strate) with the conducting phase. The examples of conducting phase include: metals con-

densed on polyester surfaces by the PVD technique [65], conjugated synthetic polymers such 

as polyaniline and polypyrrole [62–64] deposited by the “in situ” technique or CVD, carbon 

nano-tube, and graphenes deposited by the printing technique [61, 66–70].

Table 3 presents the results of our own studies obtained for conducting composites such as 

PET-PPy, PLA-PPy, PC-PPy with polypyrrole coating (PPy) deposited by the CVD method. 
Surface resistance measurements were carried out according to standard PN-EN ISO 3915. 
The specific resistance related to the fabric square, expressed as, R [Ω/cm2], was the quanti-

tative parameter of resistance properties. The polypyrrole coating imparts antistatic proper-

ties to polyesters. The combination of PPy with PET substrates is stable and resistant to the 
mechanical wear conditions.

Antistatic polyester composites find many applications as conducting elements of electronic 
circuits, sensors, semi-transparent, and elastic electrodes in electronic-organic elements, opto-

electronic and e-textiles, active layers, and transporting charge carriers in organic electrolumi-

nescent diodes and elements of organic solar cells.

6. Conclusions

The presentation of electric properties of polyesters including conventional and biodegrad-

able polymers indicates that these polymers are continually an attractive group of materials. 
In polyesters, many problems concerning their behavior in electric DC field are still open as a 
subject of fundamental research. This type of thermoplastic polymers is continually subjected 

to various chemical and physical transformations, owing to which polyesters offer newer and 
newer solutions for the market and economy needs.

Table 3. Test results of different kinds of antistatic polyester films coated with polypyrrole (test conditions t = 23°C, 
RH = 25%).
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