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Abstract

This chapter presents a fault detection method through uni- and multivariate hypothesis
testing for wind turbine (WT) faults. A data-driven approach is used based on supervisory
control and data acquisition (SCADA) data. First, using a healthy WT data set, a model is
constructed through multiway principal component analysis (MPCA). Afterward, given a
WT to be diagnosed, its data are projected into the MPCA model space. Since the turbu-
lent wind is a random process, the dynamic response of the WT can be considered as a
stochastic process, and thus, the acquired SCADA measurements are treated as a random
process. The objective is to determine whether the distribution of the multivariate random
samples that are obtained from the WT to be diagnosed (healthy or not) is related to the
distribution of the baseline. To this end, a test for the equality of population means is
performed in both the univariate and the multivariate cases. Ultimately, the test results
establish whether the WT is healthy or faulty. The performance of the proposed method
is validated using an advanced benchmark that comprehends a 5-MW WT subject to
various actuators and sensor faults of different types.

Keywords: condition monitoring, wind turbines, principal component analysis,
hypothesis testing

1. Introduction

The wind energy cost depends strongly on the performance of the condition monitoring

system. Advance in this area would decrease downtime periods, extend the WT lifetime, and

ultimately reduce the operation and maintenance (O&M) costs, which is one of the main

challenges in wind energy as stated in “20% Wind Energy by 2030” [1].

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Usually, condition monitoring comprises different systems (vibration analysis, oil monitoring,

etc. [2]) for different parts and different types of faults and makes use of expensive specific

sensors that must be installed in the WT. Therefore, the advance in fault detection systems that

only make use of already available data from the turbine SCADA system and comprehend

different parts and different types of faults is promising (since no additional sensors or data

acquisition devices are needed). The SCADA signals provide rich information on the WT perfor-

mance; thus, with appropriate algorithms, they can be used effectively for condition monitoring,

prognostics, and remaining useful life prediction of WTs [3]. There are some success stories

about using SCADA data for condition monitoring. For example, Ruiz et al. presented a machine

learning approach [4], Zaher and McArthur proposed to use the combination of abnormal

detection and data-trending techniques encapsulated in a multiagent framework [5], Pozo and

Vidal proposed a fault detection system based on principal component analysis [6].

In this work, following the enhanced benchmark challenge for wind turbine fault detection

proposed in [7], a set of eight realistic fault scenarios are considered to develop a WT condition

monitoring strategy that combines a SCADA data-driven baseline model—reference pattern

obtained from the healthy wind turbine—based on MPCA in combination with uni- and

multivariate hypothesis testing. Previous works using MPCA and hypothesis testing to detect

structural damage [8] work under the hypothesis of guided waves. That is, the vibration

(guided wave) induced to the structure is known and always the same. However, in this work,

the vibration is induced by the changeful wind. The used benchmark comprehends different

types of faults of a 5-MWWT given by the FAST simulator [9], which has been accepted by the

scientific community and is widely used for WT-related research, e.g., [10–12].

The chapter is organized as follows. Section 2 briefly recalls theWTbenchmarkmodel. In Section 3,

the condition monitoring strategy is stated. Simulation results are discussed in Section 4. Finally,

conclusions are drawn in Section 5.

2. Wind turbine benchmark model

The used benchmark model is proposed in [7]. It covers a 5-MW three-bladed, variable speed

WT modeled with the FAST simulator, detailed actuator and sensor models, as well as the

different fault descriptions. For a complete description of the benchmark, please see reference

[7]. Here, a short review is given to introduce the used notation.

The specifications of the 5-MW reference WT is documented in [13]. This model has been used

as a reference by research teams throughout the world to standardize baseline on- and off-

shore wind turbine specifications. The wind turbine typical features are given in Table 1, and

the assumed available SCADA data are given in Table 2. This work copes with the so-called

full load region of operation. In order to run the simulations, turbulent wind data sets that

cover this region have been generated with TurbSim [14], see Figure 1.

The generator-converter system can be approximated by a first-order ordinary differential

equation, see [7], which is given by:
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_τr tð Þ þ αgcτr tð Þ ¼ αgcτc tð Þ (1)

where τr and τc are the real generator torque and its reference (given by the controller),

respectively. In the numerical simulations, αgc ¼ 50, see [13]. Moreover, the power produced

by the generator, Pe tð Þ, is given by (see [7]):

Pe tð Þ ¼ ηgωg tð Þτr tð Þ (2)

where ηg is the efficiency of the generator and ωg is the generator speed. In the numerical

experiments, ηg ¼ 0:98 is used, see [7].

Reference wind turbine Magnitude

Rated power 5 MW

Number of blades 3

Rotor/hub diameter 126, 3 m

Hub height 90 m

Cut-in, rated, and cut-out wind speed 3, 11:4, and 25 m/s

Rated generator speed (ωng) 1173:7 rpm

Gearbox ratio 97

Table 1. WT properties.

Number Sensor type Symbol Units

1 Generated electrical power Pe,m kW

2 Rotor speed ωr,m rad/s

3 Generator speed ωg,m rad/s

4 Generator torque τc,m Nm

5 First pitch angle β1,m
�

6 Second pitch angle β2,m
�

7 Third pitch angle β3,m
�

8 Fore-aft acceleration at tower bottom abfa,m m/s2

9 Side-to-side acceleration at tower bottom abss,m m/s2

10 Fore-aft acceleration at mid-tower amfa,m m/s2

11 Side-to-side acceleration at mid-tower amss,m m/s2

12 Fore-aft acceleration at tower top atfa,m m/s2

13 Side-to-side acceleration at tower top atss,m m/s2

These sensors are representative of the types of sensors that are available on an MW-scale commercial wind turbine.

Table 2. Assumed available measurements.
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Each of the three pitch actuators is modeled as a closed loop transfer function between the

pitch angle, β sð Þ, and its reference β
r
sð Þ:

β sð Þ

β
r
sð Þ

¼
ω2

n

s
2 þ 2ξω

n
sþ ω2

n

(3)

where ξ is the damping ratio and ωn the natural frequency that takes the fault-free values

ξ ¼ 0:6 and ωn ¼ 11:11 rad/s, see [7].

The fault detection benchmark considers different types of faults at different components

(sensors and actuators), as described in Table 3.

Figure 1. Wind speed signal with turbulence intensity set to 10%.

Fault Type Description

F1 Pitch actuator Change in dynamics: high air content in oil

F2 Pitch actuator Change in dynamics: pump wear

F3 Pitch actuator Change in dynamics: hydraulic leakage

F4 Torque actuator Offset (offset value equal to 2000 Nm)

F5 Generator speed sensor Scaling (gain factor equal to 1:2)

F6 Pitch angle sensor Stuck (fixed value equal to 5�)

F7 Pitch angle sensor Stuck (fixed value equal to 10�)

F8 Pitch angle sensor Scaling (gain factor equal to 1:2)

Table 3. Fault scenarios.
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3. Condition monitoring (CM) strategy

The overall CM strategy is based on a three-tier framework:

i. a multiway PCA (MPCA) model is built with the data that are collected from a healthy

WT,

ii. when a new WT has to be diagnosed, the SCADA data are projected using the MPCA

model created in (i), and

iii. the final decision is based on both univariate and multivariate HT.

3.1. The wind as a source for the excitation: the need for a new paradigm

In general, vibration-based structural health monitoring (SHM) is based on the fact that an

alteration or difference in physical properties due to damage or structural change will motivate

changes in dynamical responses that may be detected. Figure 2 represents this paradigm in the

sense that a healthy structure is excited according to a prescribed signal to build a pattern.

Afterward, the structure that has to be diagnosed is affected by exactly the same signal, where

the response is measured, processed, and finally compared with the previous pattern. The

strategy presented in Figure 2 is known as “guided waves in structures for SHM” [15].

In the present chapter, the field of application is wind turbines and a realistic scenario is to

consider that the excitation comes from the wind turbulence. The wind turbulence cannot be

controlled and it is always different. Therefore, the paradigm of guided waves in WT for SHM

as in Figure 2 cannot be considered. In this case, when the source of the excitation cannot be

previously prescribed, a new paradigm is needed, as represented in Figure 3. The foundation

of the new paradigm is that, even with a constantly different excitation, the CM strategy based

on MPCA and univariate and multivariate HT will be able to disclose some hidden damage,

misbehavior, or fault. To sum up, the fundamental idea behind the CM strategy is the hypoth-

esis that a variation in the overall behavior of the WT, even with an unprescribed excitation,

should be detected.

Figure 2. Vibration-based SHM is based on the fact that an alteration or difference in physical properties due to damage

or structural change will motivate changes in dynamical responses that may be detected.
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However, in our application, the only available excitation of the wind turbines is the wind

turbulence. Therefore, guided waves in wind turbines for SHM as in Figure 2 cannot be

considered as a realistic scenario. In spite of that, the new paradigm described in Figure 3 is

based on the fact that, even with different wind turbulence, the fault detection strategy based

on PCA and statistical multivariate hypothesis testing will be able to detect some damage,

fault, or misbehavior. More precisely, the key idea behind the detection strategy is the assump-

tion that a change in the behavior of the overall system, even with a different excitation, has to

be detected. Section 4 includes the simulation results of the proposed CM strategy that vali-

dates this hypothesis.

3.2. Data-driven baseline modeling based on MPCA

Multiway principal component analysis (MPCA) is a natural extension of classical principal

component analysis (PCA) to manage data in multidimensional arrays [16, 17]. A conventional

two-dimensional data matrix can be treated as a two-way array, where experiments and vari-

ables (or discretization instant times) form the two different ways. Frequently, this arrange-

ment has to be extended to multiway arrays, particularly if several sensors—in different

experimental trials—are gathering data at different time instants. Consequently, MPCA is

equivalent to the application of standard PCA to an unfolded version of the initial multiway

array.

Westerhuis et al. [18] propose six different ways of unfolding a three-way data matrix. Besides,

in [18], a critical analysis of several aspects of the treatment of multiway data is provided,

including how the matrix is unfolded, but also mean-centering and scaling with respect to the

effects on the analysis of batch data. Ruiz et al. [19] assign one of the first six letters of the

alphabet to each one of the six different ways of unfolding. In this chapter, as well as in [6, 8,

20, 21], we have considered the so-called type E. However, we will present the collected

SCADA data arranged in an already unfolded matrix.

The MPCA modeling starts by measuring, from a healthy wind turbine, a sensor during

nL� 1ð ÞΔ seconds, where Δ is the sampling time and n, L∈ℕ. The discretized measures of the

sensor are a real vector

Figure 3. The key idea behind the new paradigm of the detection strategy is the assumption that a change in the behavior

of the overall system, even with a different excitation, has to be detected.
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x11 x12 ⋯ x1L x21 x22 ⋯ x2L ⋯ xn1 xn2 ⋯ xnLð Þ∈RnL (4)

where the real number xij, i ¼ 1,…, n, j ¼ 1,…, L corresponds to the measure of the sensor at

time i� 1ð ÞLþ j� 1ð Þð ÞΔ seconds. These collected data can be arranged inmatrix form as follows:

x11 x12 ⋯ x1L

⋮ ⋮ ⋱ ⋮

xi1 xi2 ⋯ xiL

⋮ ⋮ ⋱ ⋮

xn1 xn2 ⋯ xnL

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

∈ℳn�L Rð Þ (5)

where ℳn�L Rð Þ is the vector space of n� L matrices over R. It is worth noting that n is the

number of rows of the matrix in Eq. (5) and L is the number of columns of the same matrix. The

effect on the overall performance of the condition monitoring strategy on the choice of n and L

is thoroughly analyzed on [21].

Let us assume that the SCADA data are now collected from N∈ℕ sensors also during the

same period of time. In this case, the collected data, for each sensor, can be organized in a

matrix as in Eq. (5). Subsequently, all the collected data coming from the whole set of sensors

are concatenated and disposed in a matrix X∈ℳn� N�Lð Þ as follows:

X ¼

x111 x112 ⋯ x11L x211 ⋯ x21L ⋯ xN11 ⋯ xN1L

⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮

x1i1 x1i2 ⋯ x1iL x2i1 ⋯ x2iL ⋯ xNi1 ⋯ xNiL

⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮

x1n1 x1n2 ⋯ x1nL x2n1 ⋯ x2nL ⋯ xNn1 ⋯ xNnL

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

¼ v1∣v2∣⋯∣vL
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

X
1

jvLþ1∣⋯∣v2L
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

X
2

j⋯jv N�1ð ÞLþ1∣⋯∣vN�L
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

X
N

0

B
@

1

C
A

¼ X
1

X
2 ⋯ X

N
� �

∈ℳn� N�Lð Þ Rð Þ

(6)

where the superindex k ¼ 1,…, N of each element xkij in the matrix represents the number of

sensor. Matrix X∈ℳn� N�Lð Þ Rð Þ—where ℳn� N�Lð Þ Rð Þ is the vector space of n� N � Lð Þ matrices

over R—contains the measures from N sensors at nL discretization instants. Consequently,

each row vector xTi ¼ X i; :ð Þ∈RN�L, i ¼ 1,…, n represents the measurements from all the sen-

sors at time instants i� 1ð ÞLþ j� 1ð Þð ÞΔ seconds, j ¼ 1,…, L. Equivalently, each column vector

vj ¼ X :; jð Þ∈Rn, j ¼ 1,…, N � L represents measurements from sensor number j
L

l m

at time

instants i� 1ð ÞLþ j� 1ð Þð ÞΔ seconds, 1 ¼ 1,…, n, where �d e is the ceiling function.

The objective of the subsequent analysis is to build the MPCA model, that is, the square

orthogonal matrix P∈ℳ N�Lð Þ� N�Lð Þ Rð Þ that has to be used to transform or project the original

data matrix X according to the following matrix-to-matrix product:
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T ¼ XP∈ℳn� N�Lð Þ Rð Þ, (7)

where the shape of the variance-covariance matrix of matrix T in Eq. (7) is diagonal.

In the proposed approach in this chapter, the model defined in matrix P in Eq. (7) is based

only on measures that come from a healthy wind turbine. Posteriorly, data from the current

WT to diagnose will be projected using the matrix-to-matrix multiplication also defined in

Eq. (7). However, a different procedure can be considered, particularly, when the goal is not

just to detect a damage or a fault but to classify it. In the latter case, matrix X in Eq. (6)

should contain measures from a WT in its healthy state but also in all the possible fault

scenarios. This way, the generated model in matrix P in Eq. (7) contains all the possible states

of the structure.

3.2.1. Centering and scaling: group scaling (GS) vs. mean-centered group scaling (MCGS)

Considering that the data stored in matrix X are affected by a changing wind turbulence, come

from different sensors, and could have different magnitudes and scales, some kind of pre-

processing step is required to rescale the data [22, 23]. According to Westerhuis et al. [18], the

way this preprocessing step is carried out may affect the overall performance of the CM

strategy. In the present chapter, we present two possible choices that have some common core.

These two alternatives are as follows:

i. group scaling (GS) and

ii. mean-centered group scaling (MCGS).

In the former case (GS), both the arithmetic mean and the variance of all measurements of the

sensor are used. More precisely, for k ¼ 1, 2,…, N, we define

μ
k ¼

1

nL

X

n

i¼1

X

L

j¼1

xkij, (8)

σ
2
k ¼

1

nL

X

n

i¼1

X

L

j¼1

xkij � μ
k

� �2
(9)

where μk and σ2k are the arithmetic mean and the variance of the whole set of elements in

matrix X
k, respectively. In this case, matrix X ¼ xkij

� �

is centered and scaled—using GS—to

define a modified matrix �X ¼ XGS ¼ �xkij

� �

as

�xkij ≔
xkij � μk

ffiffiffiffiffi

σ2k

q , i ¼ 1,…, n, j ¼ 1,…, L, k ¼ 1,…, N: (10)

In the latter case (MCGS), the arithmetic of all measurements of the sensor at the same column

is considered in the normalization. More precisely, for k ¼ 1, 2,…, N, we define
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μ
k
j ¼

1

n

X

n

i¼1

xkij, j ¼ 1,…, L, (11)

where μk
j is the arithmetic mean of the measures placed at the same column. In this case, then,

matrix X ¼ xkij

� �

is centered and scaled—using MCGS—to define a modified matrix �X ¼

XMCGS ¼ �xkij

� �

as

�xkij ≔
xkij � μk

j
ffiffiffiffiffi

σ2k

q , i ¼ 1,…, n, j ¼ 1,…, L, k ¼ 1,…, N: (12)

where σ2k is defined as in Eq. (9) using μk as in Eq. (8). It is worth noting that the only difference

between the expressions in Eqs. (10) and (12) is how the elements inmatrix X ¼ xkij

� �

are centered.

When matrix X ¼ xkij

� �

is scaled and centered according to the MCGS strategy described in

Eq. (12), the average value of each column vector in the scaled matrix �X can be calculated as

1

n

X

n

i¼1

�xkij ¼
1

n

X

n

i¼1

xkij � μk
j

σk
¼

1

nσk

X

n

i¼1

xkij � μ
k
j

� �

(13)

¼
1

nσk

X

n

i¼1

xkij

 !

� nμk
j

" #

(14)

¼
1

nσk
nμk

j � nμk
j

� �

¼ 0 (15)

Taking advantage of the fact that the scaled matrix �X is a mean-centered matrix, the variance-

covariance matrix can be straightforwardly computed as a matrix-to-matrix product of �X and its

transpose, divided by n� 1, where n is the number of rows of matrix X in Eq. (6). More precisely,

C�X ¼
1

n� 1
�X
T �X ∈ℳ N�Lð Þ� N�Lð Þ Rð Þ (16)

Clearly, GS and MCGS are not the only ways to center and scale data. For instance, feature

scaling, also known as unity-based normalization, can also be considered. In this case, data are

centeredwith respect to theminimumvalue and scaledwith respect to the range of the set, that is,

~xkij ≔
xkij �min xkij

n o

max xkij

n o

�min xkij

n o , i ¼ 1,…, n, j ¼ 1,…, L, k ¼ 1,…, N: (17)

However, to easily compute the variance-covariance matrix in the CM strategy that we present

in this chapter, the mean-centered group scaling (MCGS) is the method that we have selected
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for the centering and scaling. In order to not to use the baroque notation �X throughout the rest

of this chapter, this centered and scaled matrix is redesignated as X, without the breve sign.

The MPCA model is described by the latent vectors

pj, j ¼ 1,…, N � L, (18)

also known as eigenvector or proper vectors, and the latent roots

λj, j ¼ 1,…, N � L, (19)

also known as eigenvalues or proper values, of the variance-covariance matrix CX as follows:

CXP ¼ PΛ (20)

where

P ¼ p1jp2j⋯jpN�L

� �

∈ℳN�L�N�L Rð Þ (21)

Λ ¼ Λij

� �

∈ℳN�L�N�L Rð Þ (22)

and

Λjj ¼ λj, j ¼ 1,…, N � L (23)

Λij ¼ 0, i, j ¼ 1,…, N � L, i 6¼ j (24)

The latent vectors and latent roots in Eqs. (21) and (23) are arranged in descending order with

respect to the absolute values of the latent roots, that is,

∣λi∣ ≥ ∣λiþ1∣, i ¼ 1,…, N � L� 1 (25)

The latent vector p1—corresponding to the largest latent root λ1 (in absolute value)—is called

the first principal component (PC). Likewise, the latent vector p2—corresponding to the second

largest latent root λ2 (in absolute value)—is called the second principal component. Equiva-

lently, the latent vector pj, j ¼ 1,⋯, N � L—corresponding to the latent root λj—is called the

j�th principal component.

Matrix T in Eq. (7) represents the transformed or projected matrix onto the principal compo-

nent space and it is also known as score matrix.

When, for the sake of dimensionality reduction, a decreased number of principal components

are considered:

ℓ < N � L, (26)

a reduced multiway PCA model is then assembled:

P ¼ p1jp2j⋯jp
ℓ

� �

∈ℳN�L�ℓ Rð Þ: (27)
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3.3. HT-based condition monitoring

As said in Section 3.2, the MPCA model is based only on measures that come from a healthy

wind turbine. Posteriorly, data from the current WT to diagnose—and subjected to a different

wind turbulence—are gathered from as many sensors as in the modeling phase described in

Section 3.2 and during a period of time, νL� 1ð ÞΔ seconds, which is not necessarily equal.

These new data are arranged in a new matrix Y in a similar way as in Eq. (6):

Y ¼

y111 y112⋯y11Ly
2
11⋯y21L⋯yN11⋯yN1L

⋮ ⋮⋱⋮⋮⋱⋮⋱⋮⋱⋮

y1i1 y1i2⋯y1iLy
2
i1⋯y2iL⋯yNi1⋯yNiL

⋮ ⋮⋱⋮⋮⋱⋮⋱⋮⋱⋮

y1
ν1 y1

ν2⋯y1
νLy

2
ν1⋯y2

νL⋯yN
ν1⋯yN

νL

0

B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
A

∈ℳν� N�Lð Þ Rð Þ

¼ w1∣w2∣⋯∣wL
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Y1

jwLþ1∣⋯∣w2L
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Y2

j⋯jw N�1ð ÞLþ1∣⋯∣wN�L
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

YN

0

B
@

1

C
A

¼ Y1 Y2⋯YN
� �

∈ℳn� N�Lð Þ Rð Þ

(28)

It should be noted that ν∈ℕ (the number of rows of matrix Y) does not necessarily need to

match the natural number n, which represents the number of rows of matrix X in Eq. (6).

However, the number of columns, represented by the natural number N � L, must agree.

The collected data in matrix Y in Eq. (28) are first centered and scaled to form a matrix

�Y ¼ �ykij

� �

similar to the one in Eq. (12):

�ykij ≔
ykij � μk

j
ffiffiffiffiffi

σ2k

q , i ¼ 1,…, ν, j ¼ 1,…, L, k ¼ 1,…, N, (29)

where σ2k and μk
j are the values of the variance and the arithmetic mean that have been

previously calculated in Eqs. (9) and (11), respectively, with respect to X in Eq. (6). After the

preprocessing step, that is, centering and scaling the raw data collected from the current

structure to diagnose, the scores related to each row vector

ri ¼ �Y i; :ð Þ∈RN�L, i ¼ 1,…, ν (30)

are computed using a vector-to-matrix product:

ti ¼ ri � P̂ ∈Rℓ, i ¼ 1,…, ν (31)

where matrix P̂ is the reduced MPCA model in Eq. (27).
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Let us consider the canonical basis

e1; e2;…; eℓf g⊂Rℓ (32)

of the ℓ�dimensional real vector space Rℓ.

Given a row vector ri as in Eq. (30), the real number

ti1 ¼ ti � e1 ∈R (33)

is called the first score. Likewise, the scalar

ti2 ¼ ti � e2 ∈R (34)

is called the second score. In general, the scalar

tij ¼ ti � ej ∈R (35)

is called the score associated with the principal component pj, j ¼ 1,…, ℓ or, simply, score j.

In addition, an s�dimensional vector as can be built if more than one score is considered at the

same time. Indeed,

tis ¼ ti1 ti2 ⋯ tis
� 	T

∈R
s, s ≤ ℓ: (36)

3.3.1. Scores as a random sample

As said in Section 3.1, the excitation of the WT comes from a changing turbulent wind.

Somehow, this turbulent wind can be viewed as a random signal. Therefore, the response of

the WT can be also viewed as a random process and so the measurements in the row vector ri

in Eq. (30). As a consequence, the vector ti receives this random nature and it can be observed

as an ℓ-dimensional random vector to construct the statistical approach in this chapter. As a

motivating example, in Figure 4, two three-dimensional samples are represented: one is the

Figure 4. Baseline sample (left) and sample from the wind turbine to be diagnosed (right).
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three-dimensional baseline sample (left) and the other is referred to faults 1, 4, and 7 (right). In

a classic application of the PCA strategy in the field of SHM, the scores allow a separation,

clustering, or visual grouping [24]. However, in this case, it can be clearly monitored in

Figure 4 (right) that a clustering, visual grouping, or separation cannot be performed. There-

fore, more powerful and reliable tools are needed to be able to detect a fault in the WT.

In structural health monitoring or condition monitoring applications, the final decision on

whether the structure, the actuator and/or the sensor is healthy or not should not depend on

graphical approaches. One of the most common approaches to reliable indicators of damage or

faults is the use of the powerful machinery of statistical hypothesis testing. The differences in

this kind of strategies rely on what is the subject of the test and, of course, how the raw data

collected by the sensors are arranged and preprocessed. For instance, in Zugasti et al. [25] the

damage detection is based on testing for significant changes in the parameter vector of an

AutoRegressive model. A comprehensive three-tier modular structural health monitoring

framework is proposed by Hackell et al. [26] where the hypothesis testing is used to declare

decision boundaries, control charts, and ROC curves with the ultimate goal of distinguishing

between healthy and potentially damaged data on an operational wind turbine. A somehow

different approach is presented by Ng et al. [27] that includes a vehicle health monitoring

system where several univariate hypothesis tests are considered in parallel. Again in the field

of structural health monitoring or condition monitoring of wind turbines, a recent work by

Tsiapoki et al. [28] where damage and ice detection is based on data normalization, feature

extraction and hypothesis testing (HT).

The use of univariate hypothesis testing as a key element for structural health monitoring or

condition monitoring has been increasing in the last years as a reliable method. Variations of

these univariate HT for multiple indicators include the use of univariate HT in parallel, that is,

testing for each component of a parameter vector rather than testing for the whole multi-

dimensional parameter vector. The first approach for the detection of structural changes using

a multivariate hypothesis testing has been proposed by Pozo et al. [8]. One of the key results in

the work [8] is that multivariate HTs allow to get better results in damage or fault detection

that just univariate test. One interesting example presented in the work by Pozo et al. [8] shows

that, for a given level of significance α, five independent univariate hypothesis

H0 : μc, i ¼ μh, i

H1 : μc, i 6¼ μh, i

(37)

where i ¼ 1, 2,…, 5 lead to a wrong decision while the single multivariate HT

H0 : μc ¼ μh

H1 : μc 6¼ μh

(38)

where

μT
c ¼ μc,1 μc,2 ⋯ μc,5

� 	

μT
h ¼ μh,1 μh,2 ⋯ μh,5

� 	
(39)
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is able to correctly classify the structure. This example shows that multivariate HT is even

more reliable than univariate HT. However, these benefits come at a price, in the sense that in

order to apply the multivariate HT, the statistical distribution of the data must be multinormal.

Of course, it may happen that five sets of 50 samples

xi1; x
i
2;…; xi50


 �
↣N μi; σi

� �
, i ¼ 1, 2,…, 5 (40)

are normally distributed, while the sample vector

x1; x2;…; x50f g=↣N μ;Σ
� �

, (41)

where

xj ¼ x1j x2j ⋯ x5j

h iT
, j ¼ 1,…, 50 (42)

and Σ is the variance-covariance matrix, is not multinormally distributed.

3.3.2. Univariate case: testing for the equality of means

In this section, we present how a fault is detected in the WT using univariate HT. To this end,

first we have to define what we consider our baseline. Given a principal component j ¼ 1,…, ℓ,

the baseline sample is the set of real numbers τij

n o

i¼1,…,n
defined by

τ
i
j ≔ X i; :ð Þ � bP

� �
jð Þ ¼ X i; :ð Þ � bP � ej, i ¼ 1,…, n, (43)

where ej is the j-th vector of the canonical basis in Eq. (32), P is the MPCA model defined in

Eq. (27), and X is the centered and scaled matrix of the collected data from a healthy WT as in

Eq. (6). Similarly, and given a principal component j ¼ 1,…, ℓ, the sample of the current WT to

diagnose is defined as the set of ν real numbers

tij

n o

i¼1,…,ν
(44)

as defined in Eq. (35).

Before the univariate HT is applied, the following assumptions must be made:

i. the baseline sample τ
i
j

n o

i¼1,…,n
is a random sample of a random variable (RV) normally

distributed with unknown mean μX and unknown variance σ2X and

ii. the random sample tij

n o

i¼1,…,ν
in Eq. (44) of the current WT to diagnose follows a normal

distribution with unknown mean μY and unknown variance σ2Y .

It is worth mentioning that the variances of these two samples are not supposed to be neces-

sary equal.
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Let us define

δμ ¼ μX � μY (45)

as the difference between these two mean values. Since we want to know if the distribution of

these two samples is related, this leads to a test of the hypothesis

H0 : δμ ¼ 0 versus (46)

H1 : δμ 6¼ 0 (47)

where the null hypothesis H0 is “the sample of the WT to be diagnosed is distributed as the

baseline sample” and the alternative hypothesisH1 is “the sample of the WT to be diagnosed is

not distributed as the baseline sample.” In other words, if the result of the test is that H0 is

accepted, the current WT is categorized as healthy. Otherwise, if H0 is rejected in favor of H1,

this would indicate the presence of some faults in the WT.

Given the assumptions of normality and considering that the two variances are not necessarily

equal, the test for the equality of mean is based on the so-called Welch-Satterthwaite method

[29], which is outlined below for the sake of completeness. If two random samples of size n and

ν, respectively, are taken from two normal distributions N μX; σX
� �

and N μY; σY
� �

and the

population variances are unknown and not necessarily equal, the random variable

WS ¼
X� Y
� �

þ μX � μY

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S2X
n þ

S2Y
ν

� �

r (48)

can be approximated with a t-distribution with r degrees of freedom (DOF), that is

WS↣tr (49)

where

r ¼

s2
X

n þ
s2
Y

ν

� �2

s2
X
=nð Þ

2

n�1 þ
s2
Y
=νð Þ

2

ν�1

6

6

6

6

4

7

7

7

7

5
, (50)

S2 is the sample variance as a random variable, s2 is the variance of a sample, X,Y are the

sample mean as a random variable, and �b c is the standard floor function.

The magnitude of the test statistic using Welch-Satterthwaite method is defined as

tobs ¼
x� y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
X

n þ
s2
Y

ν

� �

r (51)

where x, y is the mean of a particular sample. The quantity tobs is the fault indicator. We can

then construct the following test:
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tobsj j ≤ t⋆ ) Accept H0 (52)

tobsj j > t⋆ ) Accept H1 (53)

where t⋆ is such that

P tr ≥ t
⋆

� �

¼
α

2
, (54)

where α is the level of significance for the test. To sum up,

i. H0 is rejected if tobsj j > t⋆ (the WT is classified as not healthy) and

ii. H0 is accepted if tobsj j ≤ t⋆ (the WT is classified as healthy).

3.3.3. Multivariate case: testing a multivariate mean vector

In Section 3.3.2, for each principal component j ¼ 1,…, ℓ, a test for the equality of means is

performed. This means that for a single sample of the current structure to diagnose, we obtain

ℓ decisions on whether the structure is healthy or not. In the present section, more than one

principal component will be considered jointly thus defining a vector. Therefore, a test for the

plausibility of a value for a normal population mean vector will be performed.

As in Section 3.3.2, the objective of this work is to determine whether the distribution of the

multivariate random samples that are obtained from theWT to be diagnosed (healthy or not) is

connected to the distribution of the baseline.

Let us define s∈ℕ as the number of PCs that are considered at the same time. Before the

multivariate HT is applied, the following assumptions must be made:

i. the baseline projection is a multivariate random sample (MRS) of a multivariate random

variable (MRV) following a multivariate normal distribution (MVND) with known pop-

ulation mean vector μh ∈R
s and known variance-covariance matrix

P

∈ℳs�s Rð Þ and

ii. the multivariate random sample of the WT to be diagnosed also follows an MVND with

unknown multivariate mean vector μc ∈R
s and known variance-covariance matrix

P

∈ℳs�s Rð Þ.

In this case, opposite to what we have assumed in Section 3.3.2, both multivariate random

variables have the same known variance-covariance matrix.

Similarly as in Section 3.3.2, the question that arises here is whether a given s-dimensional

vector μc is a reasonable value for the mean of an MVND Ns μh;
P

� �

. This leads to the

following test of the hypothesis

H0 : μc ¼ μh versus

H1 : μc 6¼ μh,
(55)

where H0 is “the MRS of the WT to be diagnosed is distributed as the baseline projection” and

H1 is “the MRS of the WT to be diagnosed is not distributed as the baseline projection.” In

Structural Health Monitoring from Sensing to Processing152



other words, if the result of the test is that H0 is accepted, the current WT is categorized as

healthy. Otherwise, if H0 is rejected in favor of H1, this would indicate the presence of some

faults in the WT.

In this case, the multivariate test is based on Hotelling’s T2 statistic and it is outlined below.

When an MRS of size υ∈ℕ is taken from an MVND Ns μh;
P

� �

, the RV

T2 ¼ υ X� μh

� �T
S
�1

X� μh

� �

(56)

is distributed as

T2
↣

υ� 1ð Þs

υ� s
Fs,υ�s, (57)

where Fs,υ�s denotes an RV with an F-distribution with s and υ� s DOF, X is the sample vector

mean as a MRV, and 1
n
S∈ℳs�s Rð Þ is the estimated variance-covariance matrix of X.

The value of the test statistic is defined as

t2obs ¼ υ x� μh

� �T
S
�1

x� μh

� �

, (58)

and is the fault indicator. We can then construct the following test:

t2obs ≤
υ� 1ð Þs

υ� s
Fs,υ�s αð Þ ) Accept H0, (59)

t2obs >
υ� 1ð Þs

υ� s
Fs,υ�s αð Þ ) Accept H1, (60)

where Fs,υ�s αð Þ is the upper 100αð Þth percentile of the Fs,υ�s distribution, that is,

ℙ Fs,υ�s > Fs,υ�s αð Þð Þ ¼ α, (61)

where ℙ is a probability measure and α is the level of significance for the test. To sum up,

i. H0 is rejected if t2obs >
υ�1ð Þs
υ�s

Fs,υ�s αð Þ (the WT is classified as not healthy) and

ii. H0 is accepted if t2obs ≤
υ�1ð Þs
υ�s

Fs,υ�s αð Þ (the WT is classified as healthy).

4. Simulation results

The results of the CM strategies presented in Sections 3.3.2 and 3.3.3 are organized into three

subsections. The absolute value of samples that are correctly identified and the absolute

number of false alarms and missing faults are included in Section 4.1. Sections 4.2 and 4.3

show the results, not as absolute values but as a percentage. More precisely, the sensitivity and

the specificity are both comprised in Section 4.2, including the false-negative (FNR) and the
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false-positive rates (FPR). Besides, the true rate of both false negatives and false positives are

contained in Section 4.3.

For the validation of the CM strategies presented in Sections 3.3.2 and 3.3.3, 24 samples of

ν ¼ 50 elements each have been examined, in accordance with the following organization:

• 8 samples of a faulty WT (one sample for each one of the different fault scenarios described

in Table 3) and

• 16 samples of a healthy WT.

All samples are acquired with changing wind data sets with turbulence intensity established to

10% and computed with TurbSim [14]. These wind data have the subsequent features:

i. Kaimal turbulence model,

ii. logarithmic profile wind type,

iii. mean speed of 18:2 m/s simulated at hub height, and

iv. a roughness factor of 0:01 m.

Each sample of ν ¼ 50 elements comes from the measures collected during ν � L� 1ð ÞΔ ¼

312:4875 seconds. The values for these parameters are listed in Table 4.

We present, in Sections 4.1, 4.2, and 4.3, the results when the collected data are projected into:

i. the first principal component,

ii. the second principal component,

iii. the third principal component,

iv. the first and the second principal components, jointly,

v. the first seven principal components, jointly, and

vi. the first twelve principal components, jointly.

In the three univariate cases, (i)–(iii), we use the test for the equality of means, while in the

three multivariate cases, (iv)–(vi), we use the test for the plausibility of a value for a normal

population. In both cases, the chosen level of significance is α ¼ 10%.

Parameter Symbol Magnitude

Number of rows ν 50

Number of columns L 500

Sampling time Δ 0:0125

Number of sensors N 13

Table 4. The collected measures are arranged in a ν� N � Lð Þ matrix Y as in Eq. (28)
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4.1. Types I and II errors

In this section, each of the 24 samples is classified as follows:

i. number of samples from the healthy WT (healthy sample), which were classified by the

hypothesis test as “healthy” (accept H0) [right decision],

ii. faulty sample classified by the test as “faulty” (accept H1) [right decision],

iii. samples from the faulty WT (faulty sample) classified as “healthy” [wrong decision/

missing fault/type II error], and

iv. healthy sample classified as “faulty” [wrong decision/false alarm/type I error].

The results displayed in Table 6 are disposed according to the scheme in Table 5.

4.2. Sensitivity and specificity

As in [20, 30], twomore statistical indicators are analyzed to assess the efficiency of the test. On

the one hand, the specificity of the test is defined as the fraction of samples from the healthy

structure, which are correctly classified. On the other hand, the sensitivity—or the power of the

test—is defined as the fraction of samples from the faulty wind turbine that are correctly

classified as such.

Healthy sample (H0) Faulty sample (H1)

Accept H0 Correct decision Type II error (missing fault)

Accept H1 Type I error (false alarm) Correct decision

Table 5. Scheme for the presentation of the results in Table 6

H0 H1 H0 H1

Score 1 Scores 1–2

Accept H0 16 1 Accept H0 12 0

Accept H1 0 7 Accept H1 4 8

Score 2 Scores 1–7

Accept H0 13 7 Accept H0 13 0

Accept H1 3 1 Accept H1 3 8

Score 3 Scores 1–12

Accept H0 16 8 Accept H0 16 0

Accept H1 0 0 Accept H1 0 8

Table 6. Categorization of the samples with respect to the presence or absence of a fault and the result of the test

considering the first score, the second score, and the third score (left) and scores 1–2 (jointly), scores 1–7 (jointly), and

scores 1–12 (jointly) (right), when the size of the samples to diagnose is ν ¼ 50 and the level of significance is α ¼ 10%
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The sensitivity and specificity of both the univariate HT and the multivariate case with respect

to the 24 samples displayed in Table 8 are disposed according to the scheme in Table 7.

4.3. Reliability of the results

Finally, the true rate of false negatives and the true rate of false positives can be used to assess

the performance of the proposed CM strategy. These two measures—closely related to Bayes’

theorem [31]—are described in Table 9. On the one hand, the true rate of false negatives is the

fraction of samples from the faulty WT that have been wrongly identified as healthy. On the

other hand, the true rate of false positives is the fraction of sample from the healthy WT that

have been wrongly identified as faulty.

The true rate of false negatives and the true rate of false positives of both the univariate HTand

the multivariate case displayed in Table 10 are disposed according to the scheme in Table 9.

Healthy sample (H0) Faulty sample (H1)

Accept H0 Specificity (1� α) False-negative rate (γ)

Accept H1 False-positive rate (α) Sensitivity (1� γ)

Table 7. Relationship between specificity and sensitivity.

H0 H1 H0 H1

Score 1 Scores 1–2

Accept H0 1.00 0.12 Accept H0 0.75 0.00

Accept H1 0.00 0.88 Accept H1 0.25 1.00

Score 2 Scores 1–7

Accept H0 0.81 0.88 Accept H0 0.81 0.00

Accept H1 0.19 0.12 Accept H1 0.19 1.00

Score 3 Scores 1–12

Accept H0 1.00 1.00 Accept H0 1.00 0.00

Accept H1 0.00 0.00 Accept H1 0.00 1.00

Table 8. Sensitivity and specificity of the test considering the first score, the second score, and the third score (left) and

scores 1–2 (jointly), scores 1–7 (jointly), and scores 1–12 (jointly) (right), when the size of the samples to diagnose is ν ¼ 50

and the level of significance is α ¼ 10%

Healthy sample (H0) Faulty sample (H1)

Accept H0 ℙ H0jaccept H0

� �

True rate of false negatives ℙ H1jaccept H0

� �

Accept H1 True rate of false positives ℙ H0jaccept H1

� �

ℙ H1jacceptH1

� �

Table 9. Relationship between the proportion of false negatives and false positives.
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5. Concluding remarks

A multifault detection method based on MPCA through uni- and multivariate hypothesis

testing has been presented in this chapter. It is noteworthy to mention the obtained perfor-

mance through the study of eight realistic different faults in different components of the WT,

taking into account that the proposed strategy does not need extra sensors but only uses

already available data from the WT SCADA system.

The three main conclusions, which show the benefits of the multivariate statistical hypothesis

testing in comparison with the univariate case, for WT condition monitoring, are the following:

1. Given a level of significance α ¼ 10%, when the first 12 scores are considered jointly, an

accuracy of 100% is obtained, while in all the other studied cases, misclassifications are

present.

2. Multivariate analysis leads to average values of 100% for the sensitivity and 85:33% for the

specificity, while for the univariate case, the average values are 33:33 and 93:67%, respec-

tively.

3. Multivariate analysis leads to average value of the true rate of false negatives of 0% and the

average value of the true rate of false positives of 20%, while for the univariate case, the

average values are 24:67 and 25%, respectively.
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Abbreviations

The following abbreviations are used in this chapter:

DOF degrees of freedom

CM condition monitoring

FAST fatigue, aerodynamics, structures, and turbulence

FD fault detection

FNR false-negative rate

FPR false-positive rate

GS group scaling

HT hypothesis testing

MCGS mean-centered group scaling

MPCA multiway principal component analysis

MRS multivariate random sample

MRV multivariate random variable

MVND multivariate normal distribution

O&M operation and maintenance

PCA principal component analysis

RV random variable

SCADA supervisory control and data acquisition

SHM structural health monitoring

WT wind turbine
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