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Abstract

This chapter presents a method for minimizing separately the cost and weight of
reinforced ordinary and high-strength concrete (HSC) T-beams at the limit state according
to Eurocode2 (EC-2). The first objective function includes the costs of concrete, steel, and
formwork, and the second objective function deals with the weight of the T-beam. All the
constraints functions are set to meet the design requirements of Eurocode2 and current
practices rules. The optimization process is developed through the use of the generalized
reduced gradient (GRG) algorithm. Two example problems are considered in order to
illustrate the applicability of the proposed design model and solution methodology. It is
concluded that this approach is economically more effective compared to conventional
design methods used by designers and engineers and can be extended to deal with other
sections without major alterations.

Keywords: cost and weight minimization, reinforced ordinary and high-strength concrete
beams, Eurocode2 (EC-2), nonlinear optimization, algorithm

1. Introduction

Structural elements with T-shaped sections are frequently used in industrial construction. They

are used for repeated and large structures because they are cost effective when using the

optimum cost design model which is of great value for designers and engineers. Compression

reinforcement is not often required when designing the T-beams sections. One of the great

advantages of T-beams sections is the economy in the amount of steel needed for reinforcement.

The objective function is usually simplified to represent the weight, disregarding the costs of
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shaping and the construction details. However, the economy aspects in terms of costs and gain

achieved should be the area where scope exists for extending the research works [1–4].

Recent developments in the technology of materials have led to the use of the high-strength

concrete (HSC); this is mainly due to its efficiency and economy. The reduction in the quanti-

ties of construction materials has enabled both a gain in weight reduction and in the founda-

tion’s cost. HSC has a high compressive strength in the range of 55–90 MPa; it not only has the

advantage of reducing member size and story height, but also the volume of concrete and the

area of formwork. In terms of the amount of steel reinforcement, there is a substantial differ-

ence between the normal-strength concrete structures compared to high-strength concrete

structures [5, 6]. In this chapter, not only does it presents the minimum weight design but it

presents a detailed objective function that considers the ratio cost not the absolute cost with

sensitivity analysis of this cost ratio as well. It considers both shaping and material costs. The

generalized reduced gradient (GRG) method is used to solve nonlinear programming prob-

lems. It is a very reliable and robust algorithm; also, various numerical methods have been

used in engineering optimization [7–12].

This work shows a method for minimizing separately the cost and weight of reinforced

ordinary and high-strength concrete (HSC) T-beams at the limit state according to Eurocode2

(EC-2). The first objective function includes the costs of concrete, steel and formwork, whereas

the second objective function represents the weight of the T-beam; all the constraints functions

are set to meet the ultimate strength and serviceability requirements of Eurocode2 and current

practices rules. The optimization process is developed through the use of the generalized

reduced gradient algorithm. Two example problems are considered in order to illustrate the

applicability of the proposed design model and solution methodology. It is concluded that this

approach is economically more effective compared to conventional design methods applied by

designers and engineers and can be extended to deal with other sections without major

alterations.

2. Limit state design of reinforced concrete T-section under bending

In accordance with EC-2 [13], the assumptions used at the limit state for the typical reinforced

T-beam-cross section are, respectively, illustrated in Figure 1(a)–(c).

In the linear strain diagram of Figure 1b, the symbols εs and εcu3 designate steel strain and

the ultimate strain for the rectangular stress distribution compressive concrete design stress–

strain relation. The parameter α represents the relative depth of the compressive concrete zone

and the plastic neutral axis is located at the distance αd from the upper fiber for the ultimate

limit state design, and x is the depth of elastic neutral axis for serviceability limit state design.

In the assumed uniformly distributed stress diagram of Figure 1c, fcd is the design value of

concrete compressive strength, γc is the partial safety factor for concrete and fck is the charac-

teristic compressive cylinder strength of ordinary or HSC at 28 days. In accordance with EC-2,

the possibility of working with rectangular stress distribution is offered. This requires the
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introduction of a factor λ for the depth of the compression zone and a factor η for the design

strength. The λ and η factors are both linearly dependent on the characteristic strength fck in

accordance with the following Equations [13]:

λ ¼ 0:8�
fck � 50

400
(1)

μ ¼ 1:0�
fck � 50

200
(2)

with 50 ≤ fck ≤ 90 MPa and λ = 0.8,η = 1.0 for fck ≤ 50 MPa.

Fc and Fs denote the resultants of internal forces in the HSC section and reinforcing steel,

respectively.

The design yield strength of steel reinforcement is fyd = fyk/γs where fyk is the characteristic

elastic limit of steel and γs is the partial safety factor. In addition, the steel strain is considered

unlimited in accordance with the Eurocode2 provisions. In this chapter, for an optimal use of

steel, the strain must always be greater or equal to elastic limit strain, εyd = fyd/Es where Es

represents the elasticity modulus for steel.

3. Formulation of the optimization problem

3.1. Design variables

The design variables selected for the optimization are presented in Table 1.

Figure 1. (a) Typical T-beam cross section; (b) strains at ultimate limit state and (c) stresses at ultimate limit state.
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3.2. Objective functions

3.2.1. Cost function

The objective function to be minimized in the optimization problems is the total cost of

construction material per unit length of the beam. This function can be defined as:

C0=L ¼ Cc bwhþ b� bwð Þhfð Þ þ CsAs þ Cf bþ 2h½ � ! Minimum (3)

Thus, the cost function to be minimized can be written as follows:

C ¼
CO

CcL
¼ bwhþ b� bwð Þhf þ

Cs

Cc

� �

As þ
Cf

Cc

� �

bþ 2h½ � ! Minimum (4)

The values of the cost ratios Cs/Cc and Cf/Cc vary from one country to another and may

eventually vary from one region to another for certain countries [14, 15].

3.2.2. Weight function

The weight function to be minimized can be written as follows:

W ¼ bwhþ b� bwð Þhfð Þr �! minimumð Þ (5)

where

r is the density of the reinforced concrete T-beams and W is the unit weight per unit length of

the reinforced concrete T- beams.

3.3. Design constraints

a. Behavior constraints:

MEd ≤ηfcd b� bwð Þhf d� 0; 50hfð Þ þ ηλfcdbwd
2
α 1–0; 5λαð Þ (6)

Design variables Defined variables

b Effective width of compressive flange

bw Web width

h Total depth

d Effective depth

hf Flange depth

As Area of tension reinforcement

α Relative depth of compressive concrete zone

Table 1. Definition of design variables.
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(external moment ≤ resisting moment of the cross-section)

α ¼
fyd

fcd

� �

AS

ηλbwd

� �

�
b� bwð Þhf

λbwd
(7)

(internal force equilibrium)

As

bwd
≥pmin (8)

(minimum steel percentage)

As

bwhþ b� bwð Þhf
≤pmax (9)

(maximum steel percentage)

In Eqs. (7) and (8) above, it is assumed that the neutral axis position is under the beam flange

which ensures that the section behaves as the T-beam section shown in Figure 1a.

Conditions on strain compatibility in steel:

εcu3
1

α

� �

� 1

� �

≥

f yd

Es
(10)

(In the case of Pivot B, optimal use of steel requires that strains in steel must be limited to

plastic region at the ultimate limit state (ULS).)

λα 1–0; 5λαð Þ ≤μlimit (11)

(Compression reinforcement is not required.)

b. Shear strength constraint:

VEd ≤VRd,max ¼ ν1
f cdbwz

tg θð Þ þ cotg θð Þ
(12)

(external shear force ≤ resisting shear force)

c. Deflection constraint:

5wL4

384 EcmIc
≤ δlim (13)

Ic ¼
bwh

3

3
þ

b� bwð Þh3

3
þ nAsd

2 � Ahx
2 (14)

Ah ¼ bwhþ b� bwð Þhf þ nAs (15)
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x ¼
bwh

2

2 þ
b�bwð Þh2f

2 þ nAsd

Ah
(16)

d. Geometric design variable constraints including rules of current practice:

h ≥
L

16
(17)

d

h
¼ 0:90 (18)

0:20 ≤
bw
d

≤ 0:50 (19)

b� bwð Þ

2
≤

L

10
(20)

b

hf
≤ 8 (21)

hf ≥ hfmin (22)

b

bw
≥ 3 (23)

where:

μlimit is the limit value of the reduced moment.

θ is the angle between concrete compression struts and the main chord

ν1 is a nondimensional coefficient, ν1 = 0.60(1-fck/250);

z is the lever arm, z = 0.9d;

hfmin is the minimum depth of flange.

3.4. Optimization based on minimum cost design

The optimum cost design of reinforced concrete T-beams under the limit state can be stated as

follows:

For given material properties, loading data and constant parameters, find the design variables

defined in Table 1 that minimize the cost function defined in Eq. (4) subjected to the design

constraints given in Eq. (6) through Eq. (23).

3.5. Optimization based on minimum weight design

Find the design variables that minimize total weight per unit length defined in Eq. (5),

subjected to the design constraints given in Eq. (6) through Eq. (23).
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3.6. Solution methodology: Generalized reduced gradient method

The objective function Eq. (4), the objective function Eq. (5) and the constraints equations, Eq.

(6) through Eq.(23), together form a nonlinear optimization problem. The reasons for the

nonlinearity of this optimization problem are essentially due to the expressions of the cross-

sectional area, bending moment capacity and other constraints equations. Both the objective

function and the constraint functions are nonlinear in terms of the design variables. In order to

solve this nonlinear optimization problem, the generalized reduced gradient (GRG) algorithm

is used. This algorithm was first developed in late 1960 by Jean Abadie [16] as an extension of

the reduced gradient method and then since has been refined by several other researchers

[17, 18]. GRG nonlinear should be selected if any of the equations involving decision variables

or constraints is nonlinear.

Microsoft Excel, beginning with version 3.0 in 1991, incorporates an NLP solver that operates

on values and formulas of a spreadsheet model. Version 4.0 and later include LP solver and

mixed-integer programming (MIP) capability for both linear and nonlinear problems. The

Microsoft Office Excel Solver tool uses several algorithms to find optimal solutions. The GRG

nonlinear solving method for nonlinear optimization uses the Generalized Reduced Gradient

code. The Simplex LP solving method for linear programming uses the Simplex and dual

Simplex method. The Evolutionary solving method for non-smooth optimization uses a vari-

ety of genetic algorithm and local search methods. The user specifies a set of cell addresses to

be independently adjusted (the decision variables), a set of formulae cells whose values are to

be constrained (the constraints) and a formula cell designated as the optimization objective.

The solver uses the spreadsheet interpreter to evaluate the constraint and objective functions

and approximates derivatives, using finite differences. The NLP solution engine for the Excel

Solver is GRG.

The generalized reduced gradient method is applied as it has the following advantages: (i) the

GRG method is widely recognized as an efficient method for solving a relatively wide class of

nonlinear optimization problems; (ii) the program can handle up to 200 constraints, which is

suitable for reinforced ordinary and HSC beam design optimization problems; and (iii) GRG

transforms inequality constraints into equality constraints by introducing slack variables.

Hence all the constraints are of equality form. A more detailed description of the GRG method

can be found in [19].

4. Numerical results and discussion

4.1. Design example A for reinforced HSC T-beams

The numerical example A corresponds to a high-strength concrete T-beam belonging to a

bridge deck, simply supported at its ends and predesigned in accordance with provisions of

EC-2 design code.

The corresponding preassigned parameters are defined as follows:
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L = 25 m; MEd = 1.35 MG + 1.5 MQ = 9 MNm; VEd = 1.35 VG + 1.5 VQ = 3.1 MN.

w = 0.60MN/ml (the total distribution load (dead load + live load)), δlim = L/250 = 0.100 m.

Input data for HSC characteristics:

C70/85; fck = 70 MPa; γc = 1.5; fcd = 46.67 MPa; r = 0.025 MN/m3; Ecm = 40,743 MPa;

λ = 0.75; η = 0.90; εcu3(‰) = 2.7; εc3(‰) = 2.4; hfmin = 0.10 m; fctm = 4.6 MPa;

μlimit = 0.329; αlimit = 0.554 for S500 and C70/85.

Input data for steel characteristics:

S500; fyk = 500 MPa; γs = 1.15; fyd = fyk/γs = 435 MPa; n = 15;

S400; fyk = 400 MPa; γs = 1.15; fyd = fyk/γs = 348 MPa; fyd/fcd = 9.32 for classes (S500, C70/85);

fyd/fcd = 7.46 for classes (S400, C70/85); μlimit = 0.352; αlimit = 0.6081 for S400 and C70/85;

Es = 2 � 105 MPa; pmin = 0.26 fctm/fyk = 0.002392; pmax = 4%.

Input data for units cost ratios of construction materials:

Cs/Cc = 40 for HSC concrete;

Cf/Cc = 0.01 for wood formwork;

Cf/Cc = 0.10 for metal formwork;

Cf/Cc = 0.00 in the case of the cost of the formwork is negligible.

4.1.1. Comparison between the minimum cost design and the minimum weight design of HSC T-beams

The vector of design variables including the geometric dimensions of the T-beam cross-section

and the area of tension reinforcement as obtained from the standard design approach solution

and the optimal cost design solution using the proposed approach is shown in Table 2.

Design variables

vector.

Initial

design

Optimal solution with minimum cost

(S500, C70/85), Cs/Cc = 40, Cf/Cc = 0.01 wood

formwork

Optimal solution with minimum

weight

b(m) 1.20 0.86 0.52

bw(m) 0.40 0.28 0.28

h(m) 1.40 1.58 1.56

d(m) 1.26 1.42 1.40

hf(m) 0.15 0.11 0.10

AS(m
2) 185x10�4 161x10�4 181 x10�4

α 0.554 0.342 0.554

Gain 22% 47%

Table 2. Comparison of the optimal solutions with minimum weight and minimum cost design for HSC.
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The optimal solutions using the minimum cost design and the minimum weight design are

shown in Table 2.

It is shown from Table 2 that the gain and optimum values for minimum cost design and for

minimum weight design are different.

From the above results, it is clearly shown that significant cost saving of the order of 47% can

be obtained using the proposed minimumweight design formulation and 22% through the use

of minimum cost-design approach.

4.1.2. Parametric study

In this section, the optimal solution is obtained according to practical consideration: (i) the total

depth is imposed, h = himposed; (ii) the effective width of compressive flange is imposed,

b = bimposed; (iii) the reinforcing steel is imposed, As = Asimposed; and (4i) the flange depth is

imposed, hf = hfimposed.

The gain depends on the type of formwork used. We distinguish the wood formwork:

Cf/Cc = 0.01 and the steel formwork Cf/Cc = 0.10.

Further practical requirements can also be implemented, such as esthetic, architectural and

limited authorized templates. The optimal solutions obtained using the particular conditions

imposed are shown in Table 3.

From the above results, it is clearly seen that a significant cost saving between 08% and 23%

can be obtained by using this parametric study.

4.1.3. Sensitivity analysis

The relative gains can be determined for various values of unit-cost ratios: Cs/Cc = 10; 20; 30;

40; 50; 60; 70; 80; 90; 100 for a given unit cost ratio Cf/Cc = 0.01

The corresponding results are reported in Table 4 and represented in Figure 2.

Optimal solution with. Gain (%)

Classes(S500, C70/85); Cs/Cc = 40; Cf/Cc = 0.01wood formwork 22

Classes(S500, C70/85); Cs/Cc = 40; Cf/Cc = 0.10 steel formwork 19

Classes(S500,C70/85) and Cf/Cc = 0 the cost of the formwork is negligible 23

Classes(S400,C70/85); Cs/Cc = 40; Cf/Cc = 0.01wood formwork 08

Imposed height h = 1.70 m; S500 and C70/85 21

Imposed width b = 1.00 m; S500 and C70/85 22

Imposed reinforcement As ≤ 0.0150 m2; S500 and C70/85 22

Imposed flange depth hf = 0.10 m; S500 andC70/85 22

Table 3. The variation of relative gain with particular conditions imposed such as the HSC T-beam dimensions and

reinforcing steel.
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It is shown in Table 4 and Figure 2 that the relative gain decreases for increasing values of the

unit cost ratio Cs/Cc, stabilizes around an average value for 40 ≤ Cs/Cc ≤ 60 and then increases

significantly beyond this average value for a given cost ratio Cf/Cc = 0.01.

The relative gains can be determined for various values of unit cost ratios: Cf/Cc = 0.01; 0.02;

0.03; 0.04; 0.05; 0.06; 0.07; 0.08; 0.08; 0.09; 0.10 for a given unit cost ratio Cs/Cc = 40.

The corresponding results are reported in Table 5 and presented in Figure 3.

(S500; C70/85) Cf/Cc = 0.01 Gain (%)

10 33

20 27

30 24

40 22

50 22

60 22

70 23

80 24

90 26

100 27

Table 4. Variation of relative gain in percentage (%) versus unit cost ratio Cs/Cc for a given cost ratio Cf/Cc = 0.01.

Figure 2. Variation of relative gain in percentage (%) versus unit cost ratio Cs/Cc for a given cost ratio Cf/Cc = 0.01.
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From Table 5 and Figure 3, the gain decreases monotonically with the increase of unit cost

ratio Cf/Cc for a given cost ratio Cs/Cc = 40.

4.2. Design example B for reinforced ordinary concrete T-beams

The numerical example B corresponds to a concrete T-beam belonging to a pedestrian deck,

simply supported at its ends and predesigned in accordance with the provisions of EC-2

design code.

(S500; C70/85) Cs/Cc = 40 Cf/Cc Gain (%)

0.01 22

0.02 21

0.03 21

0.04 20

0.05 20

0.06 19

0.07 19

0.08 19

0.09 19

0.10 18

Table 5. Variation of relative gain in percentage (%) versus unit cost ratio Cf/Cc for a given cost ratio Cs/Cc = 40.

Figure 3. Variation of relative gain in percentage (%) versus unit cost ratio Cf/Cc for a given cost ratio Cs/Cc = 40.
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The preassigned parameters are defined as follows:

L = 20 m; MEd = 5MNm; VEd = 1.1MN; w = 0.043MN/ml; δlim = L/250 = 0.080 m.

Input data for ordinary concrete characteristics:

C20/25; fck = 20 MPa; γc = 1.5;fcd = 11.33 MPa; r = 0.025MN/m3; Ecm = 30,000 MPa;

λ = 0.80; η =1.00; εcu3(‰) = 2; εc3(‰) = 3.5; hfmin = 0.15 m; fctm = 2.20 MPa; n = 15;

μlimit = 0.372; αlimit = 0.6167 for S500 and C20/25.

μlimit = 0.392; αlimit = 0.6680 for S400; and C20/25.

Input data for steel characteristics:

S400; fyk = 400 MPa; γs = 1.15; fyd = fyk/γs = 348 MPa;

Es = 2 � 105 MPa; pmin = 0.26 fctm/fyk = 0.00143; pmax = 4%;

fyd/fcd = 30.71 for classes (S400, C20/25);

fyd/fcd = 38.39 for classes (S500, C20/25).

Input data for units cost ratios of construction materials:

Cs/Cc = 30 for ordinary concrete.

Cf/Cc = 0.10 for metal formwork.

Cf/Cc = 0.01 for wood formwork.

4.2.1. Comparison between the minimum cost design and the minimum weight design of ordinary

concrete T-beams

The optimal solutions using the minimum weight design and the minimum cost design are

shown in Table 6.

It is shown in Table 6 that the gain and the optimum values for minimum weight design and

for minimum cost design are different.

From the above results, it is clearly shown that a significant cost saving of the order of 23% can

be obtained using the proposed minimumweight design formulation and 14% through the use

of the minimum cost design approach.

4.2.2. Parametric study

In this section, the optimal solution is obtained through the considerations: (i) one of the

dimensions of HSC T-section is imposed, h = 1.50 m; (ii) the imposed reinforcing steel As =

120 � 10�4 m2; (iii) imposed web width bW = 0.30 m; and (iv) imposed relative depth of

compressive concrete zone α = 0.6000
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Design

variables vector

Initial design,

C20/25 & S400

Optimal solution with minimum

weight, C20/25 & S400

Optimal solution with minimum

cost, C20/25 & S400

b(m) 1.20 1.30 1.25

bw(m) 0.40 0.28 0.29

h(m) 1.60 1.57 1.60

d(m) 1.44 1.41 1.44

hf(m) 0.14 0.17 0.16

AS(m
2) 125 � 10�4 123 � 10�4 122 � 10�4

α 0.668 0.668 0.668

C 1.171 1.0281

Gain 23% 14%

Table 6. Comparison of the optimal solutions with minimum weight and minimum cost design.

Optimal solution with Gain (%)

fyd/fcd = 30.71; Cs/Cc = 30; Cf/Cc = 0.01 wood formwork, C20/25 & S400 14

fyd/fcd = 38.39; Cs/Cc = 30; Cf/Cc = 0.01wood formwork, C20/25 & S500 09

fyd/fcd = 30.71; Cs/Cc = 30; Cf/Cc = 0.00; C20/25 & S400 15

Imposed web with bw = 0.30 m; fyd/fcd = 30.71; Cs/Cc = 30; Cf/Cc = 0.01; C20/25 & S400 13

Imposed reinforcementAs ≤ 0.0120 m2; fyd/fcd = 30.71; Cs/Cc = 30; Cf/Cc = 0.01; C20/25 & S400 14

Imposed height h = 1.50 m; fyd/fcd = 30.71; Cs/Cc = 30; Cf/Cc = 0.01; C20/25 & S400 11

Imposed relative depthα = 0.600; fyd/fcd = 30.71; Cs/Cc = 30; Cf/Cc = 0.01; C20/25 & S400 14

Table 7. Variation of relative gain with particular conditions imposed such as the T-beam dimensions, reinforcing steel

and weight.

(S400; C20/25) Cf/Cc = 0.01 Gain (%)

10 18

20 16

30 14

40 13

50 12

60 12

70 12

80 11

90 11

100 11

Table 8. Variation of relative gain in percentage (%) versus unit cost ratio Cs/Cc for a given cost ratio Cf/Cc = 0.01.

Design Optimization of Reinforced Ordinary and High-Strength Concrete Beams with Eurocode2 (EC-2)
http://dx.doi.org/10.5772/intechopen.78734

133



Further practical requirements can also be implemented, such as esthetic, architectural and

limited authorized template.

The optimal solutions obtained using the particular conditions imposed are shown in Table 7.

From the above results, it is clearly seen that a significant cost saving between 09 and 15% can

be obtained by using this parametric study.

4.2.3. Sensitivity analysis

The relative gains can be determined for various values of the unit cost ratios: Cs/Cc = 10; 20;

30; 40; 50; 60; 70; 80; 90; 100 for a given unit cost ratio Cf/Cc = 0.01

Figure 4. Variation of relative gain in percentage (%) versus unit cost ratio Cs/Cc for a given cost ratio Cf/Cc = 0.01.

(S400; C20/25) Cs/Cc = 30 Cf/Cc Gain (%)

0.01 14

0.02 14

0.03 13

0.04 13

0.05 13

0.06 12

0.07 12

0.08 12

0.09 12

0.1 12

Table 9. Variation of relative gain in percentage (%) versus unit cost ratio Cf/Cc for Cs/Cc = 30.
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The corresponding results are reported in Table 8 and presented graphically in Figure 4.

It is shown in Table 8 and Figure 4 that the relative gain decreases for increasing values of the

unit cost ratio Cs/Cc for a given value of Cf/Cc = 0.01.

The relative gains can be determined for various values of the unit cost ratios: Cf/Cc = 0.01; 0.02;

0.03; 0.04; 0.05; 0.06; 0.07; 0.08; 0.08; 0.09; 0.10 for a given unit cost ratio Cs/Cc = 30.

The corresponding results are reported in Table 9 and illustrated graphically in Figure 5.

From Table 9 and Figure 5, the gain decreases monotonically with the increase of unit cost

ratio Cf/Cc for a given value of Cs/Cc = 30.

5. Conclusions

The following important conclusions are drawn on the basis of this chapter:

• The problem formulation of the optimal cost design of reinforced concrete T-beams can be

cast into a nonlinear programming problem; the numerical solution is efficiently deter-

mined using the GRG method in a space of only a few variables representing the concrete

cross-section dimensions.

• The space of feasible design solutions and the optimal solutions can be obtained from a

reduced number of independent design variables.

• The optimal values of the design variables are only affected by the relative cost values of

the objective function and not by the absolute cost values.

Figure 5. Variation of relative gain in percentage (%) versus unit cost ratio Cf/Cc for a given cost ratio Cs/Cc = 30.
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• The optimal solutions are found to be insensitive to changes in the shear constraint. Shear

constraint is not usually critical in the optimal design of reinforced concrete T-beams

under bending and thus can be excluded from problem formulation.

• The observations of optimal solution results reveal that the use of optimization based on

the optimum cost design concept may lead to substantial savings in the amount of

construction materials to be used in comparison to classical design solutions of reinforced

concrete T-beams.

• The objective function and the constraints considered in this chapter are illustrative in

nature. This approach based on nonlinear mathematical programming can be easily

extended to other sections commonly used in structural design. More sophisticated objec-

tives and considerations can be readily accommodated by suitable modifications of the

optimal cost design model.

• In this chapter, we have included the additional cost of formwork which makes a signif-

icant contribution to the total costs. This integration is important for an economical

approach to design and manufacture.

• The suggested methodology for optimum cost design is effective and more economical

compared to the classical methods. The results of the analysis show that the optimization

process presented herein is effective and its application appears feasible.

• The comparison of optimal solutions for minimum cost and minimum weight shows that

the construction cost affects significantly the optimal sizes. Not only do we use the mass

but the cost as objective function as well which contains the material and construction

provision costs. The difference is caused by construction details costs.

Appendix

List of symbols

The following symbols are used in this chapter:

C20/25 Class of ordinary concrete

C70/85 Class of HSC

S400 Grade of steel

S500 Grade of steel

fck Characteristic compressive cylinder strength of ordinary or HSC at 28 days

fctm Tensile strength of concrete

fcd Design value of concrete compressive strength

γc Partial safety factor for concrete
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η Design strength factor

λ Compressive zone depth factor

εc3 Strain at the maximum stress for the rectangular stress distribution com-

pressive concrete

εcu3 Ultimate strain for the rectangular stress distribution compressive concrete

design stress–strain relation

fyk Characteristic elastic limit for steel reinforcement

γs Partial safety factor for steel

fyd Design yield strength of steel reinforcement

εyd Elastic limit strain

Es Young’s elastic modulus of steel

Ecm Modulus of elasticity of concrete

pmin Minimum steel percentage

pmax Maximum steel percentage

αlimit Limit value of relative depth of compressive concrete zone

μlimit Limit value of reduced moment

L Beam span

w The total distribution load (dead load+ live load)

VG Maximum design shears under dead loads

VQ Maximum design shears under live loads

VRd,max Maximum resistant shear force

VEd Ultimate shear force

MRd, max Maximum resisting moment

MEd Ultimate bending moment

MG Maximum design moments under dead loads

MQ Maximum design moments under live loads

Fs Resultant tensile internal force for steel

Fc Resultant compressive internal force for HSC

n Ratio of the modulus of elasticity of steel to that of concrete

b Effective width of compressive flange
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bw Web width

h Total depth

hf Flange depth

d Effective depth

ds Effective cover of reinforcement

As Area of reinforcing steel

hfmin Minimum depth of flange

δw The mid-span deflection of simply supported beam under distribution load
w

δlim Limit deflection

θ Angle between concrete compression struts and the main chord

ν1 A nondimensional coefficient; ν1 = 0.60(1-fck/250)

z Lever arm, z = 0.9d

r Density of the reinforced concrete T-beams

W Unit weight per unit length of the reinforced concrete T- beams

C0/L Total cost per unit length of T-beam

Cs Unit cost of reinforcing steel

Cc Unit cost of concrete

Cf Unit cost of formwork
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