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Abstract

The specific use of engineered nanostructures in biomedical applications has become very
attractive, due to their ability to interface and target specific cells and tissues to execute their
functions. Additionally, there is continuous progress in research on new nanostructures with
unique optical, magnetic, catalytic and electrochemical properties that can be exploited for
therapeutic or diagnostic methods. On the other hand, as nanostructures become widely
used in many different applications, the unspecific exposure of humans to them is also
unavoidable. Therefore, studying and understanding the toxicity of such materials are of
increasing importance. Previously published reviews regarding the toxicological effects of
nanostructures focus mostly on the cytotoxicity of nanoparticles and their internalization,
activated signaling pathways and cellular response. Here, the most recent studies on the in-
vitro cytotoxicity of NPs, nanowires and nanorods for biomedical applications are reviewed
and divided into two parts. The first part considers nonmagnetic metallic and magnetic
nanostructures, while, the second part covers carbon structures and semiconductors. The
factors influencing the toxicity of these nanostructures are elaborated to help elucidate the
effects of these nanomaterials on cells, which is a prerequisite for their safe clinical use.
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1. Introduction

Nanostructured materials are defined as possessing one of their dimensions ranging from 1 to

100 nm, according to the American Society for Testing and Materials (ASTM) international

standards definition [1]. For nanoparticles (NPs), which can be of more or less spherical or

cubical shape, two dimensions are required to be within this range. In contrast, the shape of

nanorods (NRs) is in one dimension much larger than in the others. For a small aspect ratio (<10)

both their length and diameter are in the nanoscale, whereas NRs with a large aspect ratio (>10)

only have their diameter within this scale, and they are often called “nanowires” (NWs). Nanos-

tructures within this specific size scale show unique size-dependent optical, magnetic, catalytic

and electrochemical properties, among others, as well as high surface to volume ratios. More-

over, their shape, surface chemistry and chemical composition can be used to tailor-specific

properties, making nanostructures highly versatile for different applications [2, 3].

The size scale of nanostructures is within the range of several biomolecules, such as proteins

and antibodies, allowing specific interactions to occur between them. This, when coupled with

the high surface to volume ratios and tunable sizes and properties, makes nanostructures prime

candidates for biomedical applications such as imaging, drug delivery and therapy [4–6].

Examples of applications include the use of NPs as magnetic resonance imaging (MRI) contrast

agents [7, 8], tissue engineering [9–11], as well as the recent focus on hyperthermia and cancer

cell eradication with the use of NPs and NRs [12–17]. Such applications, if they are aimed for a

clinical setting, ultimately require a direct NP/NR exposure in the form of ingestion or intrave-

nous delivery into the body. Naturally, there is a rigorous testing required before any new drug

formulation is approved for clinical use in order to ensure their safety and effectiveness. Cur-

rently, very few NPs-based drugs have been approved by the Food and Drug Administration

and are commercially available. Examples include GastroMARK, used as an MRI contrast agent

to enhance the delineation of the bowel, and ferumoxytol, an iron-replacement formulation

approved for adults with chronic kidney disease with an iron deficiency [18].

Within this scope, biocompatibility and cytotoxicity data are of paramount importance to

evaluate the potential of nanostructures for biomedical applications. Nanostructures are nor-

mally engineered to interface and target-specific cells or tissues to execute their functions,

raising questions about their toxicological effects. For instance, there are several characteristics

involved in the toxicity of fiber-like nanomaterials, such as shape, length, chemical composi-

tion, agglomeration and purity, making them suitable to fit the “fiber toxicological paradigm”

according to the World Health Organization (WHO) criteria used to describe the toxicity of

asbestos fibers [19]. Further, nanostructures are usually tuned for biocompatibility on top of

the desired biomedical function, with the most relevant aspects that influence their toxicity

being the material [20], size and shape [21], surface charge [22] and surface functionalization

[23]. In vitro studies, while not able to give a complete insight into the biocompatibility of

nanostructures, have a high importance, due to their easy implementation, and provide valu-

able cytotoxicology data regarding the safety of the use of nanostructures in biomedical

applications. Previously published reviews regarding the biosafety of nanostructures include

that of Lewinski et al. [24] and Zhao et al. [25]. The former focuses mostly on the cytotoxicity of
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NPs of different materials, as well as carbon nanotubes (CNTs), whereas the latter is a more in-

depth review of the internalization, activated signaling pathways and cellular response of

different kinds of NPs.

Here, we review relevant studies assessing the in vitro cytotoxicity of both nanoparticles (NPs)

and nanowires (NWs)/nanorods (NRs) with the potential to be used in biomedical applica-

tions. Due to their prevalence within the applied nanomaterials in biomedicine, this chapter

covers various materials from four different classes (on Scopus almost 50% of all publications

related to cytotoxicity, since the year 2000, fall within these materials) that are typically consid-

ered in the context of nanomaterials for biomedical applications. The first part of this chapter

covers nonmagnetic metals and magnetic materials, while the second part covers carbon

structures and semiconductors. An overview of the materials and structures covered, together

with the various intracellular uptake mechanisms, is given in Figure 1.

2. Carbon nanostructures

Carbon nanostructures include a broad diversity of carbon allotropes that differ from pristine

diamond and graphite. Carbon has been used in many technological applications, exploiting its

capability of forming networks composed exclusively of C-atoms with the same electronic

configuration or hybridizing configurations sp3-, sp2- and sp-, expanding the possible allotropes

that can be constructed [26]. Since the synthesis of the first carbon nanostructures, such as

fullerene C60 (0D) [27] and CNTs (1D) [28] (Figure 2), there has been a tremendous effort for

understanding the properties of these nanomaterials and for exploring the broad range of

applications in which they can be used. Carbon-based nanomaterials (CNMs) have created a

great deal of interest in various applications such as optical imaging [29], drug and gene delivery

[30], and nanotherapeutics [31, 32] due to their excellent mechanical, optical and electrical

Figure 1. Schematic of the pathways for intracellular uptake of different materials and structures.
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properties [33–35], as well as due to their ability to translocate through the cell membrane or be

internalized via energy-dependent endocytic pathways [36]. Similarly, CNMs possess an extraor-

dinary ability to be loaded with drugs or different chemical agents that are either attached to the

surface or, in the case of CNTs, they can be packed into the interior cores [37].

These widespread applications of CNMs are also accompanied by increasing concerns regard-

ing their interactions with tissues, cells, and biomolecules as well as degradation pathways,

and at a macroscale, the potential deleterious effects on human health and the environment.

2.1. Fullerene C60

The structure of fullerene C60, which has a van der Walls diameter of approximately 1 nm, is

formed from 60 carbon atoms arranged in a spherical, cage-like structure consisting of 60

vertices, 12 pentagonal faces and 20 hexagonal faces [38]. Fullerenes and their derivatives are

probably the most extensively studied NPs with several properties and applications including

MRI [39], drug delivery [40, 41], photodynamic therapy (PDT) [40] and photothermal therapy

(PTT) [42].

Although fullerenes are generally hydrophobic molecules, many strategies have been devel-

oped for improving their solubilization in water that is, synthesized water-soluble derivatives

of fullerenes by chemical modifications through the addition of functional groups such as

hydroxyl-, carboxyl-, amino- and alkyl-groups and other side-chain/cyclic moieties to the C60

structure [43]. The different methods employed to increase C60 water solubility profoundly

influence the physiochemical properties and the toxicological effects of these compounds,

raising uncertainties about the possible consequences on human health and potential medical

uses [44]. Nakagawa et al. studied the effects of the hydroxylated fullerenes (fullerenols)

C60(OH)24 and C60(OH)12 0.125 mM in rat hepatocytes, observing a concentration and time-

dependent cell death accompanied by mitochondrial dysfunction, with C60(OH)24 found to be

more cytotoxic with almost 100% of cell death after 30 min. The authors concluded that the

toxic effects of fullerenols may depend on the number of hydroxyl groups [38]. C60(OH)24 at a

concentration of 0.1 mM caused cell blebbing, loss of cellular ATP and lipid peroxidation in rat

hepatocytes [45]. Similarly, the cytotoxic effects of fullerene C60 and the derivatives C60(OH)2,

C60(OH)6–12, C60(OH)12 and C60(OH)36, were evaluated in three different types of liver cells:

Figure 2. Chemical structure of representative carbon-based nanomaterials. Structure of fullerene C60 (A) and carbon

nanotube (B).
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dRLh-84, HepG2 and rat hepatocytes as shown in Figure 3 [46]. C60(OH)6–12 and C60(OH)12
were found to induce cytotoxic effects after 3 days of exposure in dRLh-84 cells at a concentra-

tion of 10 μg/mL reducing the cell viability 30 and 40%, respectively, in the form of inhibition

of mitochondrial activity. Similarly, to Nakawaga’s findings, these results indicate that the

number of hydroxyl groups on C60(OH)
x
contributes to the cytotoxic potential and mitochon-

drial damage.

Other fullerene derivatives have also been tested for cytotoxic effects in human epithelial HEp-

2 cells, such as C60-PVP, C60-NO2-proline and sodium salt of polycarboxylic C60 [47]. However,

the PVP and NO2-proline derivatives did not have an effect on cell viability, and the sodium

salt of polycarboxylic derivative induced a drastic decrease in cell number of about 80% at a

concentration around 0.1 mg/mL.

Further, the molecular mechanisms underlying the cytotoxic effects of two similar fullerene

derivatives (C60-1,3-dipolar cycloaddition of azomethine ylides) on human MCF-7 cells were

analyzed by RNA-seq-based gene expression [44]. It was found that whereas one derivative

had a negligible effect, the addition of an extra trifluoroacetate group induced a significant,

time-dependent alteration of gene expression, mainly in biological processes involving protein

synthesis, cell cycle progression and cell adhesion, with the authors suggesting an inhibition

effect of the mTOR pathway.

Figure 3. Cytotoxicity of fullerene and hydroxylated fullerenes in liver cells. HepG2 (A); dRLh-84 (B); and primary

cultured rat hepatocytes (C) were exposed to C60, C60(OH)2, C60(OH)6–12, C60(OH)12 and C60(OH)36 for 3 days. Data

are represented as mean � SD (n = 3). (*) statistically significant from control (p < 0.05). Adapted from Shimizu et al. [46].

Copyright 2013 by the authors. Licensee MDPI, Basel, Switzerland. CC BY 3.0.
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In a recent study performed by Canape et al., C60 fullerenes were covalently functionalized

with PEG of various sizes, Full–PEG2000, Full–PEG5000 and Full–PEG10000, and viability was

studied on a variety of cell lines 24 h after exposure, evaluating mitochondrial activity, cell

membrane integrity and hemolysis [48]. However, all the tested compounds were found to

reduce, to some extent, the cellular metabolic activity, only two affected the cell membrane

integrity, and none induced hemolysis. It was concluded that fullerenes C60 functionalized

with higher molecular weight PEGs possess a higher biocompatibility and that side toxicity

can be alleviated using proper surface coating. Together, all these findings support that the

surface functionalization of fullerenes plays an important role with regard to their interaction

with biological systems.

The interaction of CNMs with lipid membranes is of great interest because biological activity

requires crossing or breaking lipid membranes. In a study concerning the interaction of fuller-

enes with the lipid bilayer and the possibility of fullerene crossing it, it was observed that

hydrophobic molecules of C60 were localized within the inner part of the membrane, whereas

hydrophilic C60(OH)n fullerenols molecules were adsorbed on the heads of membrane phos-

pholipids [49], where they can interact with membrane proteins, such as ATPases and influ-

ence their activity [50, 51]. Similarly, Raoof et al. showed that the internalization of a water-

soluble derivatized C60 malonodiserinolamide takes place through multiple energy-dependent

pathways, and they escape endocytotic vesicles to eventually localize and accumulate in the

nucleus through the nuclear pore complex [41].

2.2. Single-walled carbon nanotubes

CNTs are classified in single-walled carbon nanotubes (SWCNTs) and multiwalled carbon

nanotubes (MWCNTs). The first ones are formed from a single layer of graphene (0.4–10 nm in

diameter), whereas the second ones consist of multiple concentric cylinders of graphene with

increasing diameters (10–100 nm) [52]. The length of CNTs can range from nanometers to

centimeters [53], and they possess unique physical and chemical properties such as a light-

weight, high tensile strength, high electrical and thermal conductivities, unique optical proper-

ties and extreme chemical stability, as well as high surface-to-volume ratios with reactive surface

chemistries. Such properties have made CNTs an interesting material for biomedical applica-

tions, where they have been used as drug, protein and nucleic acid delivery tools [54–56], cancer

cell destruction [57, 64, 91], diagnostics [59] and as noninvasive and highly sensitive imaging

aids [31, 58]. Naturally, biosafety concerns of CNTs are rapidly emerging with numerous reports

indicating their potential hazards to the public health.

The graphene sheets can be wrapped in a variety of ways that are denoted by a pair of indices

(n, m), which define both the diameter and the chirality of SWCNTs, which can be either

metallic (M) or semiconducting (S). As synthesized, SWNTs have a wide range of diameters

and chiral angles, which leads to a polydisperse sample of discrete properties [59, 60].

SWCNTs possess small diameters and the large aspect ratios that render them ideal one-

dimensional quantum wires that elicit different biological behavior compared to spherical

NPs, when introduced in biological systems [26]. The cytotoxicity of pristine SWCNTs and

Cytotoxicity238



SWCNTs functionalized with PEG has been evaluated with neuronal PC12 cells at the bio-

chemical, cellular and gene expression levels by Zhang et al. [61]. Cytotoxicity increased with

the concentration, whereby SWCNT-PEGs exhibited less cytotoxic potency than bare SWCNTs

at the highest concentration tested by reducing the cell viability in approximately 70 and 50%,

respectively (Figure 4). Morphological changes appeared in PC12 cells treated with both

SWCNTs and SWCNTs-PEG as shown in Figure 5. Cells exposed to SWCNTs showed an

elongated shape, which was related to higher toxic effects induced by the untreated CNTs.

ROS were generated as a function of both concentration and surface coating after exposure,

whereas gene expression analysis showed that the genes involved in oxidoreductases and

antioxidant activity, nucleic acid or lipid metabolism and mitochondria dysfunction were

highly altered. Interestingly, alteration of the genes was also surface coating-dependent. The

authors concluded that surface functionalization of SWCNTs decreases the ROS-mediated

toxicological response in vitro, corroborating the relevance of surface functionalization in the

interaction between nanostructures and biological systems. Likewise, proteins such as type I

Figure 4. Cytotoxic effect of SWCNTs and SWCNTs-PEG in PC12 cells. Mitochondrial toxicity and membrane damage of

neuronal cells incubated with different concentrations of pristine SWCNTs and PEG-coated SWCNTs for 24 h evaluated

by MTT (A), XTT (B) and LDH (C) assays. Data are expressed as mean� standard error (n = 3). (*) statistically significant

from control; (#) indicates statistically significant within the same concentration group (p < 0.05). Adapted with permis-

sion from Zhang et al. [61]. Copyright 2011 American Chemical Society.
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collagen have shown great potential as surface coting agents in SWCNTs, showing no obvious

negative cellular effects and with a high level of internalization taking place through adsorp-

tion by the extracellular matrix in bovine articular chondrocytes [62].

Avti et al. showed that SWCNTs synthesized using Gd3+ NPs as catalysts induced no struc-

tural damage to NIH/3T3 fibroblasts or decreased their viability at concentrations between 1

and 10 μg/mL [53]. In contrast, highly pure SWCNTs triggered similar amounts of pulmonary

fibrosis-related compounds interleukin 1β (IL-1β) and transforming growth factor (TGF-β1) in

THP-1 and BEAS-2B pulmonary cells without affecting cell viability [63]. Similarly, Di Giorgio

et al. studied the cyto- and genotoxic effects, as well as the inflammatory response and ROS

production, of SWCNTs on the mouse macrophage cell line RAW 264.7 [64]. There, the authors

reported that SWCNTs induced ROS release, cell ultrastructural damage, necrosis and chro-

mosomal aberrations, but did not cause an inflammatory response.

Figure 5. Morphological changes of PC12 cells after 24 h incubation with SWCNTs and SWCNTs-PEG. (A) Normal

morphology of the PC12 cells. (B) PC12 cells incubated with SWCNTs present a spindle shape (arrows). (C) SWCNT-

PEGs inhibit the dendrite growth (arrows). Adapted with permission from Zhang et al. [61]. Copyright 2011 American

Chemical Society.
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2.3. Multiwalled carbon nanotubes

MWCNTs are defined as a nested coaxial array of SWCNTs, each nanotube being formed by a

graphene sheet rolled into a cylinder of nanometer size diameter [65].

It has been postulated that MWCNTs can provide an innovative and promising alternative to

conventional drug formulations for cancer therapy, as they can be conjugated with various

bioactive molecules such as drugs, surfactants, diagnostic agents and antibodies in order to

target receptors that are overexpressed in cancer cells [66–68].

The generation of carboxyl groups by oxidation on the surface of CNTs is one of the most used

strategies for introducing hydrophilic moieties onto the CNT hydrophobic surface and in order

to conquer a lack of solubility and to improve their biocompatibility [69–71]. Thus, Liu et al.

have studied the effects of carboxylated c-MWCNTs on the human normal liver cell line L02

and found a reduction in the toxicity, when compared to pristine MWCNTs with a reduction of

around 60% of cell viability at the highest concentration tested after 72 h and concluded that

this effect is probably due to a reduced activation of the mitochondria mediated apoptotic

pathway [72]. Moreover, as charged entities, c-MWCNTs bind to proteins in the bloodstream

through noncovalent interactions to form a protein corona. De Paoli et al. have characterized

the interactions of c-MWCNTs with common human proteins such as albumin, fibrinogen, g-

immunoglobulins and histone H1 and found that the association of proteins to c-MWCNTs

depends on the protein’s charge, size and structural flexibility and that it affects the agglomer-

ation state and charge of the CNTs [73].

As with SWCNTs, molecules can be covalently and noncovalently attached to the surface of

MWCNTs [74]. The main disadvantage of noncovalent attachment is the lack of biomolecule

specificity upon adsorption, which affects the CNTs dispersion stability by replacing the

functional surface coating with proteins and molecules contained in all physiological fluids

(cell culture media or blood) [65]. Heister et al. have compared five types of CNTs, varying in

their dimensions and surface properties, for a multidimensional analysis of dispersion stability

and their toxicity toward cancer cells (Figure 6), from which it was emphasized that the

covalent link between PEG and oxidized MWCNTs leads to stable dispersion and biocompat-

ibility in various biological environments [65].

It has been proposed that the metal impurities trapped inside the MWCNTs may be responsible

for their toxicity that partially occurs through the generation of ROS [75]. Fe impurities trapped

inside theMWCNTsmay be partially responsible for neurotoxicity, as postulated byMeng et al.,

who investigated and compared the effects of two kinds of MWCNTs with different concentra-

tions of Fe impurities in rat pheochromocytoma PC-12 cells [76]. They found that the exposure

to Fe MWCNTs can reduce cell viability up to 80% after 72 h exposure and increase cytoskeletal

disruption of undifferentiated PC-12 cells, diminish the ability to formmature neurites and then

adversely influence the neuronal dopaminergic phenotype in NGF-treated cells.

Additionally, MWCNTs have been shown to affect the immune system. Pescatori et al. used a

whole-genome expression approach to assess whether functionalizedMWCNTs could stimulate
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distinct molecular changes in immune cells, with transcriptomic changes analyzed in human

immune cells THP1, a monocytic cell line, Jurkat cells and a T lymphocyte cell line [77]. They

found a cell-specific action on monocytes for three types of MWCNTs, which specifically

enhanced innate immunity activation mechanisms. The pathways activated are functionally

relevant and critical for the development of an effective inflammatory response.

3. Semiconductors

3.1. Titanium dioxide nanoparticles and nanowires

A comprehensive review of the numerous biomedical applications of titanium dioxide (TiO2)

throughout the years was published by Yin et al. [78]. In summary, mostly due to their low

cost, strong optical absorption and high chemical stability, TiO2 NPs have shown great poten-

tial in applications such as photodynamic cancer therapy, drug delivery, cell imaging and

biosensors, among others.

One of the initial cytotoxicity studies with TiO2 NPs was performed on human dermal

microvascular endothelial cells [79]. There, it was shown that NPs with an average diameter

of 70 nm at a dose of 50 μg/mL caused a minor pro-inflammatory response in the form of

an increase in the levels of IL-8. Later, a study with mouse fibroblast L929 cells exposed to

TiO2 NPs was conducted by Jin et al. [80]. For 3–600 μg/mL doses, cells appeared to shrink

and became round in culture, with a dose-dependent reduction of cell metabolic activity,

LDH release and ROS generation. Chromatin fragmentation was also reported, indicating

possible DNA damage (Figure 7). It was also found that both human neural astrocyte-like

U87 cells and human fibroblast HFF-1 cells exposed to 25 nm TiO2 NPs for 48 h had a

decrease in cell survival for doses up to 100 μg/mL, with cell death reported as a combina-

tion of apoptosis and necrosis [81]. On the other hand, BEAS-2B cells underwent cell death

Figure 6. MTT cytotoxicity assay on WiDr human colon cancer cells after being incubated for 96 h with various samples

of oxCNTs. No dose-dependent cytotoxicity is observed at this concentration as shown in the range dose-response curves

for the five different types of CNTs, displaying (A). Cell viability percentage plot for Nanolab oxidated SWNTs with

different surface functionalizations, where PEGylation results in a statistically significant enhancement in cell viability.

The cells control correlates with 100% cell viability. Adapted with permission from Heister et al. [74]. Copyright 2010

American Chemical Society.
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through apoptosis, triggered by the activation of caspase-3 and chromatin condensation

through ROS [82].

Although the size of single TiO2 NPs reported by Jin et al. was of 5 nm [80], they were

clustered in 20–30 nm aggregates, an effect that could enhance cytotoxicity. It was later

shown that there is a correlation between the cytotoxicity of TiO2 NPs and their aggregate

size, as larger aggregates (600 vs. 166 nm) elicited a stronger decrease in cell viability, as well

as the expression of genes related to stress and inflammation [83]. In contrast, TiO2 NPs of

12 nm in diameter aggregated in 450 nm clusters and only at higher doses slightly decreased

the viability of glomerular mesangial IP5 and epithelial proximal HK-2 cells, suggesting

specific cell responses [84]. Additionally, although ROS was generated in the presence of

TiO2 NPs, the cells were able to maintain their antioxidant potential, thereby showing no

oxidative stress.

Cellular uptake studies with 30 nm TiO2 NPs have been carried out in human amnion epithe-

lial WISH cells using transmission electron microscopy (TEM), with images showing most of

the particles localized either inside vesicles or freely in the cytoplasm [85]. In addition to the

already mentioned cytotoxic response, WISH cells experience an oxidative response due to

ROS accumulation, as well as DNA double strand breaks and cell cycle arrest.

Cytotoxicity data of TiO2 NWs are scarce, with only a handful of studies published. Magrez

et al. observed that TiO2-based NWs of 5 μm in length and 75 nm in length had a negative

impact on the cell proliferation and cell viability of H596 human lung tumor cells in a dose-

dependent manner and for concentrations up to 2 μg/mL [86]. NWs were observed to reside in

the periphery of the nuclei, which were often enlarged and lobulated or fragmented. In

another study, H2Ti3O7 NWs at a dose of 10 μg/mL induced the generation of cell debris in

eight different cell lines, which the authors associated with an increase in autophagosome-like

vacuoles in the cytosol [87].

3.2. Zinc oxide nanoparticles and nanowires

Zinc is a biologically active element that plays a role in different processes, such as the immune

system, cell metabolism, cell proliferation, enzymatic function and gene expression, among

Figure 7. DNA-binding acridine orange staining of L929 mouse fibroblast cells. (A) Control cells with no TiO2 NPs show

normal green nuclei with an organized cellular structure; (B) Cells cultured with 30 μg/mL of TiO2 NPs show weakly

condensed chromatin; and (C) Cells cultured with 600 μg/mL of TiO2 NPs show fragmented chromatin, an indicator of

necrosis. Adapted with permission from Jin et al. [80]. Copyright 2008 American Chemical Society.
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others [88, 89]. Due to these biological functions of zinc, coupled with initial biocompatibility

studies [90], ease of fabrication and relevant properties [91], zinc oxide (ZnO) nanostructures

have been proposed as suitors for several biomedical applications, including cancer cell ther-

apy [92, 93], drug delivery [94, 95] and imaging [96]. However, possible undesirable effects of

the interactions between ZnO nanostructures and biological systems could arise and cause a

toxicological response. Additionally, ZnO nanostructures are known to dissolve under acidic

conditions. The phase-solubility diagram of ZnO [97] indicates that ZnO NPs will dissolve at a

pH value below 6.7 at physiological temperature, and they will rapidly dissolve in the acidic

pH of the lysosomes (pH 5.7) after their uptake [98]. Zinc oxide NPs can dissolve in an aqueous

media to form hydrated Zn2+, which is enhanced in acidic pH as well as in the presence of

biological components, such as amino acids and peptides [99]. A review on studies published

between the years 2009 and 2011 on the toxicity of ZnO NPs to mammalian cells was reported

by Vandebriel et al. [100]. They concluded that the induction of oxidative stress is the most

important and the most likely mechanism underlying ZnO NP toxicity.

Initial cytotoxicity studies in human T lymphocytes showed a significant decrease in cell

viability only for concentrations higher than 5 mM using ZnO NPs of 13 nm in diameter

[101]. It was then found that ZnO NPs preferentially kill cancerous human T lymphocytes

compared to normal ones via ROS and apoptosis [92]. Similarly, NPs of the same size were

tested against human lung BEAS-2B cells and RAW 264.7 macrophages, and a dose and time-

dependent cytotoxicity was found in both cases for doses up to 50 μg/mL and incubation times

of 16 h [99]. Moreover, the ZnO NPs were reported to induce the generation of ROS, as well as

the activation of the pro-inflammatory marker TNF-α and the pro-inflammatory pathway Jun

kinase, as well as intracellular calcium release, a major oxidative stress response. Finally, ZnO

NPs were found to reside in caveolae in the case of BEAS-2B cells, whereas in the RAW 264.7

cells, they resided inside lysosomes, with intracellular dissolution and release of Zn2+ shown in

both cases. In a different study, ZnO NPs also impaired the survival of human neural

astrocyte-like U87 cells in a dose-dependent manner [81].

The degree of cytotoxicity of ZnONPs also depends on their size, as shown byHanley et al. [102].

Using 4, 13 and 20 nm NPs, they determined an inverse relationship between nanoparticle size

and cytotoxicity in terms of cell viability and ROS generation in immune cells. Among these,

monocytes were the most sensitive to the ZnO NPs, whereas lymphocytes were the most resis-

tant, as reported previously [101]. In contrast, glomerular mesangial IP5 cells showed a similar

dose-dependent decrease in cell viability for ZnO NPs of both <100 nm and >1 μm, along with

the generation of ROS [84]. The cell viability of neural stem cells appeared to be indifferent of NP

size [103]. In a different work, a differential cytotoxic response was reported, when comparing

the effects of 20–30 nm ZnO NPs in human myeloblastic leukemic HL60 cells and normal

peripheral blood mononuclear cells (PBMCs) [104]. For concentrations up to 1000 μg/mL, PBMCs

maintained a steadily high viable cell population, whereas a dose of 50 μg/mL was enough to

bring the cell viability of HL60 cells down to 50%. DNA fragmentation analysis and annexin V

staining confirmed that cell death was through the apoptosis pathway. The potent tumor sup-

pressor that regulates the cell cycle and prevents DNA damage, p53 [105], is believed to be a

molecular master switch toward apoptosis, and reports show that the p53 pathway was activated

in BJ cells (skin fibroblasts) upon ZnO NPs treatment with a concomitant decrease in cell

proliferation [106].
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The liver, playing a major role in human metabolism, may be a target organ for NPs after they

enter into the body. As such, it is an important toxicity evaluation method. Similarly, to

previous results, Sharma et al. found that human liver HepG2 cells had a dose-dependent

response to ZnO NPs at doses up to 20 μg/mL and for exposure times from 12 to 24 h [107].

Cell death was also shown as being through the apoptotic pathway, due to ROS generation,

oxidative stress and mitochondrial and DNA damage. Taken together, all these results suggest

that the cytotoxic response to ZnO NPs is dependent on the target cell tissue as well as on

changes in NP dimensions.

Kao et al. observed the effects of ZnO NPs of <50 nm in the homeostasis of intracellular Zn2+ in

human leukemia Jurkat cells and human lung carcinoma H1355 cells and found an increase in the

concentration of cytosolic and mitochondrial Zn2+, most probably due to NP dissolution [108], as

shown previously [86]. Caspase-3 activation, mitochondrial membrane depolarization and LDH

release were also reported, which suggests an apoptotic death pathway due to mitochondrial

dysfunction. In a more recent study, the intracellular concentration of Zn2+ of breast cancer MDA-

MB-231 cells was also increased after treatment with ZnO NPs, leading to the generation of ROS,

damage to the cell membrane and mitochondria and culminating in apoptosis [109].

Limited literature exists regarding the biocompatibility of ZnO NWs, but similar cytotoxicity

effects as those of NPs were shown by Li et al. using HeLa cells and connective tissue L-929

cells [110]. Although the NWs used were rather large (200 μm in length and 1 μm in diameter),

both cell lines seemed to maintain their viability for concentrations up to 10 μg/mL and

exposure times of 24 h. Similar viability data were then reported for NWs of 10 μm in length

and 327 nm in diameter at the same dose in human macrophages (Figure 8) [111]. There, too, it

Figure 8. Cytotoxicity of ZnO NWs on HMM human monocyte macrophages. Cell viability was assessed using the

neutral red assay, with the red bars denoting doses of Zn in the form of ZnCl2 or ZnO NWs, respectively. Adapted with

permission from Müller et al. [111]. Copyright 2010 American Chemical Society.
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was found that an intracellular increase of Zn2+ precedes cell death, indicating the intracellular

dissolution of the ZnO NWs after uptake [112–120].

3.3. Silicon nanoparticles

Coated silicon nanoparticles (Si NPs) have attracted both a great deal of concern and attention,

especially in biomedical applications such as disease diagnosis, tumor cell tracking, imaging,

drug delivery and gene therapy [121, 122]. They have been widely studied for such applica-

tions because of their active surface state and high suspension ability [121, 123, 124]. However,

there are some recent reports that limit the use of Si NPs because of potential side effects on the

cells, when using them in such a scale and in high concentrations [125].

One of the first studies on Si NPs focused on their cellular uptake [123]. Si NPs were coated with

a fluorone dyes called Rhodamine 6G isothiocyanate (RITC), the fluorescence signal of which

indicated uptake. NPs of 50 nm diameter at a dose of 80 μg/mL were accumulated in the

cytoplasm of HeLa cells after 4 h of incubation at 37�C, while the uptake was reduced by 80%

at 4�C. A year later, Lin et al. focused on the toxicity effect of the size, concentration and exposure

time of Si NPs on human lung cancer cells (calveolar carcinoma-derived cells) [126]. The cell

viability decreased significantly as a function of both nanoparticle dosage (10–100 μg/mL) and

exposure time (24, 48 and 72 h). However, the cytotoxicity of two different sizes of Si NPs (15 and

46 nm) did not show a significant difference.

A different study compared the cytotoxicity of a variety of sizes of Si NPs (19, 43, 68 and

498 nm) at 100 μg/mL [127]. After 4 h of incubation with human liver HepG2 cells, it was

noticed that the cytotoxicity of Si NPs is size-dependent (i.e., the smaller size the higher

cytotoxicity. The live cells were counted by a cell-counting kit (CCK-8). Further, Sahu et al.

proved that Si NPs (10–20 nm) are much more toxic than micro-sized ones (0.5–10 μm) for a

concentration range of 5–500 μg/mL, after exposing them to human lung epithelial (L-132) and

human monocytes (THP-1) for 24 h [128]. The cellular uptake efficiency and pathway of

different sized NPs has also been confirmed to be size-dependent, with smaller particles

(55 nm) being internalized faster than larger ones (307 nm) [129]. The largest NPs (307 nm)

internalized through clathrin-coated pits, whereas medium ones (167 nm) internalized

through clathrin-coated vesicles and the smallest (55 nm) were internalized through an energy

independent pathway. Despite differences in their internalization pathway, all three sizes

showed a high-level of biocompatibility.

In a similar approach as the one of Lin et al., the cytotoxic effects of increasing concentrations of Si

NPs (0, 25, 50, 100 and 200 μg/mL) on HepG2 cells were analyzed in terms of ROS level,

mitochondrial membrane potential and apoptotic rate. All three tests showed that the level of

toxicity of the NPs increases while increasing the concentration from 25 to 100μg/ml. Additionally,

it was shown that the expressions of the apoptotic genes cytC and Caspase-3 were up-regulated

with increasing NP concentrations. Additionally, the downregulation of the antiapoptotic Bcl-2

gene and upregulation of the genes p53 and BAX have also been reported [129, 130].

Other approaches have focused on cell-dependent cytotoxicity and surface charge [131]. Kim

et al. found that NIH/3T3 fibroblasts appear to be more susceptible to Si NPs in terms of cell
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viability, when compared to A549 and HepG2 cells [132]. On the other hand, positively

charged (NH2-coated Si NPs) displayed higher cytotoxicity than negatively charged ones

(COOH-coated NPs) in human adenocarcinoma Caco-2 and rat alveolar macrophage NR8383

cells [133]. However, the opposite has also been suggested for HaCaT keratinocyte cells [134].

A summary of the viability dependences on the Si NPs’ size, concentration and cell type is

shown in Figure 9 [128].

3.4. Silicon NWs

Si NWs show several advantages over Si NPs. For instance, they tend to not agglomerate in

solution compared to Si NPs [135] and they enhance the drug-loading capacity due to their

high surface area [136, 137]. However, it has been indicated that Si NWs have more toxic

effects to macrophages cells at lower concentrations compared to Si NPs due to the large

surface area, which increase the interaction and induce the cell death [138]. Naturally, the

concentration of Si NWs plays a role on cell viability. Si NWs of 2 μm long, 55 nm diameter

were co-cultured with HeLa and Hep-2 cells at different concentrations [138]. While no toxicity

was found on either cell line for concentrations below 190 μg/ml, the cells died and released

75% of their contents into the supernatant at high concentrations (1900 μg/ml) after 72 h of

incubation. Zhang et al. used amino-modified (APTES), folate-functionalized Si NWs to study

cell interactions [139]. The NWs lengths were between 2.5 and 8.0 μm, with a concentration of

Figure 9. Cytotoxicity of SiO2 particle is size, concentration and cell-dependent in (a) L-132 cells and (b) THP-1 cells.

Results were mean � SEM of three independent experiments each carried out in triplicate, in comparison to untreated

controls. Adapted with permission from Sahu et al. [128]. Copyright 2016 Hindawi Publishing Corporation.
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100 μg/mL. It was found that the length of NWs affected the internalization, with NWs longer

than 5 μm being more difficult to be internalized, due to geometrical restrictions.

3.5. Quantum dots

Semiconductor quantum dots (QDs) are light-emitting particles that have broad excitation

spectra, long fluorescence lifetimes compared to traditional fluorescent probes and are more

resistant to photobleaching [140, 141]. Also, they can easily be conjugated to proteins [140],

which makes them excellent choices for bioimaging [142–146] and other biomedical applica-

tions [141, 147, 148]. Tsoi et al. summarized the toxicity of QDs by two mechanisms: degrada-

tion with the release of free cadmium (Cd) and generation of ROS [149]. Each design of QD is a

unique combination and has its own physicochemical properties that may influence its biolog-

ical activity and toxicity. As a result, tremendous research efforts have been devoted to pro-

duce high quality QDs by optimizing synthetic procedures, as well as functionalizing their

surface in order to enhance biocompatibility [142, 150].

An early study by Derfus et al. demonstrated that CdSe-core QDs oxidized and degraded,

releasing Cd ions which induced cell death [151]. When CdSe QDs were exposed to a UV-light

for 1, 2, 4 and 8 h and then incubated with hepatocytes, it showed a 6, 42, 83 and 97% decrease

in the cells’ viability, respectively [143]. Cd is a known carcinogen with potential damage to the

renal, skeletal, pulmonary and reproductive systems [152]. Interestingly, Chen et al. showed

that the cell viability of HEK293 cells treated with 37.5 nM of 5 nm CdTe QDs was not

significantly altered, compared to the control (i.e., untreated cells) after 3 days of incubation

[153]. However, high concentrations (300–600 nM) of QDs completely inhibited cell growth

from the very beginning. The cytotoxicity of QDs has also been linked to the generation of

ROS, which in turn damages cellular proteins, lipids and DNA [149]. The p53 gene was also

shown to be inhibited by CdTe QDs, leading to apoptosis and cell death [150].

Tracking the QDs internalization pathways could help explain their toxicological properties.

To this end, microscopy studies showed that QDs localize within cellular endosomes and

lysosomes, exposing them to an acidic or oxidative microenvironment [149]. It was determined

that the hypochlorous acid present in phagocytic cells oxidized polymer-encapsulated CdS

and ZnS-capped CdSe QDs, releasing cadmium, zinc, sulfur and selenium into the cytoplasm.

Some studies have suggested that the QDs toxicity might derive from multiple factors includ-

ing the environment and the QDs physicochemical characteristics (such as size, shape and

surface chemistry). A surface coating with a ZnS shell [149] or BSA corona [150] reduced the

QDs toxicity. In addition, polymeric coatings (i.e., phospholipid-PEG) and inorganic coatings

(e.g., Si) can prevent the release of Cd into the biological media [142]. In a different approach,

Soenen et al. studied cell viability using Cd-free QDs (ZnSe/ZnS and InP/ZnS QDs) at concen-

trations ranging from 0 to 100 nM [154]. Cytotoxic effects were observed starting from 60 nM

for ZnSe to 80 nM for InP QDs. Further, no increase in cytotoxicity was reported up to 7 days

after the initial cell labeling compared to normal QDs due to the absence of Cd.
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4. Conclusion

Recent studies on the in-vitro cytotoxicity of carbon structure and semiconductors in biomed-

ical applications were reviewed, taking into account nanoparticles and nanowires/nanorods.

A summary of the results of representative studies is provided in Table 1.

Comparisons between the cytotoxicities of those different nanomaterials are generally difficult to

make due to the vast range of methods, concentrations, dimensions, cell lines etc. For instance,

the concentrations reported in the different studies were typically evaluated using either ICP

or Cryogenic TEM. However, the concentration or dose of the nanomaterial plays a significant

role in the cytotoxic response as well as the biomedical applications. Similarly, the reported

toxicology of the nanomaterials depends on their interaction with the assay. For example, carbon

nanostructures interact with the MTT-formazan crystals but not with XTT or INT reagents.

While the concentrations and exposure times are critical factors, the toxicity of these nanostru-

ctures is also material-dependent. These relations can be seen in Figure 10, which presents the

average values reported for the cell viabilities (ignoring differences in concentrations, incubation

times etc.), when exposed to the nanomaterials in the studies covered in Table 1. ZnO NPs

showed the highest toxicity, while the lowest has been reported for silicon.

In addition, the particle size plays a major role in the cytotoxic properties of the nanostructure,

whereby both the cellular uptake efficiency and pathway are affected, with smaller particles

being internalized faster than the larger ones.

The induction of ROS after dissolving the nanostructures in the lysosomes was shown to be the

primary underlying cause of the toxicity in several cases, leading to cell death through the

apoptotic pathway, due to ROS generation and mitochondrial damage. The acidic condition

inside the lysosome increases the digestion of the particles, enhancing the release of ions that

affect the viability of the cells. This is a particularly relevant issue in case of CdSe-core QDs,

which release Cd ions upon oxidation, leading to fast cell death.

Adding a coating to the nanostructure typically affected both the toxicity and the surface

charge of the nanostructure, where cationic surfaces are more toxic than anionic. For instance,

the toxicity of QDs was reduced by adding a BSA corona, and the release of Cd was prevented

by the addition of polymeric and inorganic coatings. The type of the coatings was shown to

affect the cell viability differently.

The cytotoxicity of the nanomaterial depends also on the nanostructure’s shape. In this regard,

several advantages have been reported for NWs over NPs. For instance, they enhance the drug-

loading capacity due to their large surface area. An interesting observation from Figure 10 is that

NWs/NRs are, on average, less cytotoxic than NPs, with titanium dioxide being the only excep-

tion. However, one study has shown that the large surface area of Si NWs has a more toxic effect

at lower concentrations compared to NPs. This was attributed to the increased interaction of the

nanomaterial with the cells due to the large surface area.
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Nanostructure

type

Surface coating Nanostructure

concentration

Average size Cell line Cell viability Viability test Reference

C60 Pristine, C60(OH)12,

C60(OH)24,

0.125 mM/1 h N/A rat hepatocytes 80% for pristine, C60(OH)12 and 60%

for C60(OH)24.

Tryptan

blue/

microscopy,

MPP, GSH

[35]

C60 C60-alanine, -NO2, -PVP, -

NO2-proline, sodium salt of a

polycarboxylic derivative

0.001–0.2 mg/mL

for C60-

NO2-proline and

0.016–0.2 mg/mL

for all others/48 h

N/A HEp-2 cells No cytotoxicity except for the sodium

salt of a polycarboxylic derivative

with 20% viability at 0.01 mg/mL

Crystal

violet/optical

density

[44]

C60 PEG of various sizes 0.03–1 mg/mL/24 h N/A HepG2, NHDF,

Caco2, HUVEC,

U931, J774 A1

Maximum inhibition at 1 mg/ ml of

Full–PEG2000 for J774 (41%) and U937

(62%).

MTT, LDH

assays

[45]

SWCNTs Pristine and PEG 0.1–100 μg/mL/

24 h

0.7–1.6 nm

diameter,

0.2–3 μm

length

PC12 cells 30 and 50% viability in MTT at highest

concentration, respectively. Higher

values for XTT and 10–20% LDH

leakage

MTT, XTT,

LDH, DCF,

GSH assays

[58]

SWCNTs Collagen 15 μg/mL/4 h to

15 days.

0.7–1.6 nm

diameter, N/

A

BACs No cytotoxicity WST-1 assay,

Live/dead

[59]

SWCNTs Gd-NPs as catalysts and PEG 50–100 μg/mL/12–

48 h

N/A NIH/3 T3

fibroblasts

70% viability at highest concentration

and time exposure

Tryptan

blue/

microscopy,

Live/dead

[55]

MWCNTs Pristine, COOH 12.5–200 μg/mL/

24, 48 and 72 h

10–20 nm

diameter, 10–

30 μm length

human normal

liver cell line L02

60 and 80% viability at highest

concentration and time exposure,

respectively

CellTiter-

GloV® assay

[68]

MWCNTs 3 and 23% of Fe impurities 5–60 μg/mL/24, 48

and 72 h

2–50 nm

diameter,

50 μm length

PC12 cells 70 and 20% viability at highest

concentration and time exposure,

respectively

CCK-8 [73]

TiO2 NPs — 600 μg/mL 5 nm

diameter

L929 mouse

fibroblast cells

<70% MTT assay [107]
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Nanostructure

type

Surface coating Nanostructure

concentration

Average size Cell line Cell viability Viability test Reference

ZnO NPs — 10 mM 13 nm

diameter

Human T

lymphocytes

40% Propidium

iodide

staining

[110]

SiO2 NPs — 50 μg/mL 10–20 nm monocytes

(THP-1) cells

71% MTT assay [124]

Si NPs Coated with negatively

charged (COOH)

3 mg/ml 1.6 nm Rat alveolar

macrophage

NR8383 cells

No cytotoxicity MTT assay [132]

Si NPs Coated with positively

charged (NH2)

0–100 mg/ml 3.9 nm Rat alveolar

macrophage

NR8383 cells

The EC50 values = 0.38 μg/ml MTT assay [129]

Si NPs — 160 μg/ml 7 nm HepG2 cells �98% MTT assay [136]

Si NPs — 160 μg/ml 20 nm HepG2 cells �72% MTT assay [153]

Si NPs — 160 μg/ml 50 nm HepG2 cells �49% MTT assay [156]

Si NWs — <190 μg/ml 2 μm long,

55 nm

diameter

HeLa and Hep-2

cells

75% MTT assay [152]

Si NWs — 1 μg/ml 500 nm long,

100 nm

diameter

breast cancer

cells line (MCF-

7/ADR)

90% MTT assay [154]

Si NW arrays — — 5 μm long,

20–100 nm

diameter

HeLa cells 98% MTT assay [155]

Si NW arrays Coated with AgNPs — 5 μm long,

20–100 nm

diameter

HeLa cells 80% MTT assay [156]

Si NW arrays Coated with Cu NPs — 5 μm long,

20–100 nm

diameter

HeLa cells �50% MTT assay [156]
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Nanostructure

type

Surface coating Nanostructure

concentration

Average size Cell line Cell viability Viability test Reference

CdSe QDs Oxidation for 0 h, 1 h, 2 h and

4 h

62.5 μg/mL 7 nm Hepatocyte cells 100, 98.55 and 21%, respectively MTT assay [152]

CdTe QDs — 37.5 and 75 nM 5 nm HEK293 cells �87 and �67% MTT assay [154]

ZnSe QDs Cd-free 60 nM 1–10 nm HUVEC cells �77% Alamar Blue

assay

[155]

InP QDs Cd-free 80 nM 1–10 nm HUVEC cells �78% Alamar Blue

assay

[155]

Table 1. Summary of in-vitro cytotoxicity studies with different kinds of nanoparticles (NPs) and nanowires (NWs), NWs with aspect ratio <10 are often called nanorods

(NR), SWCNT the abbreviation of single-walled carbon nanotube, MWCNT for multiwalled carbon nanotube and QD for quantum dots.
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While all these studies contributed to obtain a better picture of the cytotoxicity of nanomaterials

and the underlying mechanisms, it is a persisting issue that a consistent measurement and

reporting system will be needed for future studies. This will not only enable performing more

accurate comparisons of the toxicological characteristics of nanostructures, but also to better

evaluate the potential of using them for biomedical applications.
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