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Abstract

In the process of design, a developer of new microwave-photonics-based RF apparatuses
is facing a problem of choosing appropriate software. As of today, the existing optical and
optoelectronic CAD tools (OE-CAD) are not developed like CAD tools intended for
modeling of RF circuits (E-CAD). On the contrary, operating at symbolic level, modern
high-power microwave E-CAD tools simply and with high precision solve this problem,
but there are no models of active photonic components in their libraries. To overcome this
problem, we proposed and validated experimentally a new approach to model a broad
class of promising analog microwave radio-electronics systems based on microwave pho-
tonics technology. This chapter reviews our known, updated, new models and simulation
results using microwave-electronics off-the-shelf computer tool NI AWRDE to pursue
advanced performances corresponding to the last generation of key photonics structural
elements and important RF devices on their basis.

Keywords: computer-aided design, microwave photonics, photonic components,
RF circuits and system

1. Introduction

Microwave photonics (MWP) is a relatively fresh scientific and technological direction arising

among radio-electronic R&D society at the last quarter of twentieth century in the result of

combining the achievements of microwave-electronics and photonics techniques [1]. Initially,

MWP was an area of interest for a military platform [2, 3] such as radar and electronic warfare

means; but, nowadays, it is becoming an object of study and development for emerging areas

of telecom industry [4] such as 5G-class wireless networks. For today, MWP technology might

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



be considered as a perspective direction of modern radio-electronics for signals generation,

transmission, and processing in various radio-frequency (RF) circuits and systems. Implemen-

tation of this concept will enhance the key technical and economical features and such impor-

tant characteristics as electromagnetic and environmental compatibilities, immunity to external

interferences.

Figure 1 demonstrates a typical MWP circuit that is started with RF-to-optical converter (RF/

O) and concluded with optical-to-RF converter (O/RF). Between these interfaces, there are a

host of efficient photonics processing units in optical domain.

In the process of design, a developer of newMWP-based RF apparatuses is facing a problem of

choosing an appropriate software. As of today, the existing optical and optoelectronic CAD

tools (OE-CAD) are not developed like being perfected for three decades CAD tools intended

for modeling of RF circuits (E-CAD). On the contrary, operating at symbolic level modern

high-power microwave E-CAD tool solves this problem enough simply and with high preci-

sion, but there are no models of specific active and passive photonic components in its library.

To overcome this problem, we have been proposed and validated experimentally a new

approach to model a broad class of promising analog microwave radio-electronics systems

based on the microwave photonics technology. In particular, the classification of active pho-

tonic components and the comparison with a modern OE-CAD tool were described in Ref. [5]

and later in more detail version in Ref. [6]. Based on them, the electrical equivalent circuit

models for the different types of semiconductor laser [7, 8], photodetector [9, 10], and optical

modulator of Mach-Zehnder interferometer configuration [6] were published. Using these

components, a number of RF circuit models and successful simulation results for microwave-

band optoelectronic oscillator [11], mixer [12], and phased array antenna beam-former net-

work [13] were proposed.

The general concept behind the design is the following. A developer of these novel RF circuits

has no basic knowledge about the physical features of active and passive photonic devices, but

one has a toolset to measure carefully their transmission characteristics in linear and nonlinear

modes. Based on it, the design principles of the equivalent-circuit models to be considered

below fully reflect the common building principle of the available E-CAD tools including

closed-form or table-specified library models of current and voltage sources, nonlinear active

devices, as well as passive elements that subject to frequency band are built on a linear

circuitry with lumped (for RF band) or distributed (for microwave and millimeter-wave bands)

parameters.

Figure 1. A typical arrangement of MWP circuit.
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This chapter reviews our updated and new equivalent-circuit-based models and simulation

results using microwave-electronics off-the-shelf computer tool NI AWRDE to pursue

advanced performances corresponding to the last generation of key MWP photonics structural

elements and important devices on their basis. In particular, Section 2 describes two laser

models referred to direct RF-to-optical conversion. In addition, Section 3 presents three optical

modulator models for the case of external RF-to-optical conversion. There is a description of

two models for optical-to-RF conversion realized by the equivalent-circuit models of photode-

tector component in Section 4. The component part concludes the discussion of the specific

models for optical passives in Section 5. Following the result of the previous sections, some

advanced MWP-based RF circuits are modeled in Section 6. Finally, Section 7 concludes the

chapter.

2. Direct RF-to-optical conversion

As well known, in a digital fiber-optic communication link, injection-current driven semicon-

ductor laser is a requisite for simple direct conversion to optical band with the speeds up to

10 Gbit/s. In this case, a laser operates in bi-stable mode with two transmitting positions:

optical emission is switched off when the injection current is below the threshold of the laser

light-current plot (LCP) or is switched on when it is beyond the threshold of the LCP. The main

distinguish feature of MWP link, which is a medium for analog RF-signal transmission, is in

continuous mode operation presetting DC bias in the middle of LCP’s linear area that provides

a different approach to design. Below, we demonstrate two laser models usable for various

microwave photonic circuits.

2.1. Single-carrier laser model

Figure 2 depicts updated nonlinear model of a semiconductor laser emitter in the form of an

electric equivalent circuit, suitable for developers of RF-subcarriers modulated analog fiber-

optics systems, devices of microwave optoelectronics, as well as optical interconnects in the

Figure 2. Single-carrier model of a semiconductor laser in the form of an equivalent circuit.
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integrated circuits. In this circuit model, each element has a clear physical interpretation.

Namely, the active circuitry in according to the previous versions [7, 8] includes library models

of DC current source DCCS to adjust operation point, polynomial-approximated SPICE

current-controlled voltage source SCCVS1 imitating laser’s LCP, and the noise source

I_N_TAB allowing to take into account the noise properties of the laser, which are usually

expressed in the form of relative intensity noise (RIN) or relative phase noise. Data for the

source are specified in tabular form from the results of measurements. Besides, RF input

through ideal model of bias-T element (BIASTEE) connects to inductor model (IND) emulating

a wire from RF-connector to laser chip. The laser chip itself is represented by elements CAP1

and RES1 simulating the pad capacitance and loss, series resistance RES2, junction capacitance

and resistance, and CAP2 and RES3, respectively, and element SRL represents the laser mirror

losses and photon storage effects. Notice that the values of all abovementioned passive ele-

ments simulate frequency response of RF-to-optical conversion. As a new function, the depen-

dence of the output power on the ambient temperature is added, which makes the model

under simulation more suitable for real systems. The temperature drift of the LCP in the circuit

is realized on the basis of two models of ideal splitters SPLIT2, the lower unit of SCCVS1,

which output is in antiphase relative to the main channel, and the model of attenuator ATTEN,

the value of which is a function of a temperature.

Using the proposed model together with a reference photodetector, a set of typical for radio-

engineering circuit simulation experiments is able to fulfill including signal transmitting charac-

teristics (S21 and S11), noise figure, nonlinearity due to harmonic or intermodulation distortions,

and so on. Figure 3 exemplifies the simulation results of small-signal frequency response (a) and

LCPs in the temperature range of 20–70�C (b).

2.2. Multi-carrier laser model

As noted, the great advantage of photonic technology in comparison with the radio-electronic

counterpart is the ultra-wide bandwidth of optical fiber, exceeding 10 THz. Following it, in

modern MWP circuits, the so-called method of wavelength division multiplexing (WDM) is

Figure 3. The examples of simulation experiments: (a) small-signal frequency response, and (b) light-current plot.
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widely used [14], in which simultaneous transmission of information on a plurality of optical

carriers is provided. The lack in aptitude does not allow the previous model to design correctly

multi-carrier MWP circuits and has led to a new generation of laser model feasible for WDM

circuit simulation [5, 6]. Figure 4 depicts the updated nonlinear model of a semiconductor laser

emitter suitable for MWP WDM circuits and systems. The model has the simplest configura-

tion including only one quasi-optical (QO) unmodulated carrier and one RF signal but its

building principle allows aggregating both optical and RF channels.

In contrast to the model of Figure 2, this model has two main input ports titled as “Quasi-

Optical Input 1” and “RF Input”; the first one receives waveforms of optical band and the

second one is for waveforms of RF-band. Such an approach is correct for a software tool

working at the symbolic level. The chain of RF channel consists of sub-circuit network

(SUBCKT) including the schematic of Figure 2 and the model of 9-order Butterworth bandpass

filter (BPFB1), which is designed to eliminate spurious output signals of the subcircuit. In line

with the standard radio engineering approach, both signals are then mixed using an ideal full-

wave diode multiplier. Another model of the BPFB2 with modulated QO signal at the Quasi-

Optical Output is terminated by the circuit. In the model, the dependence of the QO carrier

frequency versus temperature is additionally introduced, which is realized by means of an

additional Quasi-Optical Input 2. The main (foptic-1000 GHz, port 1) and the additional

Figure 4. Double-carrier laser model.

Figure 5. The examples of simulation experiments.
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(delta_f_t + 1000 GHz, port 2) signals are fed to the diode multiplier. The value of the auxiliary

frequency depends on the factor delta_f_t, which describes the experimental emitted

wavelength-temperature dependence of the laser chip. The frequency band of the FPFB2 is

also corrected taking into account this factor. Figure 5 exemplifies the simulation results of

output laser spectrum modulated by RF tone of 1 GHz and power 10 dBm (a) and wavelength

versus temperature dependence in the range of 0–60�C (b).

3. External RF-to-optical conversion

In spite of cost-efficiency, the direct RF-to-optical conversion has a number of limiting factors

including bandwidth, dynamic range, chirping (parasitic frequency modulation), etc. To over-

come them, as in radio engineering technique, an external RF-to-optical conversion using a

separate device titled “optical modulator” is in common practice for MWP circuits. As in RF

systems, there are two classes of optical modulators: phase and amplitude ones; the latter in

connection with the specialties of lightwave transmission called “the intensity modulator”.

Building principles and layouts of microwave-band optical modulators as well as initial

equivalent-circuit models are described elsewhere [6]. Below, two updated models of optical

phase modulator (OPM) and Mach-Zehnder interferometer-based optical intensity modulator

(MZM), as such as a novel model for so-called electro-absorption intensity modulator (EAM),

are demonstrated and discussed.

3.1. Optical phase modulator model

The core element of OPM model is the phase-shifting cell (PSC). Figure 6 depicts the equiva-

lent circuit of PSC, where the phase shift is simulated by the library varactor model VRCTR,

whose nonlinear characteristic is extracted from the measured data. The phase shift of the

quasi-optical signal is fed to the cell output via a diplexer acting as a high-pass filter. The

Figure 6. The model of phase-shifting cell.
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difference from the known model [6] is the larger correctness due to the introduction of library

models of transmission line with frequency-dependent loss TLINP, symmetric coplanar line

with table-based interpolation CPWLINX, and so on.

Figure 7 shows the equivalent model of optical phase modulator including PSCs as subcircuits.

The number of PSCs is increased to 4 to provide a quasi-linear adjustment of the insertion phase

shift within more than 180�, typically required for OPM operation. The resulting phase shift is

formed in the OPM as the algebraic sum of the phase shifts of the each PSC, since the signal at

the optical frequency sequentially passes through all the cells.

Figure 8 exemplifies the simulation results demonstrating the linearity of the phase shift versus

control voltage in PSC (a) and 35-dB suppression of higher harmonics in output spectrum (b).

Figure 7. Model of optical phase modulator.

Figure 8. The examples of simulation experiments: (a) phase-voltage dependence of PSC and (b) quasi-optical spectrum

at OPM output.
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3.2. Mach-Zehnder interferometer-based intensity modulator model

As is known [6], an optical intensity modulator of a MZM type contains a two-arm interfer-

ometer, in each arm of which an optical phase modulator is introduced. Figure 9 depicts the

AWRDE model of optical MZM with two OPMs of Figure 7 as subcircuits. Inside it, the RF

signal is applied in antiphase to the inputs of both OPMs via the coplanar transmission line

CPWLINX and the ideal splitter SPLIT2. The output channel of one of the OPMs includes two

phase-shifter library elements PHASE2, of which the first is responsible for setting the operat-

ing point on the MZM transfer characteristic and the second PHASE2 adjusts a fixed phase

difference in the arms of realistic MZM. The interference of two phase-modulated signals is

carried out at the output of the splitter model SPLIT2. The output attenuator is used to

calibrate the power loss of the optical signal introduced by the MZM.

Figure 10 exemplifies the simulation results demonstrating the advantage in the bandwidth

and linearity of the external RF-to-optical conversion using a MZM compared to direct one. In

particular, Figure 10(a) simulates the optical modulated spectrum using the RF tone of 15 GHz

and the same input power as in Section 2.2. Comparison with Figure 5(a) shows an increase in

Figure 9. Mach-Zehnder interferometer-based intensity optical modulator model.

Figure 10. The examples of simulation experiments: (a) optical modulated spectrum and (b) large-signal transmission

characteristics.

RF Systems, Circuits and Components68



the suppression of the second harmonic by more than 30 dB. Besides, Figure 10(b) simulates

the dependence of RF output power (after ideal optical-to-RF conversion) on input RF power

for the fundamental RF modulation tone (COM), 2-order intermodulation distortion (IMD2),

and 3-order intermodulation distortion (IMD3) that shows the better linearity feature than a

power microwave transistor.

3.3. Electro-absorption effect-based intensity modulator model

In spite of high linearity of RF-to-optical conversion, the main shortcoming of MZM is bulky

sizes, which is a concern for a number of very important radio engineering applications. An

intriguing solution to the problem is the usage of an electro-absorption intensity modulator

(EAM) that can be integrated with a laser chip [15]. Figure 11 depicts the AWRDE model of

optical EAM. The nonlinear model of EAM is implemented based on the modified Materka

field effect transistor (MATRK) library model. The EAM model includes two MATRK ele-

ments, which are controlled by a RF signal and act as attenuators that are connected in serious

to the quasi-optical channel. The use of two MATRK elements provides deep intensity (ampli-

tude) modulation of the optical carrier. The limits of the dynamic range for the input signals

are determined by the selection of the parameters of the library resistor models (RES). The

circuit is terminated by BPFB and closed-form amplifier (AMP) library models to eliminate

higher harmonics and calibrate the loss inserted by the EAM path (for AMP, any gain value

including less than 0 dB could be set). In addition, there are three ideal isolator models

(ISOL8R) to ensure the isolation of the inputs and outputs.

Figure 12 exemplifies the simulation results demonstrating the advantage in the bandwidth

and linearity of the external RF-to-optical conversion using an EAM compared to direct RF/O

one but some disadvantage in compare to external RF/O conversion by a MZM. In particular,

Figure 12(a) simulates the optical modulated spectrum using the RF tone of 10 GHz and the same

input power as in Section 2.2. Comparison with Figure 5(a) shows an increase in the suppression

of the second harmonic by more than 20 dB. Besides, Figure 12(b) simulates the dependence of

RF output power (after ideal optical-to-RF conversion) on input RF power for the fundamental

RF modulation tone (COM), 2-order intermodulation distortion (IMD2), and 3-order intermodu-

lation distortion (IMD3) that shows the linearity features compared to middle power microwave

transistor.

Figure 11. Electro-absorption effect-based intensity modulator model.
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4. Direct optical-to-RF conversion

Nowadays, there is a plurality of direct optical-to-RF conversion elements (photodetectors) but

only photodiodes of so-called PIN structure are in common use for analog fiber-optic systems.

Among them, long wavelength GaInAs-based PIN photodetectors (PD) are ubiquitous in

modern MWP circuits due to their inherent combination of ultra-high speed, high sensitivity,

and linearity features [16]. Early, we described and studied in detail the AWRDE nonlinear

model of microwave-band PIN PD [9, 10]. Figure 13 shows the updated more realistic PD

model where noise sources (INOISE) including shot noise of photodiode and heat noise of the

equivalent resistors (RES) are taken into account. From the viewpoint of the RF circuitry, a PIN

PD can be modeled as a current source with high output impedance that is imitated by the

library model of voltage controlled current source (VCCS). Besides, the nonlinear features are

emulated by temperature-dependent diode model (DIODE1) and barrier capacitance of p-n

junction (PNCAP) tunable in according with applied reverse voltage from DCVS model. The

linear circuitry representing the frequency distortions due to stray PD elements agrees with

small-signal PD model that was described elsewhere [17].

Figure 12. The examples of simulation experiments: (a) optical modulated spectrum and (b) large-signal transmission

characteristics.

Figure 13. AWRDE nonlinear model of microwave-band PIN photodetector.
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The collection of photo-detecting elements includes a number of advanced constructions. The

most feasible among them is a balanced one that has an advantage of more linear O/RF

conversion [14]. Figure 14 depicts the AWRDE model of a balanced photodetector.

As well-known from radio-engineering technique, the circuit consists of two arms and each of

them includes the photodetector model of Figure 13 as subcircuit. To provide antiphase

excitation of the subcircuits, there is a library reciprocal model of phase shifter PHASE2 in the

upper arm. Figure 15 exemplifies the simulation results for the both types of direct O/RF

conversion elements under consideration. In particular, Figure 15(a) simulates small-signal

frequency response (|S21|) of realistic PD using Figure 13’s model. As seen, the 3-dB band-

width is near 20 GHz. Besides, Figure 15(b) simulates the dependence of RF output power on

input RF power (before ideal RF-to-optical conversion) for the fundamental RF modulation

tone (COM) and 3-order intermodulation distortions for the models of Figure 13 (line 1) and

Figure 14 (line 2). In the figure, one can see two characteristic cross-points of the lines 1 and 2

with the line “COM.” These points are termed as output intercept points of 3-order (OIP3)

representing very important metric of O/RF conversion linearity [14]. Following the results,

one can conclude that firstly, photodetector demonstrates the most linear conversion feature in

compare to MZM (Figure 10(b)) or EAM (Figure 12(b)) and secondly, balanced version of

Figure 14. AWRDE model of a balanced photodetector.

Figure 15. The examples of simulation experiments: a—small-signal frequency response; b—large-signal transmission

characteristics of the single-ended (1) and balanced (2) photodetectors.
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photodetector has near 3-dB advantage in linearity. The both conclusions and the OIP3 values

(37–40 dBm) received by the simulation are in close coincidence to modern realistic photode-

tectors [9, 14].

5. Passive optical components

Low-loss, interference-insensible transmitting is the most attractive feature of an optical fiber

for diverse processing in photonic area. As a part of a MWP circuit, it may be defined as a

medium connecting RF-to-optical and optical-to-RF converters. In general, in comparison with

a coaxial cable, the optical waveguide has three orders of magnitude less attenuation, the

bandwidth independent of the RF signal frequency, much better weight and size characteris-

tics, as well as the weaker phase-to-temperature dependence of the transmitted RF signal.

Nevertheless, the quality of the transmitted signal may deteriorate due to a number of limiting

factors, for example, dispersion, reflection, scattering, nonlinearity, etc. Another important

advantage of an optical fiber is that it can be used to design extremely narrow-bandwidth

pass-band and notch filters. Below, two new AWRDE behavior models of single mode optical

fiber and fiber-based ultra-narrow-bandwidth filter are demonstrated and discussed.

5.1. Single-mode fiber model

Figure 16 depicts AWRDE reciprocal models of single-mode optical fiber feasible for various

operating regimes of a realistic fiber-optic link. The first model (Figure 16(a)) represents the

transmission on a single optical carrier with multiple modulating RF signals (so-called,

subcarrier multiplexed mode). Here, a set of limiting factors are taken into account, such as

chromatic dispersion, time delay, loss, temperature dependence of characteristics, as well as

cross-interference between RF channels.

The basic element for the model of Figure 16(a) is the library model of ideal transmission line

with loss (TLINP). A mode propagating across the line is specified by its effective dielectric

constant and per-unit-length attenuation at user specified frequency. The model scales loss

with evaluation frequency. In the model, the frequency band of one 100-GHz optical channel is

divided into 16 discrete bands of equal width (more than 6 GHz). Each of them is provided by

one TLINP with values of the dielectric constant and attenuation corresponding to a central

frequency of a specific band. All TLINPs have the same length, equal to the length of the

optical fiber, and are combined using ideal multiplexer models (MUX). The first MUX shares

the spectrum of the quasi-optical signal between 16 sections, each of which exploits the

corresponding TLINP. The second MUX restores the signal spectrum.

Besides, the second model (Figure 16(b)) represents the transmission on a multiple optical

carriers (so-called, wavelength division multiplexed (WDM) mode). Here, a cross-interference

noise between the carriers is added to the above limiting factors. The main element of each QO

channel (CHL) is subcircuit (SUBCKT “CHL”), which structure is discussed above for a single

spectral channel. Sixteen SUBCKT “CHL” ones correspond to 16 standard channels of the
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WDM system, so the overall number of RF channels to be transmitted simultaneously is 256. In

the model, all SUBCKT “CHL” groups are combined/divided using the same MUX library

models that provide the distribution of the input QO spectra according to the corresponding

Figure 16. AWRDE models of single-mode optical fiber in various operating regimes: (a) with subcarrier multiplexed

mode; and (b) with wavelength division multiplexed mode.

Figure 17. The examples of simulation experiments: (a) QO channel gain versus QO frequency of single-mode optical

fiber; (b) QO channel relative phase shift versus QO frequency of single-mode optical fiber.
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subcircuits over the single fiber and further restoration of the group spectrum. The schematic

can be re-tuned to another bandwidth of QO channels by changing the internal model settings.

Figure 17 exemplifies the simulation results for the both types of single-mode optical fiber

models under consideration at room temperature, where QO frequency dependences of CHL

gain (a) and of CHL relative phase shift (b) for the fiber length of 30 km are simulated. As seen,

the average normalized loss (inverse to gain) is near 0.19 dB/km that equal in this frequency

band to the same parameter of standard SMF-28 fiber. In additional, the difference in losses for

one 100-GHz optical channel does not exceed 0.07 dB only. Besides, normalized phase-to-

temperature shift of RF signal being transmitted over fiber is near 0.1�/GHz/km/�C that corre-

sponds to known data [14].

Figure 18. Four-channel AWRDE notch Bragg grating filter model.
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5.2. Narrow-band multichannel optical filter model

Another important element of Figure 1’s photonic area used for processing RF signals (filtra-

tion, delay) is the notch Bragg grating (NBG), whose optical bandwidth may be as narrow as

some hundreds of MHz. Figure 18 shows 4-channel AWRDE NBG model. Fiber Bragg grating

module of each channel (FBG1-FBG4) consists of two library models of ideal passive frequency

diplexer DIPLEXF each of them specifies two frequency ranges (low and high) to extract the

cutoff band at the output of the second DIPLEXF. In each of the channels, through output 2 of

the first DIPLEXF and output 1 of the second DIPLEXF, power is allocated outside the cut-off

band. This power is summed by the model SPLIT3 and fed to the next channel. The SPLIT2

unit provides the reflection of the main power in the dedicated band and the transition of some

of this power to the next channel (for SPLIT2: S21 = 0 dB and S31 = �30 dB), thus incomplete

reflection is modeled. The residual power from the output 3 of the element SPLIT2 is fed to the

element SPLIT3, where it is summed with the signal power outside the cut-off band. The

closed-form models of attenuator (ATTEN) and ideal digital time delay element (DGDELAY)

insert the attenuation and time delay of the optical signal in each of the Bragg grating channel,

respectively.

Figure 19 exemplifies the simulation results for 4-channel NBG filter transmission response (a)

and the QO spectrum at the output of the filter model when the same power QO signals inside

the band of FBG3 are inputted. As seen, a rejection level of 40 dB is provided.

6. Simulation of microwave-photonics-based RF circuits

In the previous sections, the requisite active and passive AWRDE models for the MWP circuit

design were demonstrated and the results of the key simulation experiments were highlighted.

Following them, below we will describe some models and modeling results for MWP circuits

as the enablers for time-delay processing in photonic area.

Figure 19. The examples of simulation experiments.
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6.1. Fiber-optic delay line of RF-signals

Fiber-optic delay line (FODL) is one of the most feasible units of MWP circuitry [14]. The

layout of single-channel FODL is very simple and consists of RF/O converter, single-mode

optical fiber of a corresponding length (delay ≈ 4.8 ns/m), and O/RF converter. Figure 20 shows

the AWRDE model of single-channel FODL including in order a single-carrier model of

semiconductor laser (see Section 2.1, Figure 2), a model of single-mode optical fiber (see

Section 5.1, Figure 16(a)), and a model of PIN photodetector (see Section 4, Figure 13) as

subcircuits.

Figure 21 exemplifies the simulation results for RF-dependence phase shift and delay of the RF

pulse. In particular, Figure 21(a) represents the relative phase shift versus frequency of RF

signal modulating optical carrier that propagates over the fiber length of 1 m (the delay is near

4.8 ns). As follows from the figure, the phase shift increases linearly with frequency and its

slope is approximately 1700� per GHz, which is consistent with the theory of RF delay lines.

Besides, Figure 21(b) demonstrates the oscillogram of the input and output RF pulses for the

fiber length of 3 m. As seen, due to the wide modulation band embedded in the laser and

photodetector models (Figures 3(a) and 15(a), correspondingly), the delay of the radio pulse is

exclusively determined by the retarding effect in the optical fiber.

6.2. Temperature-compensated fiber-optic delay line of RF signals

The key issue in realistic FODLs is a fiber thermal instability in operating conditions, because

the temperature variations result in remarkable phase shift and the corresponding group time

delay changes of the RF signals that is invalid for a set of important applications. There are two

Figure 20. AWRDE model of single-channel fiber-optic delay line of RF signals.

Figure 21. Examples of the simulation results for single-channel FODL of RF signals.
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main directions to design temperature-compensating fiber-optic delay lines (TC-FODL)

including feedback or phase conjugation concept. The disadvantage of the first one is the

limited adjustment range of the RF device, the phase of which is to be regulated depending

on the temperature variation. Figure 22 shows the layout explaining the principle of the

second concept that is free of the above shortcoming [18]. In the scheme, the effect of compen-

sation of the temperature-induced change in the delay time is provided by synchronous

variation of the fiber length during the triple pass of the modulated by RF frequency optical

signal along the same fiber. A detailed explanation of the operation principle for this scheme is

given in [18].

Figure 23 demonstrates the proposed ultra-wideband AWRDE model of TC-FODL simulating

the operation principle of the schematic in the Figure 22. Therein, according to the scheme, the

frequency Fm of the input RF signal, first of all, is divided in half and multiplied by one and a

half times. The converted frequencies are allocated using library models of bandpass filters

BPFB, each of which is tuned to the appropriate frequency. Further, the double trip of the

optical carries on the frequencies ν1 and ν2 modulated by the RF signal of frequency 1/2Fm is

represented by means of the semiconductor laser models (Figure 4), the optical fiber model of

Figure 16(b), and the photodetector models of Figure 13. Finally, in the result of mixing double

converted RF signal of frequency 1/2Fm with RF signal of frequency 3/2Fm using library model

MIXER, the input RF signal of frequency Fm is recovered exploiting the library model BPFB

Figure 22. Temperature-compensated fiber-optic delay line of RF signals.

Figure 23. AWRDE model of temperature-compensated fiber-optic delay line of RF signals.
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and the output after one more trip over TC-FODL on the optical carrier ν3 that are imitated by

the separate models of laser and photodetector and the same model of optical fiber.

Figure 24 exemplifies the simulation results for the proposed TC-FODL model of 40 m in

length examining its phase-to-temperature characteristics at the RF frequencies of 2.5 GHz (a)

and 5 GHz (b) that are performed by triangles. For comparison, the same plots include the

simulation results for the FODL model of Figure 20 that are performed by squares.

Based on the graphs, the following resume can be drawn. Despite the much higher stability of

the silica fiber’s phase-to-temperature characteristic compared to the coaxial cable [14], the

FODL under the study without compensation (the model of Figure 20) introduces the phase

distortion increasing at higher frequencies of RF signal that is unacceptable in many practical

cases. This distortion regardless of RF signal frequency is eliminated by using a special MWP

circuit, the example of which was modeled above.

7. Conclusions

In the chapter, a new approach to design the equipment for a future generation of microwave-

band radar, electronic warfare, and wireless telecom systems based on microwave photonics

technology using well-knownmicrowave-electronic software tool NI AWRDE is proposed and

discussed. As a first part of it, updated and new models of key active and passive elements for

microwave-photonic circuits were considered that perform direct and external RF-to-optical

conversion and processing of RF signals in the optical range, which leads to an improvement

in such important characteristics as size, weight and power, electromagnetic and environmen-

tal compatibilities, and immunity to external interferences. As an outcome of the conducted

simulation experiments, it was shown that the main parameters and characteristics of the

optoelectronic and optical elements considered correspond to the real product analogs. In

particular, the comparative modeling has verified that the highest level of linearity, superior

to modern transistor amplifiers, is provided in the process of external RF-to-optical conversion

Figure 24. Examples of the simulation results for TC-FODL of RF signals: (a) RF frequency 2.5 GHz; and (b) RF frequency

5 GHz.
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by means of an Mach-Zehnder optical modulator and in the process of optical-to-RF conver-

sion using a PIN photodetector. The results of the experimental comparison against the main

part of the above-simulated characteristics, which validate the accuracy of the proposed

models, are described elsewhere [5–13].

Based on the element models and results of simulations, in the second part of the chapter, we

presented two new AWRDE models and the results of model experiments for fiber-optic delay

line that realized time-delay processing of RF signals in photonic area. In the course of the

model experiment, the way of eliminating phase distortions of delayed RF signal caused by the

fluctuation of the ambient temperature under the conditions of application was confirmed.
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