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Abstract

Four countries (Brazil, Colombia, Peru, and Venezuela) together contributed ~80% of the 
875,000 malaria cases reported in the Latin American region (2016). During the 10-year 
period (2005–2015) when global malaria incidence was dramatically reduced, Brazil and 
Colombia were an integral part of this trend, on track to meet the mid-term 2020 goal 
established by the World Health Organization. In Colombia, since 2015 at the cessation of 
a five-year globally funded malaria program, both incidence and proportion of Plasmodium 

falciparum infections have increased, mainly due to the budget constraints. Similarly, 
despite a strong record and major recognition for reducing malaria, in 2017, Brazil has seen 
a resurgence of malaria cases, but no increase in the proportion of Plasmodium falciparum 
to P. vivax. A globally funded malaria control program in Peru from 2005 to 2010 resulted 
in appreciable reduction in the annual parasitic incidence down to 1/1000 by 2011–2012, 
but soon after, the annual malaria incidence began to rise and by the end of 2017, there 
were 53,261 reported cases. To add to Venezuela’s political and financial woes, malaria 
continues to increase, such that, 300,189 cases were reported by the end of week 42, 2017. 
The only rational pathway to malaria elimination is sustained nation-level financial sup-
port that does not fall prey to political vicissitudes.

Keywords: malaria, Brazil, Colombia, Peru, Venezuela, epidemiology, transmission 
landscape, vector biology, interventions

1. Introduction

Malaria transmission control and eventual elimination is one of the greatest worldwide 
challenges in public health. The World Health Organization (WHO) has established a 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
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well-delineated and ambitious plan for control and elimination of the disease by 2030 [1], 

with a mid-term 2020 global target of reduction of at least 40% in malaria case incidence and 

malaria mortality rate. Significant advances were made in most of the endemic countries in 
Latin America, particularly from 2000 to 2015 [2], when the incidence of cases declined by 62% 

(1,181,095 in 2000 to 451,242 in 2015) and malaria-related deaths by 61.2% (410 to 159). The 

main strategies used have been rapid diagnosis, treatment with artemisinin-based combina-

tion therapy (ACT), indoor residual spraying (IRS), and insecticide-treated bednets (ITNs) or 
long-lasting insecticide-treated nets (LLINs) [3, 4].

However, malaria is still an important public health concern in the whole Neotropical region, 
more so during 2016, when a substantial increase in case incidence (875,000) was estimated 

[1]. Of the 18 endemic countries of Latin America, nine showed an increase in cases of more 

than 20% compared to 2015 [5], whereas the highest percentage increase (36%) of change in 

case incidence rate took place in 2014–2016. This was mainly due to the situation in Venezuela. 

In 2016, Venezuela (34.4%) and Brazil (18%) together accounted for more than 50% of the 

total reported cases, followed by Colombia (15.3%) and Peru (14.3%). According to the WHO 

report [1], malaria cases in Colombia nearly doubled in 2016 compared to 2015, despite an 

earlier reduction; in Peru cases have also been rising steadily since 2011, which has resulted 
in a loss of the gains achieved since 2000. In Venezuela, there has been a persistent increase in 
cases since 2000 and even more so since 2015 due to economic and political mismanagement 
[6] and Guyana recorded an increase in the proportion of P. falciparum (42%) to P. vivax cases 

(58%), the highest in South America [1, 7]. In contrast, Suriname observed declining malaria 
transmission trends to near-elimination levels through a rigorous control and education cam-

paign, together with fortuitous flooding that destroyed populations of the primary malaria 
vector in the interior [8]. In 2016, Suriname reported only seven cases of P. falciparum and 69 

of P. vivax [1].

The malaria landscape in Latin America consists of low transmission interspersed with 

diverse hot-spots where transmission is spatially and temporally focused [4, 9–11]. At a 

regional scale, reported malaria cases where the Annual Parasite Index (API) is >100 are 

concentrated in the municipalities of Bolívar, Delta Amacuro, and Sucre (Venezuela); Acre, 
Amapá, and Amazonas (Brazil); Amazonas, Antioquia, Chocó, and Vichada (Colombia); 

and Loreto (Peru) [1]. Nine countries reported zero local P. falciparum cases; Bolivia 
and Guatemala reported <10 cases. Twelve countries (Argentina, Paraguay, Costa Rica, 
Belize, Mexico, French Guiana, Suriname, Dominican Republic, Honduras, Bolivia, Haiti, 
and Brazil) are projected to have attained ≥40% reduction in case incidence by 2020, and 
five (El Salvador, Ecuador, Guatemala, Guyana, and Colombia) are on target for 20–40%  
reduction [1].

Currently, an estimated 102 million people are living in areas at risk of malaria transmission 
in Latin America, of which at least 28 million live in high-risk localities (>10 cases/1000 inhab-

itants). Most malaria cases in South America result from P. vivax (69%) infections, followed 

by P. falciparum (27%), and most occur in the Amazon rain forest. Colombia differs from most 
of its neighbors in having a large proportion of malaria transmission outside the Amazon, 

Towards Malaria Elimination - A Leap Forward282



such as the northwest, along the Pacific Coast and in the east, bordering Venezuela [12]. There 

has been renewed interest in understanding the biology, epidemiology, and the specific chal-
lenges of P. vivax, particularly since the decline of P. falciparum [4, 13–15]. Plasmodium malariae, 

responsible for <1% of cases in this region, is rarely considered in malaria reports, but is 

likely underestimated because it is difficult to diagnose using microscopy, has a slow growth 
rate, is generally asymptomatic in humans, and is considered less pathogenic compared with  

P. falciparum and P. vivax [2].

To stay on track and advance towards elimination, some of the main challenges in this 
region, identified by WHO (2017), are a lack of sustainable and predictable international 
and domestic funding, risks posed by political conflict in malaria endemic zones (e.g., 
Venezuela), environmental change and anomalous climate patterns [16–19], the emergence 

of parasite resistance to antimalarials [20–22], and insecticide resistance in mosquito vec-

tors (reviewed in [23, 24]). Additional regional challenges to ongoing efforts to decrease 
malaria incidence include a significant rise in malaria cases in recent years in Venezuela 
[6], evidence of submicroscopic and asymptomatic infections [25], increases in peri-urban 

and gold mining-related malaria [26], and an upsurge in cases of P. falciparum in Colombia 

and Peru [1, 2].

Throughout this chapter, we adopt the new nomenclature proposed for the subfamily 

Anophelinae by Foster and collaborators [27]. Consequently, Anopheles (Nyssorhynchus)  

darlingi is herein referred to as Nyssorhynchus darlingi. The most important Nyssorhynchus vectors  
involved in this malaria landscape epidemiology are anthropophilic and/or opportunis-

tic and ecologically/behaviorally variable [28]. Patterns of transmission vary regionally, 
depending on climate, biogeography, ecology, and anthropogenic activities. Transmission 
is exacerbated by deforestation for timber extraction, agricultural settlements, and mining 
and development of dams for hydroelectric projects. The creation of breeding sites (such 
as fish ponds, microdams, forest streams blocked by road construction, and mining pools) 
[29–31] and spatial mobility of humans, where there is little public health infrastructure (if 
any), also facilitate transmission in endemic malaria regions and beyond [32–34]. Factors 

such as infectivity of vectors by P. vivax or P. falciparum at levels rarely above 1% and 
heterogeneous entomological inoculation rates (EIRs) combined with low-to-moderate 
human blood indices (HBI) can result in high-risk for malaria transmission in certain habi-

tats, often associated with anthropogenic change [29, 35, 36]. Inadequate housing protects 

no one and is a major impediment for reducing and ultimately ending human-mosquito 

contact [37].

The main objectives of this chapter are: (1) to evaluate the available intervention options that 
may be generalizable among the main vector species, (2) to determine scenarios where hot-
spot-specific vector biology and ecological interventions have the best prospects for success, 
and (3) to propose ways to test and combine current and novel interventions against the 
diversity of malaria vector species and habitats. This chapter focused on the four countries 
that together contributed the highest proportion (81.6%) of all reported malaria cases in Latin 

America in 2016, namely Venezuela, Brazil, Colombia, and Peru [1].
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2. Current malaria situation

2.1. Brazil

Brazil had been reporting the highest number of malaria cases in Latin America for many 

years, but this shifted in 2015. Venezuela, with the growing economic and political crisis, 

had the dubious distinction of the highest estimated incidence of malaria in the region [38]. 

Recently, Brazil reported the second highest number of malaria cases (18%), down from 24% 

of cases in 2015 [1, 38]. Furthermore, Brazil recorded a 76.8% decrease in malaria incidence 

during 2000–2014 [4], even though transmission was observed to be ongoing in 808 munici-
palities in 2013 [13]. Nearly all malaria cases (99.5%) in Brazil are reported in the Amazon 
region, an enormous territory that covers an estimated 60% of Brazil and consists of nine 
States: Acre, Amazonas, Amapá, Maranhão, Mato Grosso, Pará, Rondônia, Roraima, and 
Tocantins [4]. The State with the most malaria cases and highest API since 2005 is Acre; the 
region within Acre with the highest-risk cluster is Vale do Juruá [39] including the munici-

palities of Cruzeiro do Sul, Mâncio Lima, and Rodrigues Alves that are persistent malaria 
hot-spots [40]. Other States with API >50 as of 2015 include Amapá, Amazonas, Pará, and 
Roraima (Figure 1).

Figure 1. Geographical location of municipalities in Brazil, Colombia, Peru and Venezuela reporting Annual Parasite 

Index (API) >50 for data based on 2015 [38, 41].
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Across the Brazilian Amazon, the proportion of P. falciparum cases has been declining steadily 

for several years (Table 1), and in 2015, this parasite comprised approximately 11% of all cases, 

with P. vivax responsible for the remaining 89% [4]. In 2015, the Brazilian Ministry of Health 

(MOH) launched The Plan for Elimination of Malaria in Brazil, which focuses on the elimina-

tion of P. falciparum [46]. It is comprehensive, but substantial challenges remain: behavioral 
heterogeneity of the primary vector Ny. darlingi means that LLINs are only partially effective; 
most Amazonian housing structures do not meet criteria for routine IRS application; larvicid-

ing is most effective for accessible stagnant water bodies, e.g., fish ponds, especially those asso-

ciated with hot-spots, but not effective for many natural water bodies, which may be difficult 
to identify and reach, or for streams and rivers with slow-moving water, which are typical Ny. 

darlingi habitats [47, 48]. By the end of 2016, P. falciparum still accounted for 11% of all malaria 

infections reported, and near the end of 2017, this was 10.8% (Table 1). In 2016–2017, Brazil 

was challenged by malaria resurgence, including in municipalities that were in the prevention 
phase and others with low malaria transmission. Furthermore, the total number of malaria 

cases in Brazil has increased from 105,057 cases during the period January 1 to December 31, 

2016, to 154,343 cases during the period January 1 to October 31, 2017, an increase of 47% [42].

Some of the roadblocks in reducing and eliminating P. vivax include the high frequency of 

low-density P. vivax infections and the difficulty of their diagnosis by microscopy, particu-

larly in areas approaching elimination and the persistence of liver stage hypnozoites that may 
be responsible for relapses [2, 4, 49]. Peri-urban and urban malaria transmission has been dif-

ficult to eliminate in cities such as Manaus (Amazonas State) and Cruzeiro do Sul (Acre State). 
In 2015, Manaus reported 7300 cases, most of which were acquired during work or other 

activities in neighboring municipalities, suggesting that interventions need to be focused on 
the mobile proportion of the human population [13]. Better transmission control is thought to 
lead to a lower P. falciparum:P. vivax ratio, reflecting the rapid and stable reduction of cases in 
urban settings compared with a lower and more heterogeneous reduction in rural and indige-

nous areas [13]. In a study based in and around the small cities of Mâncio Lima and Rodrigues 
Alves, Acre State; three development gradients, i.e., urban-rural, rural-riverine, and housing 
location were analyzed for multiple households. The lowest risk (OR = 0.55, 1.23–1.12) of 

Country 2014 2015 2016 2017

Number of malaria 
positive cases

Number of malaria 
positive cases

Number of malaria 
positive cases

Number of malaria 
positive cases

P. vivax P. falciparum P. vivax P. falciparum P. vivax P. falciparum P. vivax P. falciparum

Brazil 117,009 22,234 122,743 15,445 110,343 13,829 172,876 21,017

Colombia 20,129 20,634 21,987 26,061 32,635 49,974 22,405 29,404

Peru 54,819 10,416 49,287 12,569 41,287 15,319 40,564 12,697

Venezuela 62,850 27,843 100,880 35,509 179,554 61,034 246,859 53,330

Note: Source of malaria case numbers 2014–2016 is WHO (2017); 2017 data are from individual Ministry of Health 
websites from each of the four countries.

Table 1. Number of malaria cases of Plasmodium vivax and P. falciparum in Brazil, Colombia, Peru, and Venezuela 

(2014–2017) [1, 42–45].
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having a household with malaria was along the rural-riverine gradient, the most forested of 
the three; in contrast, the highest risk (OR = 1.92, 1.03–3.92) was along the urban-rural gradi-

ent, where urbanization was associated with roads, basic services, water treatment, electricity 
from a power grid, and less forest access [40]. This is an interesting and important finding, 
because malaria is so often assumed to be rural, associated with nearby water bodies and 

often linked to the forest environment. However, malaria risk is clearly linked with poverty, 
as another important finding of this study was that malaria risk is higher for poor individuals 
living in rural areas than those living in urban areas [40]. The poor in urban areas generally 

are exposed less frequently to biting, infected Nyssorhynchus and Anopheles mosquitoes, and 

have better access to health services than the poor in rural areas [40].

A valuable epidemiological tool was developed in 2010 to identify malaria outbreaks via an 
automated algorithm [50]. Use of the algorithm aimed to mobilize local control managers to act 

as rapidly as possible and they identified P. vivax as the primary causative pathogen for nearly 
all outbreaks, most of which occur in low or interrupted transmission areas where the likeli-

hood of reintroduction is high. In 2014 and 2015, as many 112 and 111 outbreaks were identi-

fied, respectively [13]. The effectiveness of this tool has not been validated but it demonstrated 
usefulness in transmission reduction, which could lead to widespread adoption in Brazil.

2.2. Colombia

In 2016, Colombia recorded 83,227 cases, the third highest number in Latin America, which 

comprised 15.3% [1, 41]. Thus, malaria continues to be a serious public health problem and 

transmission is heterogeneous, presenting zones of low unstable transmission with endemic-

epidemic patterns including various hot-spots [12]. From 2000 to 2014, Colombia made solid 

gains against malaria (50–75% reduction in cases), mainly due to interventions such as diag-

nostic health posts and vector control. However, these gains have been undermined since the 
Colombia Malaria Project ended in 2015; case numbers doubled between 2015 and 2016 [41].

For the past decade, P. vivax accounted for approximately 70% of reported cases, with the 

remainder exclusively P. falciparum [12]. However, in 2016, this proportion shifted alarmingly 
in favor of P. falciparum constituting 60% of reported cases [1, 41, 43, 51, 52]. This parasite spe-

cies predominates along the Pacific Coast, one of the endemic hot-spots, where there is a high 
occurrence of Colombian Afro-descendant individuals who are Duffy-negative [53].

Taken together, eight Colombia Departments accounted for 90.8% of all the 2016 noncom-

plicated malaria cases. These are Chocó, Nariño, and Cauca (western Colombia), Antioquia 
and Córdoba (northwestern), Guainía and Vichada (central-eastern along the border with 

Venezuela), and Amazonas (southeastern). Among various Departments, Chocó was worst 
affected and contributed 53% of all reported cases during 2014–2015 [38]. Nevertheless, up 
to the 49th epidemiologic week of 2017, Chocó registered a lower proportion of cases (30.7% 

[43]) compared with the same period in 2015, because several health posts ceased reporting 
due to national, State, and municipal budgetary constraints with the closure of the Colombia 
Malaria Project (2015). In the Departments of Arauca and Guajira in eastern Colombia, bor-

dering Venezuela, there was an increase in cases compared to the average number registered 
during 2012–2016. Of the 860 non-autochthonous cases reported overall, most (76.7%) were  
P. vivax and nearly all (93.1%) were from Venezuelan patients [43].
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Malaria transmission in Colombia has mainly been rural, but a recent study indicated that 

between 2008 and 2012, urban and peri-urban malaria transmission described as endemic, 

unstable and of low intensity, occurred in many municipalities in the Pacific Coast and a few 
in eastern Colombia [53]. However, the authors indicated that a serious limitation was not hav-

ing a clear consensus on the definition of urban and peri-urban. Nevertheless, there appears to 
be a trend of decreasing rural and a concurrent progressive increase of urban malaria. Possible 
explanations of this phenomenon are human migration resulting from ongoing-armed con-

flict, illegal mining, or illicit crop activities, and the movement of asymptomatic carriers.

In western and northwestern Colombia, with the existing healthcare and disease prevention 
programs, gold-mining (mostly illegal) has played an important role in the maintenance of 

malaria as shown by public health surveillance data based on 2010–2013 [26]. This study 

showed that gold-mining was predominant in seven Colombian Departments that contrib-

uted 89.3% (270,753 cases) of the national malaria cases during this period; of which, 31.6% of 

the cases were from mining areas. The worst of these were located in Antioquia, Córdoba, and 

Buenaventura municipalities in Valle del Cauca.

Vector control interventions in Colombia rely on the use of insecticides, larvicides, and ITNs 
[54] to reduce human-vector contact. Some research groups focused on mosquito vector 
biology aiming to provide baseline information for the development and implementation of 
appropriate vector control interventions by the evaluation of ecology and biology of vector 
species, improved species identification, spatio-temporal distribution, biting behavior and 
preferences, and natural infection by Plasmodium [55–60].

A comprehensive early warning system, as part of the Integrated National Adaptation Pilot 
project and the Integrated Surveillance and Control System at the municipality level, has been 
implemented in four pilot sites in Colombia, where it showed promise, providing new data 
on malaria incidence and seasonality, vector species presence and abundance, entomological 
indices and feeding frequencies, climate variables, human population information, and some 
data on vector control activities [61]. Limitations that remained included the scarcity and dif-

ficulty of accessing cultural qualitative and quantitative factors and the limited preparedness 
of State and municipal health authorities to implement malaria dynamic models [61].

2.3. Peru

The most recent WHO data showed that Peru reported an estimated 14.3% of all malaria 

cases in the region for 2016; this amounted to 56,606 cases, of which 73% were P. vivax [1]. 

This estimate has been rising fairly steadily since 2010–2011, ever since cessation of the inter-

national financial support provided by the Global Fund Malaria Project “PAMFRO” that had 
successfully reduced the annual incidence to <1 case/1000 inhabitants for 2010 and 2011 [62]. 

After 2011, there was a surprisingly rapid malaria resurgence, hypothesized to be due to: (1) 
budgetary constraints; (2) the perception that malaria was under control; and (3) a concur-

rent regional dengue epidemic in Loreto [63]. Transmission may have been worsened due 
to the historic Loreto flood of 2011–2012 that inundated and damaged many riverine com-

munities [62]. During the period between 2002 and 2013, 79% of cases were P. vivax and 21%  

P. falciparum [11]. A worrisome trend has been the recent increase in the proportion of P. 

falciparum in 2016 (27%) and 2017 (24%) (Table 1).
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Numerous malaria endemic riverine and highway villages exist near the Iquitos-Nauta high-

way and along the Itaya and Nanay Rivers to the south and west of Iquitos. Inhabitants of two 
of these villages, Lupuna and Cahuide, took part in a cross-sectional survey in January 2013 
(off-peak malaria season), with census data taken in mid-2012. One substantial determination 
was that prevalence of P. vivax and P. falciparum was many times higher by packed red blood cell 

(PRBC)-PCR compared with microscopy (25 vs. 3.6% and 5 vs. 0.2%, respectively) [33]. Routine 

surveillance, using the more sensitive PCR detection method and treatment that includes indi-
viduals with very low parasitemia who maintain local transmission even during the off-peak 
malaria season, acting as potential parasite reservoirs, could be an effective addition to prompt 
diagnosis and treatment to further reduce malaria regionally. In addition, the overall heteroge-

neous distribution patterns of P. vivax and P. falciparum differ sharply in Lupuna and Cahuide, 
i.e., P. vivax is transmitted more locally within villages and P. falciparum is more often acquired 

at a distance, related to occupation, and transported on a regional basis [33].

Most years, between 90 and 95% of all malaria cases and 99.4% of P. falciparum are reported 

from Loreto Department, in northern Amazonian Peru [64]. In 2017, this amounted to 50,702 

cases (96.2% of those across Peru); there were also small foci in Amazonas State (822 cases in 
2017), west of Loreto, and in San Martin (415 cases in 2017), south of Loreto [64]. There was 

a serious P. vivax outbreak in the gold-mining region of the southern Amazon, in Madre de 

Dios and neighboring Ucayali until about 2011 [65], but only 6 cases were reported in Madre 

de Dios and 79 in Ucayali in 2017 [64]. In Tumbes and Piura, along the northwestern coast, 

malaria has greatly diminished and what remains is epidemic, sporadic, and peri-urban, 

likely the result of reintroduction [64, 66–68].

Loreto Department comprises an estimated 30% of Peruvian territory and there are about 
one million inhabitants [69]. Malaria transmission is highly seasonal, coinciding mainly with 

the heavy rainy season (January to June) and Andean snowmelt, that together increase river 
levels up to 10 m, causing major fluctuations in the abundance of the main regional malaria 
vector Ny. darlingi [70, 71]. Most malaria infections are found in rural and remote villages 
whose inhabitants live along the Amazon River, and its many tributaries, in enclosed or par-

tially enclosed wooden houses [62, 72]. There has been increasing recognition, beginning with 

a ground-breaking study [73], of hyperendemic foci linked to occupational activities (such as 
timber extraction, farming, and charcoal production) and human mobility [33].

2.4. Venezuela

Whereas the continent achieved a significant decline in malaria-related morbidity (62%) and 
mortality (61%) between 2000 and 2015 as part of the implementation of the Global Malaria 

Action Plan 2008–2015 [41], Venezuela, in contrast, was the alarming exception in the region, 

displaying an unprecedented 365% increase in malaria cases between 2000 and 2015 [6]. In 

2016 alone, 240,588 malaria cases were officially reported [1], whereas by the end of 2017, this 

number had increased to 300,189 total cases [45]. Astonishingly, the number of cases reported 

in 2017 in Venezuela is higher than that reported in the last 29 years (1988–2016) [74].

Economic and political mismanagement have precipitated a general collapse of Venezuela’s 
health system creating an ongoing humanitarian crisis with severe social consequences  
[75, 76]. Consequently, a malaria epidemic has been fueled by financial constraints that 
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prevented the procurement of malaria commodities (insecticides, drugs, diagnostic supplies, 
mosquito nets, etc.), epidemiological surveillance, reporting activities, vector-control and 
disease-treatment efforts, high internal human migration associated with illegal gold mining, 
and underlying malnutrition due to a general lack of provision and implementation of ser-

vices. In 2016, P. vivax malaria accounted for 76% of all cases, followed by P. falciparum (18%), 

P. malariae (<1%), and P. vivax/P. falciparum mixed (6%) infections [1].

Although P. falciparum malaria occurs mostly in the lowland rain forests of the Venezuelan 

Guayana region, P. vivax malaria is endemic in the coastal plains and savannas, as well as 
the lowland Guayana forests [17]. Currently, an estimated 80% of malaria in Venezuela is 

associated with gold mining areas in the forest ecosystem of the southeastern region, where 

local transmission is maintained in few but persistent disease hot-spots by Ny. darlingi  

and Ny. albitarsis s.l. ([77–79]; Grillet unpublished). Infection Rates (IR) of Ny. albitarsis s.l. and  

Ny. darlingi collected during 2009–2012 in Sifontes, Bolivar State, were very high: 5.4 and 
4.0%, respectively [80]. Gold mining extraction activities substantially reduce forest vegeta-

tion cover, which seems to favor aquatic vector habitat production, especially for Ny. albitarsis 

s.l. ([79]; Grillet unpublished). Mining activities in turn result in highly mobile human popu-

lations that migrate in search of jobs, working, and sleeping outdoors, exposed to continuous 

mosquito biting for long periods of time. Many of these economic migrants are previously 
unexposed to Plasmodium and some of them return to nonendemic malaria regions, e.g., 

near the capital Caracas, with circulating gametocytes, reintroducing Plasmodium to areas 

where malaria had been eliminated previously [81]. Although, most disease transmission in 

Venezuela has been rural, recent observations suggest a significant change in the landscape 
epidemiology of malaria since 2013—urban and peri-urban malaria transmission are now 

associated with some cities close to Caracas [Grillet unpublished]. Finally, case spillover has 
overloaded frontier health care infrastructure in Brazil and Colombia where in 2016, 78 and 
81%, respectively, of imported malaria cases originated from Venezuela [2]. The continued 

upsurge of malaria in Venezuela threatens to become uncontrollable, jeopardizing the hard-

won gains in the Americas’ elimination agenda and global malaria targets.

For decades, Venezuela was a leader in vector control and public health policies in Latin 
America, especially after being the first WHO-certified country to eliminate malaria in much 
of its territory in 1961 as a result of a very aggressive, vertical malaria control campaign [82]. 

This campaign consisted of the interruption of malaria transmission through systematic and 

integrative infection and vector control. Additionally, the program included the detailed 
knowledge of malaria microepidemiology (at local level, case management, consisting of 
diagnosis, patient treatment, and mass drug administration), mapping malaria cases, malaria 

health information system updated weekly, community participation through volunteer com-

munity health workers, application of larvicides, and sanitary engineering such as housing 
improvement and water management. This public health success helped to galvanize interest 
in global elimination [82]. The Venezuelan approach for malaria elimination in the past differs 
little from current prevention, control and elimination, except that it was implemented in 
an epidemiological landscape where insecticide and parasite resistance were absent, politi-

cal will was significant, and government support was very strong. Vector control and case 
prevention require long-term investment and sustainability without which it is difficult to 
envision elimination as a viable outcome.
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3. The main malaria vectors

3.1. Nyssorhynchus darlingi

The most widespread and dominant malaria vector in the Amazon region is Nyssorhynchus 

darlingi (Figure 2) [27, 28, 84, 86]. Localities where Ny. darlingi has been formally incriminated 

by ELISA or other molecular techniques are shown in Figure 3, although the full distribu-

tion of Ny. darlingi extends from southern Mexico through northern Argentina [84]. This 

species shares several characteristics with invasive species (e.g., Aedes albopictus) and other 

primary malaria vectors such as An. gambiae s.s., including fast growth, phenotypic plasticity, 

rapid reproduction, moderate-high dispersal ability, ecological competence, and association 

with humans [28, 104–106]. In Loreto Department, Peru, since Ny. darlingi reinvaded, or re-
expanded its range into the peri-Iquitos area about 1998 [107], it has spread along numerous 

Peruvian river drainages to the north and west [70, 108]. In Brazil and Peru, it is ranked 

the number one vector [4, 29, 109]; in Colombia, it is one of three main vectors, the other 
two being Ny. albimanus and Ny. nuneztovari [87, 110, 111]; and in Venezuela, it shares top 

billing with Ny. albitarsis s.l. [77, 78, 80]. A recent review highlights the very low insecticide 
resistance in Ny. darlingi detected in the Neotropics, i.e., one population in Choco, western 
Colombia is resistant to DDT, permethrin, lambda-cyhalothrin, and deltamethrin [23].

The distribution in Brazil includes the lowlands of the Amazonian biome, the Cerrado, and 

the southern Atlantic forest [84, 112, 113]. Nyssorhynchus darlingi is adaptable and flexible in its 
behavior: exophagic and endophagic; anthropophilic and opportunistic; though generally exo-

philic [28, 71, 97, 114]. The standard entomological indices range widely across its distribution 

[71, 80, 96, 97, 103, 114]. One frequently recognized characteristic of Ny. darlingi is the speed with 

which it colonizes deforested Amazonian patches and a variety of anthropogenic water bodies 
such as gold mining pools, brick-making depressions, wells, cisterns, and fishponds, as well as 
natural breeding site types linked to rivers or flooded forest [29, 60, 111, 115, 116]. Its adapta-

tion to novel environments may lead to increased vectorial capacity and survival, as well as 
greater risk of malaria transmission [117, 118]. The most likely drivers of Ny. darlingi divergence 
at a macro-geographic scale, across its broad distribution, are biogeographic or geographic 

boundaries and Pleistocene environmental changes [113, 119]. At a regional scale, isolation-by-

distance has been shown to influence population structure [120], whereas at a micro-geographic 

scale, current local environmental conditions have a marked effect [113, 119–122].

In Colombia, Ny. darlingi is distributed on either side of the Andes mountain range in lowland 

regions characterized by biogeographical and ecological heterogeneity [111]. West of the Andes, in 

the Urabá-Bajo Cauca and Alto Sinú (UCS) region, Ny. darlingi is the most common Nyssorhynchus 

species, exhibits endo and exophagy, is infected with P. vivax, and maintains transmission even 
at low abundance [60, 87, 111]. In most localities included in this study, the peak biting activity 
of Ny. darlingi was after 20:00 or 21:00 h when people conduct indoor and/or outdoor activities 
increasing the risk of vector-human contact. East of the Andes [111] and in southern Colombia, 

peak biting activity is at sunset [92] when no one is protected under ITNs. The dominance of Ny. 

darlingi in most of northwestern Colombian localities seems to be favored by ecological perturba-

tions resulting from various human activities, such as alluvial mining, livestock, small-scale rice 
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Figure 2. Distribution of Nyssorhynchus darlingi (denoted by white dots). Map made in Google Earth Pro [83] using data 

from the Malaria Atlas Project [84, 85].

Figure 3. Localities (denoted by yellow dots) where the primary malaria vector Nyssorhynchus darlingi has been reported 

infected with Plasmodium vivax or Plasmodium falciparum incriminated by molecular methods during 2005 to 2017 [8, 35, 

59, 60, 73, 80, 87–103]. Map made in Google Earth Pro [83, 84].
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production, and forest fragment landscapes [60]. Vector control strategies that include ITNs are 
recommended for containment of Ny. darlingi populations [60, 87, 111, 123].

Studies on the genetic structure of Ny. darlingi in Colombia have shown that at the micro-
geographic scale, in northwestern Colombia, Ny. darlingi is characterized by low genetic dif-

ferentiation and high gene flow [123, 124]. The environmental heterogeneity that is a hallmark 
of this malaria endemic region does not reach a threshold to impact the population structure 

of Ny. darlingi [124]. A comprehensive genetic study that evaluated Ny. darlingi throughout 

its distribution in Colombia found that at a macro-geographic scale, differentiation into two 
main groups, west and east of the Andes, was most likely influenced by the Andes; at a micro-
geographic scale, differentiation was partly the result of isolation by resistance, probably due 
to ecological differences, with significant impact on its population structure. In the current 
malaria scenario in Colombia and considering that Anophelinae mosquitoes adapt to climate 

and environmental changes, population studies should contribute to the development and 
implementation of vector control interventions and monitor their effectiveness in important 
malaria endemic regions of Colombia where Ny. darlingi maintains transmission.

Within Peru, only in the peri-Iquitos region of Loreto Department has the genetic structure 

of Ny. darlingi been evaluated, initially using Random Amplified Polymorphic DNA-PCR, 
that detected substantial homogeneity [125]. When populations from highway and riverine 
habitats were compared over a decade later using microsatellite markers, two highly admixed 
subpopulations were detected in each of nine villages [35]. The second major finding was 
that the 2012–2014 population of Ny. darlingi [35] had replaced that of the 2006 [126] and both 

of these subpopulations had the signature of a recent expansion. The source of the replace-

ment population is unknown, although a broad analysis of microsatellite data across South 
America suggests that it most likely comes from western Brazil [35].

In Venezuela, Ny. darlingi is found in the lowland tropical rainforest, in the southern part of 

the country (Amazonas and Bolivar States), the piedmont ecoregion characterized by high 
rainfall and tropical forests in Trujillo State, western Venezuela, and in the llanos in central-
western Venezuela, a subregion of the savanna ecoregion [127]. There is very little population 
structure in Venezuelan Ny. darlingi based on isozymes, RAPDs, ITS2 sequences [86], but 

more sensitive molecular markers, or whole genomes, might detect micro-geographic differ-

ences among the diverse ecoregions.

3.2. Nyssorhynchus albimanus

Nyssorhynchus albimanus is a malaria vector [27] characterized by ecological adaptability and 

a widespread, mostly coastal lowland, Neotropical distribution (Figure 4) [128]. Its presence 

usually coincides with areas that experience two annual rainy seasons, precipitation greater 

than 1000 mm, high relative humidity and a monthly variation in temperature between 22° 
and 29°C [127, 129, 130]. Despite its absence in Brazil, in Colombia, Ny. albimanus constitutes 

one of the main vectors in rural and peri-urban areas below 400–500 m, predominating along 
the Colombian Caribbean and Pacific Coasts and on the Island of San Andres [130–133]. These 

regions have different levels of Plasmodium transmission and the importance of Ny. albimanus 

also differs [133]. The Pacific is a humid tropical forest and one of the rainiest regions globally; 
in contrast, the Caribbean tropical forest is drier and hotter [134]. Malaria cases increase in 
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relation to ENSO patterns and cycles, particularly those transmitted by Ny. albimanus along 

the Pacific Coast of Colombia [61].

The availability of suitable breeding sites determines distribution and abundance of Ny. albimanus  

[130], a species that can thrive in fresh and brackish water, natural habitats (animal tracks, 
lakes, streams, and wells), and anthropogenic ones (rice fields, lagoons, and mining excava-

tions, among others) [130, 135]. Behaviorally, Ny. albimanus is mainly zoophilic, exophagic, 

and exophilic; yet it can be anthropophilic, depending on local circumstances and abundance 

[130]. It is also known to be endophagic in local malaria hot-spots along the Pacific Coast, i.e., 
the urban sector of Buenaventura. The main outdoor biting time is 19:00–23:00 h, when many 
inhabitants are outside, and therefore exposed to biting and Plasmodium transmission [130]. 

As a vector of P. falciparum and P. vivax, Ny. albimanus has been incriminated in the Pacific 
region [133] and a new species from the southern Pacific Coast, Ny. albimanus B, detected by 

mitochondrial COI sequences, was infected with P. falciparum [57]. Despite the high abundance 

of Ny. albimanus in the Caribbean region, no infected specimens were detected [136].

Population genetic studies of Ny. albimanus in Colombia confirm its status of a single taxon 
throughout its distribution, with low population structuring and little genetic differentiation 
[137]. Two broader studies that included samples from Nicaragua to Ecuador, both nuclear and 
mitochondrial markers, found evidence for geographic structuring [138] and population con-

traction across Panama followed by an east-west expansion [139]. Under the hypothesis that 

malaria vectors are exposed to control pressures and environmental alterations that may lead 
to genotypic and phenotypic variation, genetic (microsatellite) and phenotypic (wing trait) data 

Figure 4. Distribution of Nyssorhynchus albimanus (denoted by white dots). Map made in Google Earth Pro [83] using 

data from the Malaria Atlas Project [84, 85].

Malaria Transmission in South America—Present Status and Prospects for Elimination
http://dx.doi.org/10.5772/intechopen.69750

293



in populations of Ny. albimanus from the Pacific and Caribbean, despite a significant effect of 
environmental factors on wing traits, support a regional metapopulation of Ny. albimanus [132].

In Peru, Ny. albimanus is restricted to the Tumbes region of the northern coast, where it trans-

mits P. vivax at the end of the hot rainy season. Local insecticide application, mostly in rice 

fields, lead to extreme levels of insecticide resistance [23]. A series of meetings and decisions 

between southern Ecuador and northern Peru health personnel resulted in a highly success-

ful control program that employed a wide array of interventions such that autochthonous 
malaria was eliminated in El Oro, Ecuador in 2011 and in Tumbes, Peru in 2012 [135].

In Venezuela, Ny. albimanus is distributed along the coast and the margins of Valencia Lake, 

south of Maracay, although it does not appear to contribute to malaria transmission locally 

[127, 140]. It was found to be as abundant as the known coastal vector Ny. aquasalis in Aragua 

State, northcentral Venezuela, where both species had similar peak biting times during the 
early evening and were collected biting outdoors [141].

3.3. Nyssorhynchus albitarsis s.l.

The Albitarsis Complex comprises at least eight species [142] that extend across Central and 

South America and some Caribbean islands (Figure 5). The difficulty of their morphological 
differentiation complicates recognition of their role(s) in malaria transmission, an important 
aspect for the implementation of targeted and effective vector control strategies [143]. Three 

species are known vectors: Ny. deaneorum, Ny. janconnae, and Ny. marajoara. The latter is impor-

tant regionally in Plasmodium transmission in central and eastern Brazil, where its distribution 

includes Amapá, Mato Grosso, Pará, and Rôndonia [84, 142]. Its role in transmission rivals 
that of Ny. darlingi in some habitat types such as peri-urban Macapá City, Amapá [144] and 

along the Rio Matapi, Amapá [88]. An entomological survey during an outbreak in western 
French Guiana, in an illegal gold mining area, detected a high P. vivax infectivity rate (6.4%) in 
specimens of Ny. marajoara [99]. An ecological niche model, based on current and future (2070), 

distributions of P. falciparum, Ny. darlingi, all species of the Albitarsis Complex, climate, biome 

and topography, projected that, whereas climate change would reduce suitable habitat for 

Ny. darlingi, both Ny. marajoara and Ny. deaneorum are expected to expand southward, thereby 

increasing their likely role in P. falciparum transmission by the projected date of 2070 [19].

In Colombia, only a few species, in particular Ny. marajoara, have been identified morphologi-
cally in this complex [90, 145–147] and implicated in urban transmission [145]. This species is 

thought to be widespread in this country [110]. However, a detailed analysis of many Colombian 
specimens, identified molecularly, did not detect any individual Ny. marajoara [147], in agree-

ment with Ruiz-Lopez et al. [142], whose study indicated that Ny. marajoara is restricted to the 

central-eastern and western regions of Brazil and is most likely absent in Colombia. Further 

studies need to be done on this vector to better frame its geographic distribution.

Albitarsis Complex species appear to be uncommon in Peru but this could reflect a general 
lack of Nyssorhynchus taxon sampling and molecular identification, particularly outside the 
Amazon region of Loreto.

Although there are several published reports of Ny. marajoara as an important regional malaria 

vector in Bolivar State, Venezuela, along with Ny. darlingi [77, 78, 148], a different species,  
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Ny. albitarsis F in the Albitarsis Complex [142], was identified from the Caura Basin, Bolivar State [96].  

In the most recent publication from the malaria hot-spot Sifontes, the specimens infected by 
Plasmodium are referred to only as Ny. albitarsis s.l. [80]. Hopefully, the correct species identi-

ties and distribution will soon be determined in this very crucial Venezuelan hot-spot.

3.4. The Nuneztovari Complex

The Nuneztovari Complex, extending through much of northern South America, includes 
Ny. nuneztovari (Figure 6), Nyssorhynchus dunhami, and Nyssorhynchus goeldii [149]. Like the 

Albitarsis Complex, species in the Nuneztovari Complex are similar morphologically and dif-

ficult to identify accurately. Scarpassa and collaborators [150] presented strong molecular evi-
dence that additional species exist in Brazil and briefly reviewed the role of Ny. nuneztovari as 

a malaria vector in five Amazonian States. Nyssorhynchus nuneztovari is restricted to Colombia 

and western Venezuela, Ny. goeldii to Amazonian Brazil, and Ny. dunhami to central-western 

Brazil, Colombia and Amazonian Peru [71, 150]. It is difficult to evaluate the identification of 

Figure 5. Distribution of the Albitarsis Complex (denoted by white dots). Map made in Google Earth Pro [83] using data 

from the Malaria Atlas Project [84, 85].
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these species in earlier publications, because distributions of Ny. nuneztovari and Ny. goeldii 

overlap, as do those of Ny. goeldii and Ny. dunhami [149, 150].

In Colombia, Ny. nuneztovari is an important malaria vector on both sides of the Andes present-
ing morphological, behavioral, and genetic heterogeneity throughout the country [151, 152].  

In northwestern Colombia, it was found to be the most prevalent species, confirming an ear-

lier study [58], and showed endo and exophagic behavior [152]. It was naturally infected by 

P. vivax VK247 [60, 87], positive for P. vivax VK210, and VK247 in the Pacific Coast [103]. In 

eastern Colombia, there are no recent reports of Ny. nuneztovari infected with Plasmodium, but 

more importantly, there is a lack of investigation of malaria outbreaks along the frontier with 
Venezuela with no record of species identification and vector incrimination. Because of the 
humanitarian crisis in Venezuela, the numbers of malaria cases have increased dramatically 
since 2010 [1, 153]. In the most recent study of Colombian Ny. nuneztovari, it was reported to 

be abundant and dominant in localities where anthropogenic activities such as livestock, fish-
farming, and small to medium-scale agriculture were common, attributed to its adaptability 
to environmentally impacted habitats [152]. Common larval habitats were artificial fishponds 
and wetlands, particularly in the west and northwest [58, 152].

Regionally, this species shows the highest biting activity after 20:00 h, which suggests high 
transmission risk when people are at home, but not necessarily under nets. ITNs could be 
one component of an effective vector control intervention. In a locality in the northeast, Tibú, 

Figure 6. Distribution of the Nuneztovari Complex (denoted by white dots). Map made in Google Earth Pro [83] using 

data from the Malaria Atlas Project [84, 85].
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contiguous with Venezuela, peak biting of Ny. nuneztovari was after 21:00 h. This population 
differed genetically from other Colombian populations and its behavior was similar to Ny. 

nuneztovari from Venezuela. The populations exhibited endo and exophagic behavior in all 
localities and the results of the study indicated that region-specific interventions on both sides 
of the Andes would be most effective [152]. EIR values detected for Colombian Ny. nuneztovari 

were 3.5–3.6 in the northwest and 7.2 in the west. The highest value was in Buenaventura, on 
the Pacific Coast, where Ny. albimanus is considered the primary vector [133], but, according to 

the new study, Ny. nuneztovari also has a role in transmission in peri-urban Buenaventura [152].

In Peru, Ny. nuneztovari has been detected in five Departments: Pasco, Junín, Loreto, Ucayali, 
and Madre de Dios [154] and its presence confirmed in Loreto [155]. It may have a role 
in local malaria transmission, but remains unexplored. Nyssorhynchus nuneztovari is known 

as an important regional vector in western Venezuela where it occurs in seven States [156]. It 

was first identified morphologically in Bolivar State by Moreno et al. [157], from the malaria 

hot-spot of Sifontes municipality and was found infected by P. vivax (0.52%) [80]. It has also 

been found to be as abundant as Ny. darlingi in the Lower Caura River Basin, Bolivar State, 
where it was mostly active at sunset, although biting also throughout the night. Nevertheless, 
it was not detected infected by Plasmodium (although Ny. darlingi was), so the latter is more 
important in relation to malaria risk in the Caura River area [96].

4. Conclusions and recommendations

As discussed by Packard [37], for sustainable malaria control, focusing on decreasing inci-

dence towards elimination, effective measures need to be considered, including those related 
to human ecology. Examples include a significant improvement in living and housing condi-
tions, redesigning of anthropogenic landscapes from those that favor mosquito vectors to a 
remodeled landscape that is both adequate for humans and inadequate for vector mosqui-
toes. The sustainability and success of a malaria control program depends on a combina-

tion of diagnosis of human infection, treatment with anti-malarial drugs, and vector control. 
Moreover, proposed changes will need to be maintained such that the malaria baseline will 
not be affected by either interruption or disruption of a control program [1]. It would be 

sensible to include malaria control in the One Health Program, to align it with the elimination 

of extreme poverty, a goal of the global sustainable development program.

The recent elimination of malaria on the Peru-Ecuador border was a successful strategy and 
included strengthening surveillance and treatment, resource sharing, the use of operational 
research to inform policy, and novel interventions [135]. The current program depends on 

prompt, effective diagnosis and treatment with no charge, community personnel trained 
to collect blood smears from febrile persons within their communities, case reporting to 

a national surveillance system that includes a five-category case definition (indigenous, 
imported, introduced, induced, and cryptic), active foci and case investigations, mapping and 
elimination of larval habitats, and the use of ITNs and LLINs. This could serve as a model for 
the current situation along the Venezuelan border with its neighbors, Colombia and Brazil. 

One very important aspect of this program is that it took 20 years to achieve its goals [135].
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Worldwide, some of the innovations adopted for prevention, control, and eventual elimina-

tion of malaria transmission during the past ~10 years have included the development and 
deployment of LLINs [158, 159], the completion and exploration of many mosquito and para-

site genomes [160–163], major progress on genome editing in vector mosquitoes [164–166], 

new interventions such as house eaves [167] and push-pull systems [168], and better evalua-

tion of larval source management (LSM) as a potential component of integrated control man-

agement systems [169]. Global policies and recommendations provide a useful framework 
and roadmap guided by the Global Technical Strategy of Malaria Control and Elimination 
(2016–2025), a reconsideration of the vectorial capacity formula for elimination [170] and the 

Plan for Elimination of Malaria in Brazil (UN/OMS 2015; [4]).

During the same 10-year timeframe, several novel tools and strategies have been envisaged 
that focus on the Neotropical malaria control and eradication landscape: (1) successful coloni-
zation of the main malaria vector Ny. darlingi [171, 172]; (2) development of predictive models 
on climate change scenarios for Neotropical malaria vectors and Plasmodium [18, 19]; and (3) 

collection of baseline larval habitat characteristics in malaria endemic regions that can guide 
larval source reduction [29, 48, 58, 173] and may prove effective as part of a broader array of 
vector interventions in certain landscape types such as abandoned gold mining pools [174] 

and possibly commercial fish ponds [31].

The most serious challenge to malaria eradication in South America from the viewpoint of 
vector control is that most vector species are primarily exophilic, often exophagic, and fre-

quently bite early in the evening. Therefore, it is essential to determine and monitor the local 
biting behavior of a mosquito vector species.

Identified gaps in vector interventions throughout South American endemic areas are:

1. Sustained funding for vector surveillance and intervention;

2. Ongoing training programs for vector biologists and promoting community participation;

3. Use of species distribution models to map potential distribution and epidemiology to 

focus interventions and planning;

4. New efforts to control exophagic vectors and targeting aquatic stages should be part of 
integrated control and elimination programs that prioritize hot-spots;

5. More accurate and timely identification of transmission in hot-spots;

6. Routine evaluation of application strategies and insecticide resistance.
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