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Abstract

Keratins are the epithelia-specific members of intermediate filament superfamily and 
consist of 54 members. They serve primarily as cytoskeletons, which sustain cell struc-
tures. They also influence on cell proliferation and motility by rapidly changing their 
morphology and distribution through post-translational modification. The expression 
of keratins genes is regulated by various cytokines and growth factors, mainly through 
distinct transcription factors. Mutations in keratin genes cause various cutaneous dis-
eases as well as predisposition to inflammatory disorders of internal organ, such as 
the intestine and the liver. Keratins directly interact signaling molecules, which affects 
inflammatory processes, and cancer progression. The mechanism of keratin involvement 
in many diseases will be elucidated in future, which would help identifying novel target 
for treatment.

Keywords: inflammation, mechanical stress, expression regulation, keratinopathies, 
keratin

1. Introduction

Keratins are the epithelial-specific members of intermediate filament superfamily, which 
constitutes the cytoskeleton of cells consisting epithelial tissues, such as stratified epithelia, 
simple epithelia, hair and nails. Keratin family constitutes with 54 distinct proteins, 28 type 
I and 26 type II keratins, which expression is tightly regulated in a pairwise fashion. The 
expression of keratins is site-, differentiation- and context-dependent. Keratin sustains cell-
architecture by serving as cytoskeleton, and also it is involved in regulation of cell metabolism 
and signaling, thereby influencing cell proliferation, migration and apoptosis [1].

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Mutation in keratins causes hereditary keratinizing disorders and bullous diseases, such as 
ichthyosis, palmoplantar keratoderma and epidermolysis bullosa simplex, called “kerati-
nopathies”. Mutated keratins cause disruption in cytoskeleton and induce collapse in cell 
structure. Pathogenic mutations in keratins, which cause epidermolytic ichthyosis and epi-
dermolytic palmoplantar keratoderma, are responsible for hyperkeratosis and inflammation 
in skin, enhanced by environmental stimuli such as mechanical stress, infection and oxidative 
stress. Recent studies revealed the role of keratins other than as structural protein in these 
disorders [2].

Many studies have been performed to reveal the role of keratins in physiological and patho-
logical state, which are far more abundant to follow in this chapter. In this chapter, the role of 
keratins in physiological state is reviewed and the mutations in keratin genes causing kerati-
nopaties are focused concisely.

2. Keratins

Keratins are the member of intermediate filaments (IF), which composed of six subtypes 
(Table 1) [3]. IFs, 10 nanometer wide filamentous proteins, first described by Holtzer et al. 
[4] in muscle cells are cytoskeletal proteins constituting almost 70 genes, among which 54 are 
keratins. Keratins share the structure with other IFs, composed of three domains; a central 
α-helical rod domain with non-helical head and tail domain containing many phosphory-
lation sites (Figure 1). Keratins have a property of self-assembly, which form filamentous 
structure. Type I and Type II keratins make heteropolymers, which further form keratin 
filaments. Type I keratins are acidic, low molecular weight, consists of K9–K40, while type 
II keratins are basic or neutral, high molecular weight proteins, consists of K1–K8, K71–K86. 
Expression regulation of each keratin is dependent on tissue-type, differentiation status, 
and is context-dependent. Keratins are divided into three groups. One is “simple” kera-
tins, expressed in embryonic, and one-layered epithelia, including hepatocytes, intestinal 

Subtype Proteins Specificity

Type I Keratins, acidic Soft stratified epithelia (skin, esophagus, oral mucosa etc.), Soft 
simple epithelia (gut, sweat gland, etc.), hard epithelia (hair, 
nail, oral papillae)Type II Keratins, basic

Type III Vimentin, desmin, glial fibrillary 
acidic protein, peripherin, syncoilin

Vimentin: mesenchymal cells, desmin: muscle cells, GFAP: 
astrocytes, glia, peripherin: C-fiber neuron, syncoilin: muscle 
cells

Type IV Neurofilament-L, M, H, internexin, 
synemin, nestin

Neurofilament, internexin: neurons, synemin: muscle cells, 
nestin: undifferentiated neural cells, neural stem cells

Type V Lamins A, B, C Nuclear membrane

Orphan Filensin, phakinin Lens

Table 1. Classification of intermediate filament.
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epithelia and sweat glands. “Barrier” keratins are expressed in stratified squamous epi-
thelium, such as skin, oral mucosa and esophagus. “Structural” keratins are hard keratins, 
constituting hair and nails [3].

Keratin filaments are observed as tonofilaments under electron microscope, which converge at 
desmosomes and hemidesmosomes. Desmosome is an attachment apparatus between epider-
mal keratinocytes located at the plasmamembrane of lateral and upper side of basal epidermal 
keratinocytes, and at all the surrounding plasmamembrane of suprabasal epidermal kerati-
nocytes. Hemidesmosome is an attachment apparatus which conjugates basal keratinocytes 
to basement membrane, located at the bottom of the basal keratinocytes. These attachment 
apparatus have a distinct structure. Desmosomes are composed of transmembrane cadherins 
such as desmogleins, armadillo proteins such as plakoglobins and plakophilins, and plakins 
such as desmoplakin and plectins which link intracellular desmosomal plaque to keratins 
(Figure 2). Hemidesmosomes composed of integrin α6 and β4, which link hemidesmosomes 
to laminin, bullous pemphigoid antigen (BPAG)1 and 2, and plectin, which mediate interac-
tion of keratin intermediate filaments to integrins (Figure 3). Plectin and desmoplakin anchor 
keratin filaments to intracellular hemidesmosomal and desmosomal plaque, respectively. 
Plectin also links keratin filament to nuclear membrane, thus forming cytoskeletal architec-
ture in epidermal keratinocytes [3]. Focal adhesion is another type of adhesion machinery, 
connecting cells to extracellular matrix (ECM) involving integrins, and anchor actin filaments.

The filament-junction-nucleus network sustains cell structure and rigidity, and anchor cells in 
three-dimensional architecture of epithelium. The epithelium, however, constantly turnover, 
regenerates itself when injury, and proliferates at inflammation. Keratin cytoskeleton should 
be flexible, plastic and dynamic when cells proliferate and migrate. Recent studies revealed 
how keratin filaments assembles and disassembles in cells. Keratin filament assembly starts 
at periphery of the cell, close to focal adhesions. In migrating cells, many keratin particles are 
formed in the lamellipodia where focal adhesions are abundant, which assembles to form 
keratin filament precursors (KFP). Oligomers of keratin particles are added equally to both 
ends of KFPs, which become larger in size, and when they approach to the keratin filament 

Figure 1. The structure of keratin protein: Central rod domain with head and tail region. Keratin protein consists of rod 
domain with 4α-helical segments (1A, 1B, 2A, 2B) interconnected with three linker domains, and non-helical head and 
tail domains. Most of the disease-causing mutations in epidermal keratins occurs in helix initiation and termination 
motifs at the periphery of 1A domain and 2B domain (indicated with yellow color).
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network close to the nucleus, KFPs integrate in the network adding another branch to the 
keratin filament network. Keratin filaments further assembles to form bundles close to the 
nucleus. This assembly of keratin occurs in centripetal flow, while the disassembly occurs 
close to the nucleus. This “keratin cycle” provides more efficient way over degradation and 
de novo biosynthesis, and similar recycling system has been observed in other cytoskeletal 
components, such as actin, and microtubles [5].

Keratins undergo various post-translational modifications, such as phosphorylation, ubiq-

uitination, sumoylation, and acetylation, which regulate the solubility of keratins at specific 
conditions. Ubiquitination of keratin filaments and subsequent proteasomal degradation 
have been described as disassembly process. Also, phosphorylation is involved in dissocia-

tion of soluble non-filamentous form of keratins. Inhibition of p38 mitogen associated protein  
kinase (MAPK), or protein kinase C (PKC) ζ results in increased stability, while increased 
kinase activities result in enhanced keratin filament turnover.

Many phosphorylation sites have been identified on simple epithelial keratins, but fewer in 
epidermal keratins. Keratin 8 and 18 are phosphorylated when cells are stimulated with sheer 
stress through protein kinase C(PKC)ζ.

Keratin filament network supports mechanical resilience of the cell, especially for cells of 
barrier tissues, such as epidermis. Desmosomes and hemidesmosomes, the attachment appa-

ratus of keratinocytes, convey mechanical stress signal to keratins, and to nucleus. When 
cells become migratory, desmosome-dependent cell–cell adhesion becomes weaker, with 
reduced co-localization of desmosomes with keratin filaments. Complete knockout of keratin 
filaments caused scattered distribution of hemidesmosome components, faster attachment to 

Figure 2. The structure of desmosome.
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extracellular matrix (ECMs), resulting in increased motility. Forced expression of keratin 5 
and 14 pairs in the keratin-null keratinocytes, the basal keratinocyte pair of keratins, caused 
suppressed migration ability. Enhanced migration occurs also in keratinocytes null for epi-
plakin, plectin, plakoglobin, plakophilin or keratin K6 (K6a/K6b). Loss of keratin K6, plectin 
or plakoglobin causes activation of Src family kinase, and F-actin reorganization. Src kinase 
regulates leading edge protrusion though Rac and Cdc42 signaling pathway, which also 
stimulate to form invadopodia, actin-rich cellular protrusion which works in ECM degrada-
tion and cancer invasion and metastasis. Src also directly induces epithelial and mesenchymal 
transition. Src directly interacts with keratin intermediate filaments in a K6-dependent man-
ner [6]. K6(K6a/K6b) null keratinocytes show enhanced migration, however, K6 is induced in 
wound healing process where keratinocyte migration is needed. Thus, expression of keratins 
appears inhibitory to cell migration, which is opposite to expression of vimentin, the type III 
IF, resulting in enhanced migration and invasion of cancer cells.

3. Regulation of expression of inflammatory keratins

Epidermis covers the outermost surface of human skin. It should withstand the environmental 
stimuli, such as infection, allergens, and mechanical and chemical insults. Epidermis changes 
its cytoskeletal keratin expression in inflammatory conditions. Normal healthy interfollicular 

Figure 3. The structure of hemidesmosome. BPAG: Bullous pemphigoid antigen.
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epidermis expresses keratin K1 and K10 in suprabasal layers, and keratin K5 and K14 in basal 
layer, while in inflammatory skin conditions, such as psoriasis and atopic dermatitis, expres-
sion of keratin K1 and K10 are suppressed and expression of inflammatory keratins, such as 
keratin K6, K16 and K17 are induced.

Dr. Blumenberg and our group have investigated on the mechanism of induction of these 
inflammatory keratins. Epidermal growth factor (EGF) induced expression of inflammation 
and proliferation-related keratins K6 and its counterpart K16 at transcriptional level [7–9]. 
Interferon (IFN) γ induced keratin K17 promoter activity through transcription factor STAT1 
[10, 11]. Tumor necrosis factor (TNF) α induced K6 promoter activity through NFκB and C/
EBPβ [12]. Interleukin (IL)-1 induced K6 through C/EBPβ, which binding site clearly distinct 
from EGF response element [13]. IFNγ also induced keratin K6 through STAT1 signaling 
pathway [14]. These results indicate that inflammatory cytokines and growth factors induce 
inflammatory and proliferation-related keratins, at the transcriptional level, which may 
result in keratinocyte activation in inflammatory skin diseases, such as atopic dermatitis and 
psoriasis.

Mechanical stimuli are one of important external stimuli, which epidermal keratinocytes 
respond in daily life. Scratching causes mechanical stretch as well as barrier disruption, and 
use of tissue expander results in mechanical stretch of epidermal keratinocytes. Pregnant 
women experiences expansion of abdominal skin caused by growing fetus, especially in 
third trimester. These mechanical stimuli should influence epidermal keratinocytes through 
cell–cell junction and cell-ECM junction, such as desmosomes and hemidesmosomes. We 
have utilized stretchable silicon chamber and examined the effect of mechanical stretch on 
epidermal keratinocytes. Mechanical stretch induced phosphorylation of EGFR, ERK1/2, and 
inflammation-related keratin K6, and suppressed differentiation-related keratin K10 [15, 16].

4. Mutation in keratin gene causes various skin diseases and 
predisposition to internal diseases

Keratin gene mutations causes various diseases, called “keratinopathies” or “keratin disor-
ders”. Mutations in epidermal keratins causes skin diseases, such as congenital ichthyosis, 
congenital bullous disease, and pachyonychia congenita. Mutations in corneal keratins, K3 
and K12, cause corneal dystrophy, and mutations in oral keratins, K4/13, cause white sponge 
nevus in oral mucosa. These causative mutations occur mostly in the conserved region of 
keratin genes, that is, the beginning/end portion of rod domain, which often affects normal 
filament assembly, and causes aggregation of keratin protein in the cytoplasm. Mutant keratin 
affects normal keratin (dominant negative effect), which often results in dominantly inherited 
congenital diseases. On the other hand, mutation in simple epithelial keratins, such as K8/18 
and K19, is found in less conserved regions, which constitutes the risk factors for liver disease 
and inflammatory bowel diseases.

Mutation in keratin K1 or K10, the differentiation-related epidermal keratins, expressed in 
the suprabasal layers of epidermis, causes epidermolytic ichthyosis, previously called bullous 
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congenital ichthyosiform erythroderma. The affected child shows erythroderma with bulla 
formation and later develops ichthyotic skin. The characteristic histological feature is epi-
dermolytic hyperkeratosis, in which hyperkeratosis and coarse keratohyalin granules in 
degenerated, vacuolar cytoplasm of the granular layer keratinocytes are prominent. The same 
mutation, when occurred during embryonic development, causes epidermolytic epidermal 
nevus, aligned in the lines if blaschko, showing similar histological changes in affected skin. 
Keratin 9 is expressed specifically in the skin of palms and soles. When similar mutations 
occur in keratin 9, similar histological change, epidermolytic hyperkeratosis, is seen in the 
epidermis of palms and soles, resulting in Vörner type palmoplantar keratoderma. In these 
conditions, similar keratin aggregation is observed in the cytoplasm of affected keratinocytes 
[2, 17].

Keratin 5 and 14 are expressed in pair in the basal layer keratinocytes. Mutation in keratin 5 
or 14 causes epidermolysis bullosa simplex, one of congenital bullous disorder. Disruption of 
keratin filament network in basal keratinocytes with keratin mutation results in collapse of 
basal keratinocytes, leading to bulla formation at the bottom of the epidermis. Epidermolysis 
bullosa simplex is one of congenital bullous disease, caused by mutation in basal cell keratin, 
K5 and K14. Mutated keratin causes fragility in basal keratinocytes where keratin K5 and K14 
are expressed, results in intraepidermal bulla formation. Existence of keratin mutations or 
the reduced expression of keratins cause reduction of desmosome expression and cytoskel-
etal linker protein expression, resulting in increased motility of keratinocytes. The reduced 
expression of desmosomes, the junction proteins, may be another mechanism of tissue fragil-
ity in EBS patients. Mutations in K5 or K14 in EBS also cause alteration in cellular response 
to external stress. Keratinocytes with K5 or K14 mutation show increased activation of stress-
activated protein kinase (SAPK) signaling against external stresses, as well as constitutive 
activation of extracellular-signal-regulated kinases (ERKs) [1, 2].

Pigmentary disorder, called Dowling-Degos disease (DDD), has been disclosed to be due to 
mutation in keratins K5 or K14, and Galli-Galli disease (GGD) due to mutation in keratin K5. 
DDD patients classically show small pigmented macules and reticulated pigmentation in the 
large folds and flexure surface. Some patients show pigmentation on the face, and also com-

edo-like papules and pitted scarring are seen. GGD patients show similar clinical features, 
with distinct histological changes, including acantholysis. Patients with EBS with mottled pig-
mentation show similar pigmentary changes with vesicle formation. Mutations in keratin K5 
have been reported to cause EBS since the 1990s; there is a genotype–phenotype correlation 
between keratin mutation and the type of EBS. The most severe form, Dowling-Meara type, 
is caused by mutation in the highly conserved region on the either side of the helix boundary 
area of rod domain, while the milder type of EBS, Koebner type, and Weber-Cockayne type 
are caused by mutations occurred throughout the rod domain. There is a subtype of EBS with 
mottled pigmentation caused by mostly specific mutation p.Pro25Leu, in the head domain of 
keratin K5. Mutations in K5 of DDD and DDG are also in the head domain of K5, which are 
nonsense mutation or frameshift mutation, resulting in premature stop codons, leading to 
haploinsufficiency of K5 rather than dominant negative effect. These cases demonstrate that 
keratin K5 is important in melanosome transportation. Melanosomes, one of cell organelles 
containing melanin, are produced in melanocytes and transferred to keratinocytes where 
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melanosomes distribute in the cytoplasm. Mutation in K5 results in melanosome transfer and 
the distribution of melanosomes in keratinocytes, leading to altered pigmentation in skin. 
Thus, keratins may also contribute in organelle transfer in keratinocytes [1].

Keratin K6, K16, and K17 are expressed in follicular epithelium, oral mucosa, palms and 
soles and nails. They are also induced in inflammatory skin diseases in interfollicular epi-
dermis. Mutation in keratin K6, K16 or K17 causes pachyonychia congenita, showing thick 
and deforming nails and hyperkeratotic palms and soles, with or without steatocystoma 
multiplex. Pachyonychia congenita (PC)-1, is a form of PC presenting with nail defects, pal-
moplantar hyperkeratosis, follicular hyperkeratosis, and oral leukokeratosis. PC-2 lacks oral 
involvement, but has multiple folliculosebaceous cysts and natal teeth. Kratin 6 consists of 
three isoforms, K6A, K6B and K6C. K6A is the most abundant isoform, which makes pair 
with K16, and the mutation in K6A, as well as K16 leads to PC-1. K6B is a counterpart of 
K17, and mutation in K6B or K17 leads to PC-2 [2, 17]. These keratins, K6, K16 and K17 
are induced by several cytokines and growth factors, such as EGF, TNF and IFNγ, or by 
mechanical stress or UV. The attempt to suppress the expression of mutated keratins has 
been done by several researchers to treat PC patients. Small interfering RNA for mutant 
K6a has been tried to treat PC patients, demonstrating feasible therapeutic strategy for kera-
tin disorders [18]. RNA interference, however, harbors potential risk for off-target effects, 
which should be effectively avoided. Recently, K16 has been disclosed to be involved in 
the induction of danger-associated molecular patterns (DAMPs)/alarmins and skin barrier 
genes [19], and the regulator of nuclear factor erythroid-derived 2 related factor 2 (NRF2). 
In PC lesional epidermis, NRF2 protein expression is elevated, but the activation of NRF2 
is suppressed, similar to Krt16−/− mice which present PC-like skin lesions. Reduction in 
active NRF2 results in reduced glutathione (GSH) levels, indicating increased oxidative 
stress. Inhibitor of GSH synthesis has been shown to induce PPK in mice, which imply 
that reduced NRF2 activity in Krt16−/− mice caused PPK through reduction in GSH levels 
and increased oxidative stress. Topical application of sulforaphane, an activator of NRF2, 
rescued PPK in Krt16−/− mice, as well as increasing the levels of NRF2, and pNRF2, indicat-
ing the possibility of treating PPK with small molecule targeted drugs pharmacologically 
activating NRF2 [20].

Mutations in K8 or K18, simple epithelial keratins, have been shown to be the risk fac-
tor for some patients with inflammatory bowel diseases or liver disease. Mutation in 
cytoskeletal keratins causes reduced resilience in epithelia of digestive tract which is 
always under mechanical stress and peristaltic movement, resulting in cellular damage. 
Mutations in keratin in liver cause reduced tolerance to toxins, such as alcohol and drugs, 
thus predispose patients to liver damage at situations of cell stress. Keratin K8 undergoes 
hyperphosphorylation, acting as phosphate sponge to absorb various phosphorylated 
proteins, such as SAPK and ERKs, and reduce inflammation and apoptosis [2, 17].

5. Keratins and inflammatory diseases and cancer

Keratin filaments regulate inflammatory processes. Wild-type keratin K8 has been reported 
to be a negative regulator of inflammation by suppressing TLR signaling through inhibiting 
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NFκB activation [21]. Keratin 8 also protects colonic epithelium from inflammation, and 
cancer progression [22, 23] Wild-type keratins suppress TSLP production. Normal human 
epidermal keratinocytes do not produce TSLP in culture, while keratin null keratinocytes 
produce copious amount of TSLP [24]. They showed that defects in keratins caused activa-
tion of MEK1/2 and ERK1/2, resulting in TSLP production independent on barrier disrup-
tion. Keratin 17 expression promotes inflammation towards Th1- and Th17-type immune 
reactions, the characteristic inflammation in psoriasis, and the absence of K17 attenuates 
inflammation and tumorigenesis [25]. C-terminus of K6 has anti-microbial properties [26]. 
Mice with K1 expression in pancreas βcells develop diabetes with decreased insulin secreting 
vesicles. K17 binds to 14-3-3σ and TRADD, and loss of K17 results in altered inflammatory 
cytokine production, impaired wound healing and impaired hair follicle cycling [2]. K14 
also directly binds to TRADD, which influences the signaling pathway through TNFR [27]. 
K16 knockout mice show increased activity of danger signals, described as above. Another 
report showed that the amount of keratin protein itself is important to protect cells against 
mechanical stress [28].

Keratins are also involved in cancer proliferation and invasion. Keratin 19 fragment (CYFRA) 
has been used in clinics for tumor marker, especially to detect non-small cell lung cancer. Not 
only as a tumor marker, K19 promotes tumor cell invasion in hepatocellular carcinoma, prob-
ably by formation of invadopodia [29]. Cancer cell with K19 expression also shows increased 
resistance to chemotherapy [1].

6. Conclusion

Keratins are cytoskeletal proteins, however, not only that, keratins have various roles 
in physiology and pathophysiology of human organs, and involved in proliferation, 
motility and invasion of the cells, and inflammation of tissues. Their complexed behavior 
would be further elucidated in future, and many more novel findings would help explor-
ing the target of future therapy of inherited cutaneous diseases, cancer and inflammatory 
disorders.
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