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Abstract

Nowadays, endocrine-disrupting chemicals are considered to be one of the main causes
of the ever-increasing occurrence of problems with male fertility. These compounds of
natural or anthropogenic origin are omnipresent in the environment and organisms are
exposed to them practically nonstop through the air, water, food, and occupationally.
Endocrine disruptors have the ability to mimic effects of reproductive hormones and
demonstrably can interfere with the endocrine system leading to reproductive disorders
at different levels, and considering male reproductive functions, most of the impacts are
performed by the breakdown of estrogen- or androgen-mediated processes. A significant
body of evidence based upon laboratory or wildlife animal experiments and meta-
analysis of semen studies in men indicates that exposure to endocrine disrupting
compounds is associated with male reproductive malfunctions, including impairment
of spermatogenesis followed by reduced semen quality parameters (sperm concentration,
motility, and morphology). Alkylphenols, bisphenol, and phthalates are substantial com-
ponents of many products with which people come into contact daily. This brief review
will emphasize on the possible effects of alkylphenols, bisphenol, and phthalates on the
male reproductive system, and current research efforts related to these substances mainly
in the context of two main processes taking place in testicular tissues—steroidogenesis
and spermatogenesis.

Keywords: male, reproduction, steroidogenesis, spermatogenesis, alkylphenols,
bisphenols, phthalates

1. Introduction

Over the last years, many epidemiological studies have been observing worrisome

trends in the incidence of human infertility rates. Increasing prevalence of congenital
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abnorm-alities such as hypospadias and cryptorchidism has also been confirmed by

numerous reports. Male fertility generally relies on the quantity and quality of spermato-

zoa, sufficient activity of Leydig cells, and a proper hormonal balance. Infertility is a

widespread problem defined as the inability to conceive after one year of unprotected

intercourse. In many cases, there are no obvious signs of infertility. Substantial part of the

problem is the disruption of essential cellular processes responsible for normal reproduc-

tive functions [1, 2]. Given the short time, genetic changes cannot explain such alterations.

We may assume that they only reflect on persistently adverse changes in the environment

or in lifestyle. However, it cannot be ignored that some individuals may be more suscep-

tible or resistant to these adverse effects than others, indicating that genetic factors do

play key roles [3]. Enormous production and release of industrial chemicals into the

environment has led the scientific community to hypothesize that current pollutants may

irrefutably disrupt health conditions, leading to extensive damages to physiological func-

tions. In fact, a huge number of chemicals have been found to interact with the endocrine

system of different animals in laboratory studies and there is an increasing number of

reports on the endocrine disruption in wildlife [4]. Endocrine disruptors (EDs) are an

extremely heterogeneous group of ubiquitous synthetic substances, environmental pollut-

ants, and commercial products. They are able to alter functions of the endocrine system,

inhibit critical cellular processes, increase the risk of hormone-dependent malignancies,

and may result in a wide array of adverse health effects. The term endocrine disruption

has been adopted by the vernacular of scientists, toxicologists, and appears here to stay [5,

6]. There are many varied sources of EDs. Typical human exposure occurs with respect to

the environmental contamination of the food chain, contact with contaminated household

dust, and during the use of personal care products. Other EDs are used as industrial

lubricants, solvents and high amounts of EDs were found in household products, pesti-

cides, herbicides, detergents, beverage and food storage containers, metal cans, epoxy

resins, etc. Many textiles contain contaminants, such as flame-retardants, including tetra-

bromobisphenol A and polybrominated diphenyl ethers [7]. Although a chronic exposure

to ED takes place through the skin contact or inhalation, the major source are food

products. Some experimental studies assume that plastic packaging is the largest source

of EDs in the human diet. Repeated exposure of food – contact materials to UV light, acid

or alkaline contents and heat may cause polymers to breakdown into monomers as phtha

lates, which then leach into the food or beverages [8]. Other by-products such as

alkylphenols, bisphenols, polychlorinated biphenyls, dioxins or phthalates are ubiquitous

and there is a growing concern that living in an ED-contaminated environment may

initiate adverse health effects. Detection of ED residues in human serum, seminal plasma,

and follicular fluid has raised concerns that environmental exposure to EDs may be

affecting human fertility [9]. Nowadays, some of EDs have been banned or otherwise

removed from the industrial processes years ago. On the other hand, these are persistent

in the environment throughout many years. A wide range of industrial PCB compounds

may be still found in pronounce quantities in the environment, although their manufac-

ture was banned in 1977 [10]. Indeed, humans and wildlife are continually exposed to

copious potentially hazardous substances that are released into the environment at an

alarming rate.
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2. Male reproductive system as a major target of EDs

In this context, possible adverse effects of EDs have been taken into focus, both regarding the

effects of EDs on the male reproductive system and with respect to its differential susceptibility

towards these compounds. Although there has been an effort to list and rank all possible EDs,

the number of evaluated chemicals remains limited. Such information and associated concerns

regarding the ubiquitous presences of EDs in the environment have sparked discussions

regarding the need for strategies to assess and regulate chemicals with endocrine disrupting

properties in order to protect human and wildlife health. During the last years, some epidemi-

ological studies have been comparing an increase in the incidence of male reproductive disor-

ders in many countries. The results showed that the global average sperm count dropped by

half and that the sperm motility/viability significantly decreased. In addition, many types of

reproductive tract abnormalities were observed in several countries [12]. Several experimental

studies have found associations between poor semen quality and increased levels of EDs in the

environment [13, 14]. EDs may disrupt not only spermatogenesis, by interfering with germ

cells and sperm-supporting cells, but may also affect steroidogenesis occurring in Leydig cells.

Many researchers have focused on the potential sources of EDs and their pathological conse-

quences on reproductive health as well as ethnologies in the environment.

2.1. Alkylphenols and their impact on steroidogenesis and spermatogenesis

As we mentioned before, environmental exposure to EDs may adversely affect human and

wildlife reproductive functions. Many environmental contaminants including alkylphenols are

widely used in the preparation of agrochemicals, industrial and household detergents, paints,

and plastics [15]. Alkylphenol ethoxylates, a class of nonionic surfactants, are microbially

degraded into alkylphenol diethoxylates and alkylphenol monoethoxylates. These are subse-

quently degraded into alkylphenols (4-octylphenol; 4-nonylphenol) and along with other sub-

products, are known to persist in the environment for a long time [16]. Alkylphenols are

endocrine-disrupting agents with native estrogen-like structure and show estrogenic activity.

This activity is mediated through the binding of these environmental estrogens to estrogen

receptors. Previous studies suggested that estrogenic activity of alkylphenols is linked to a

tertiary branched α-carbon and the length of the side chain at that position. Therefore, many

experimental studies have investigated estrogen receptor binding and subsequent pathological

changes in male reproductive functions. The mechanism also involves interaction with ste-

roidogenic enzymes, transport proteins, and cell signaling processes. However, little is known

about the direct effect of alkylphenols on the steroidogenic enzymes (3β-HSD and 17β-HSD)

and gene expression [17].

2.1.1. Nonylphenol

One of the most commonly used alkylphenol is nonylphenol (NP). Due to its wide usage, a

large amount of nonylphenol is widespread in the environment, especially into water sources.

Vazquez-Duhalt et al. [18] have been convinced that the concentration of 0.1 μg/L evokes a
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public health risk. Based on this knowledge, several studies have investigated the potential

impact of NP on male reproductive functions.

Ying et al. [19] demonstrated that nonylphenol’s isomers had different effects on the release of

steroid hormones in rat Leydig cells. However, all experimental doses had an unfavorable

impact. Specifically, the inhibitory effect of p363-NP isomer was found to be as much as 1.26

times higher than the others. The results imply that the effects of different nonylphenol isomers

on the testosterone production do not appear to be completely mediated through the estrogen

receptor α or β. For the steroidogenesis, ensured by Leydig cells is an essential conversion of

cholesterol into various steroid classes, where 3β-HSD, 17β-HSD, and StAR are responsible for

the rate-limiting step. PCR analysis showed that the decrease of testosterone production may

be explained by the drastic inhibition of StAR and 3β-HSD gene expression. In a recent study,

Wu et al. [20] demonstrated that NP increased testosterone production in rat Leydig cells. The

concentration of 127.5 μM NP stimulated the steroidogenic process by elevating the activity of

P450scc and stimulating protein expression of StAR. During the same experiment, trypan blue

assay was performed. The authors observed the cytotoxic effect of the highest doses of NP

(425 μM). Lower experimental doses (42.5–127.5 μM) used in this study had no cytotoxicity

until 4 h cultivation. In a previous study, Jambor et al. [21] evaluated the potential impact of

NP on the biosynthesis of steroid hormones, cell viability, and ROS production. The produc-

tion of steroids, specifically dehydroepiandrosterone, androstenedione, and testosterone was

reduced following exposure to NP after 44 h of in vitro cultivation. Furthermore, the treatment

to NP caused a significant intracellular accumulation of ROS in mice Leydig cells. Majdic et al.

[22] reported that NP has an inhibitory effect on P450c17, which is essential in the testosterone

synthesis. Several studies demonstrated that NP treatment increased apoptosis of testicular

cells, including germ and Sertoli cells [23, 24]. According to Han et al. [25], the highest

experimental concentration of NP (250 mg/kg/day) may significantly increase the number of

apoptotic cells following in vivo exposure of male rats. Recent evidence also confirms that NP

exposure rapidly increases the apoptosis of Sertoli cells in a dose-dependent manner in vitro.

The results of flow cytometric analysis indicate that the proportion of apoptotic cells was

significantly increased at 20 and 30 μM of NP [26]. Gap junctional intercellular communications

(GJIC) were shown to be present between adjacent TM4 Sertoli cells [27]. An important role of

GJIC is to regulate cell growth and differentiation and it is also critical for coordinating

steroidogenesis and spermatogenesis. Gap junctions are pores composed of connexins (Cx).

Several reports indicate that Cx43 is essential for normal testicular functions [28].

Aravindakshan and Cyr [29] showed that the exposure to NP dramatically inhibited GJIC. A

significant reduction was observed at 10 μM of NP (almost 80%). The effect of NP on the Cx43

expression was dose- and time-dependent. Time-response analyses in which cells were

exposed to 10 μM NP indicated that there was a decrease in Cx43 after 24 h. Exposure of TM4

cell line to NP resulted not only in a decrease in the CX43 levels but also a progressive effect on

the level of renewal of the connexins, or on their synthesis, or both was confirmed. In addition,

epidemiological studies have reported numerous other adverse effects of nonylphenol on the

reproductive system, including reduced testis weights, spermatozoa abnormalities, and a

decreased sperm production [30, 31].

NP is considered to be an endocrine disrupting compound which could be involved in declines

of both quantity and quality of spermatozoa in adult men [32, 33]. A lot of experiments show an
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in vitro NP inhibition of sperm motility and viability [34, 35], while in vivo studies confirm

spermatotoxicity, spermatogenesis failure, reduced sperm counts and motility, seminiferous

tubule degeneration including decreased diameters of seminiferous tubules, lumen and epithe-

lial thickness leading to testicular atrophy [36], and abnormalities in sperm morphology follow-

ing NP exposure [37, 38]. Huang et al. [39] observed detrimental activity of NP on prepubertal

Sprague–Dawley male rats under in vivo and also under in vitro condition, when the animals

were treated with 25–100 mg/kg/day for 30 consecutive days by an intraperitoneal injection of

NP. NP exposure induced the sperm toxicity, resulting in cell damage and reproductive disor-

ders and initiated oxidative stress, disturbed the PI3K/AKT/mTOR pathway, induced apoptosis

and autophagy, and caused developing reproductive damage in vivo and in vitro.Uguz et al. [40]

designed an in vitro study with epididymal rat sperm, observed NP-induced (250–500 μg/mL; 1–

4 h exposure) impairment of spermmotility, and a decreased mitochondrial membrane potential

which probably plays a key role in the malfunction of spermatozoa. Another in vitro experiment

with ram and boar spermatozoa provides similar results, when exposure of both sperm types to

250 and 500 μg/mL was harmful to progressive motility, percentages of ram and boar sperm

with high mitochondrial membrane potential decreased significantly following exposure to

concentrations ≥250 μg/mL. Unlike chromatin integrity, which did not seem to be changed after

NP administration, there was a dose-dependent activity of NP on the acrosomal integrity of both

species at as low as 1 μg/mL for boar sperm and 10 μg/mL for ram sperm 35]. Lukac et al. [41]

used a cell model of bovine spermatozoa to determine the effect of NP (1, 10, 100, and 200 μg/

mL) on the motility and viability of spermatozoa during several time periods. The results

showed a decreased spermatozoa motility and viability in all experimental samples following

the addition of NP after 6 h of exposure. The effects of NP were also evaluated in frozen-thawed

bull spermatozoa, when the cells were exposed to concentrations of NP at doses 1, 10, 100, 250,

and 500 μg/mL. Sperm parameters were assessed at cultivation times of 0, 1, 2, 3 and 4 h and

both motility and mitochondrial membrane potential of sperm cells decreased at concentrations

≥250 μg/mL. In addition, the acrosome reaction was induced even at the lowest concentration of

NP [42]. Ergun et al. [43] showed that 100 μg/mL NP induced apoptosis by causing DNA breaks

in bovine spermatozoa. Vitellogenesis is a sensitive biomarker of xenoestrogen exposure in vitro

and in vivo and vitellogenin is considered to be a key in indicating the presence of xenoestrogens

in the environment, as these chemicals have been found to induce the production of this yolk

protein in males leading to the impairment of male sexual organ development and disruption of

male fertility [44]. NP is estrogenic also to aquatic organisms and experiments related to fish and

amphibians have shown that NP is able to induce vitellogenin in the gonads, violating the

development of the embryo and larvae, and results in a strikingly skewed sex ratio in aquatic

organism via modulating the effects of sex hormones [45]. NP has been connected with the

development of different types of sexual dysgenesis in the laboratory and wild fish [46, 47]. Feng

et al. [45] investigated the in vivo and in vitro effects of NP on the motility parameters and

fertilizing ability of Bufo raddei during amplexus and fertilization period. Based on the results,

ROS induced via NP and NP itself was associated with the decrease of the fertilization rate,

when in vitro assays showed a direct exposure of sperm to NP with a significant impairment of

motility, integrity, and increased ROS levels. Negative correlations were observed between

motility of spermatozoa and corresponding ROS concentrations, but the level of NP that admit-

tedly affected spermatozoa in this study (200 μg/L) was about 2.5 times of the highest NP level

found in natural aquatic environments (0.065–83 μg/L).
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2.1.2. Octylphenol

Numerous reproductive issues such as an increased incidence of testicular cancer, lower

spermatozoa activity, and disruption of the steroidogenic process have been related to expo-

sure to alkylphenols. One of the greatly widespread alkylphenols is octylphenol (OP). It is

used as a component of emulsifiers, detergents, paints and many other synthetic products.

Nowadays, OP is mainly present in sediments, surface waters, and even drinking water. Due

to its relative stability and hydrophobic properties, OP is bioaccumulated in various tissues

and poses a large health risk for the organism [48–50]. It has been reported that certain doses of

OP may negatively affect cellular processes such as steroidogenesis and spermatogenesis

essential for a normal development and functions of the male sex. However, there are still

limited information about the mechanism, through which OP affects biosynthesis of steroid

hormones. Some experimental studies have hypothesized that OP may directly modulate the

activity of steroidogenic enzymes. Murono et al. [51] documented that exposure to 2000 nM

OP affected the testosterone production in rat Leydig cells. In response to the experimental

dose, testosterone levels significantly increased after 2, 4, and 8 h cultivation, when compared

with the control. Exposure to shorter periods (0.5 and 1 h) were also examined; however, the

weak increase at these times was not statistically significant. The increase in hormone produc-

tion was not associated with changes in cAMP levels and it did not involve the estrogenic

activity (binding) to the estrogen receptors. Furthermore, higher testosterone secretion was not

the consequence of inhibiting 5α-reductase activity in Leydig cells. Although these results did

not describe signaling pathways, it is necessary to identify the potential mechanisms through

which intermediate stages of steroidogenesis may be affected. Some epidemiological studies

imply that the inhibiting effects of OP on the steroidogenesis are mediated through the

potential of OP to generate ROS and inhibit testosterone secretion. Cytochrome P450scc and

P450c17 are essential in converting cholesterol to testosterone in Leydig cells. During the

steroidogenic process, ROS are produced by electron leakage outside the electron transfer

chains and these radicals may cause lipid peroxidation to inactivate P450 enzymes [52]. Several

reports evaluated the potential effects of OP on the steroid hormone synthesis [51, 53].

According to Kotula-Balak et al. [54], independently of the incubation time, high doses of OP

significantly inhibited the progesterone production in mice MA-10 cells. Inhibition in proges-

terone levels was significantly higher in the experimental groups cultivated with OP for 3 h

than in cells incubated for 12 h. This can be related to the restoration of Leydig cell steroido-

genic function within the time of culture. Decreased progesterone production could be medi-

ated through the inhibition of 3β-HSD since it was reported that estradiol inhibits the

progesterone level via the disruption of the 3β-HSD function. Murono et al. [55] investigated

the impact of OP on the biosynthesis of steroid hormones in rat Leydig cells in vitro. The

authors reported a biphasic effect, where the lower experimental doses (1 and 10 nM)

increased the testosterone production by approximately 10–70% above the control group,

whereas higher concentrations (100 and 200 nM) decreased the testosterone level progres-

sively. The inhibitory effect of OP was also evaluated by Nikula et al. [53]. Inhibition of

testosterone secretion by 4-t-octylphenol in cultured mice Leydig cells has been suggested to

occur at the 17β-HSD step. It has also been reported that the gestational exposure of pregnant

rats to OP decreases the amount and activity of the P450c17 steroidogenic enzyme in male
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offspring and SF-1 (steroidogenic factor) involved in the gonad development and expression of

steroidogenic enzymes [56]. Based on the evidence gathered from the literature, it seems

possible that inhibited functions of a male reproductive system might be mediated not only

through the disruption of steroidogenic enzymes but also via the direct toxic effect of OP,

resulting in a lower cell viability and apoptosis. Qian et al. [50] evaluated the cytotoxic effect of

OP (30–60 μM) in rat Sertoli cells after a 24 h exposure. Cell viability was significantly reduced

at 40, 50, and 60 μM OP. Additionally, the highest experimental dose decreased the Sertoli cell

viability in a time-dependent manner with a significant decrease following a 12 h cultivation.

The cytotoxic effect of OP is strongly dependent on the experimental doses. Jambor et al. [57]

evaluated the in vitro effect of 4-OP on mice Leydig cell viability. The results showed a greater

viability at 1, 2.5 and 5 μg/mL of 4-OP following 44 h of cultivation. Kotula-Balak et al. [54]

illustrated marked differences in the Leydig cell morphology after OP treatment. Mice Leydig

cells exposed to experimental doses of OP (10�4 to 10�6 M) grew in a small group and 60% of

cells showed nucleus shrinkage, cytoplasm vacuolization and membrane floating, while the

control cells were formed as a monolayer with an epithelioid shape and abundant cytoplasm.

Conversely, lower concentrations of OP did not markedly affect the morphological structure of

exposed cells. In the recent years, a link was confirmed linking OP and the increased incidence

of male reproductive dysfunction. The ability of OP to affect spermatogenesis has been the

subject of much investigation. Spermatozoa abnormalities, a decreased sperm motility and

lower spermatozoa viability are current problems mediated through OP exposition. Of the

alkylphenols examined for their ability to act as an estrogen compound, octylphenol has been

observed to be vastly effective, showing approx. one thousandth of the estrogenicity when

compared to a strong estrogen 17β-estradiol [58]. Exposure to OP extremely inhibits the

testicular function as exhibited by a reduced size of the testes, reduced androgen concentra-

tions, and a negatively affected spermatogenesis. Similarities in the activity of OP and those

noticed after the addition of 17β-estradiol indicate that OP exerted its effect to impair the testes

in an estrogenic-like manner on the hypothalamus and/or anterior pituitary gland to arrest the

gonadotropin secretion [59]. OP is also believed to support the reduction in sperm quantity in

men resulting in male infertility and it has been defined as a potential reason of reproductive

tumorigenesis [60]. It has also been reported that OP shows a toxic potency on cultured

prespermatogonia and Sertoli cells [61]. In addition, it is proved that OP is able to generate

ROS which are cytotoxic compounds resulting in oxidative damage associated with damage to

biomolecules such as membrane lipids and DNA in sperm cells [62]. Adverse effects of OP on

male reproductive functions in pubertal rats were evaluated by Herath et al. [63], when

50-day-old rats in the OP group received daily injections of the xenoestrogen at a concentration

of 3 mg/kg. After 5 weeks of exposure, the epididymal sperm motility and sperm head counts

were determined with reduced sperm counts resulting from a decreased plasma testosterone,

but without significant effects of OP on the sperm motility parameters. The potential in vivo

genotoxic activity of OP in adult male Wistar albino rats was studied by Ulutas et al. [64],

when animals received OP oral doses of 125 and 250 mg/kg for 4 weeks. Possible genotoxic

effects of OP were evaluated as comet parameters including tail length and tail moment with

significant differences in both tested parameters only in the case of animals treated with the

highest dose of OP. Peng et al. [65] also provide results of a combined genetic toxicity of OP

along with NP in male mice following a peritoneal injection of nonylphenol-octylphenol (50,
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100, and 200 mg/kg). The effect on the DNA damage in the testicular cells and sperm defor-

mation rate after the exposure were measured using the comet assay and sperm morphologic

test. Within the examined doses of 100 and 200 mg/kg, the quantity of the comet cells in the

testes cells was increased. The DNA migration length was also significantly increased as OP-

NP elevated and the rate of sperm deformation was higher following exposure to the tested

chemicals too [66]. OP was also examined in the context of the biochemical composition of the

seminal fluid and production of the viviparous eelpout (Zoarces viviparus) and the investiga-

tion was carried out at the time of spawning. After 10 days of exposure to OP, a decline in the

gonadosomatic index was observed following the milt volume with a spermatocrit increase.

The histological investigation manifested that OP impaired the lobular composition, including

the Sertoli cells. In most of the OP-exposed individuals, trapped sperm cells in parts of the

seminiferous lobules and the sperm ducts were observed. OP also affected the biochemical

composition of the seminal fluid with elevated concentrations of the tested parameters such

as magnesium, calcium, and total protein, meanwhile values of free amino acids were

decreased in the exposed fish [67]. Movement characteristics are always the most important

parameters in the evaluation of semen quality. Spermatozoa motility represents the primary

characteristic in the assessment of male fertility and it is a fundamental premise for a successful

fertilization. Motility parameters are closely linked to the mitochondrial activity of spermato-

zoa as these organelles play a key role in the energy provision by production of ATP [68].

Lukacova et al. [69] confirmed a decline of bovine sperm motility, progressive motility, and

mitochondrial activity after exposure to 1–200 μg/mL OP during several time periods (0, 2, 4,

and 6 h). Interestingly, the values of intracellular superoxide production revealed a slight

decline of the superoxide concentration at the dose of 1 μg/mL when compared to the control

group and conversely, doses 10, 100, and 200 μg/mL of OP increased the concentrations of

superoxide in bovine sperm. Thus, in general, the effects of alkylphenols on the testicular

function are not clearly defined yet and their effect may be attributed to the concentration,

estrogen-mimicking activity, and time of exposure.

2.2. Bisphenols and their impact on steroidogenesis and spermatogenesis

Exposure to xenoestrogens such as bisphenols has been shown to cause adverse effects on

male reproductive system in humans and numerous animal species. As typical endocrine

disruptors, bisphenols are one of the most studied xenoestrogens in the field of male repro-

ductive system. A survey of the Pubmed database provides more than 10,000 articles on the

topic, including epidemiological as well as experimental studies. The overwhelming majority

of bisphenols is used as stable components of household products, epoxy resins, inner surface

of food metallic cans, dental sealants, and for myriad additional synthetic products. Many of

us are mostly confronted by bisphenols through gastrointestinal exposure (food packaging)

and dermal exposure (paper money and paper products). It is well known that increased

concentration of bisphenols was detected in urine, milk or sweat and over 90% of human

population is daily exposit to bisphenol A. Subsequent bioaccumulation and kinetic properties

may adversely affect the overall health [70, 71]. Nowadays, bisphenols have been associated

with a variety of human diseases, specifically kidney and cardiovascular diseases, obesity,

developmental defects, and reproductive disorders. Recent studies indicate a direct link
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between the incidence of male reproductive dysfunction and rising concentrations of

bisphenols in the environment. A decrease in semen quality was the first reported alteration

and from this moment on an informative expansion was launched on the potential conse-

quences of bisphenol exposure [72]. Several reports demonstrate a direct effect of bisphenols

on the biosynthesis of steroid hormones. Negative effects of bisphenol A (BPA) have been

reported in both in vivo and in vitro studies, where the steroidogenic enzymes were recognized

as primary targets. Downregulation of the expression levels of CYP11A and CYP17A has been

observed primarily, resulting in the decline of testosterone synthesis [73]. The altered levels of

testosterone may cause subsequent reproductive dysfunction by interfering with the feedback

regulatory mechanisms. Another serious effect by which bisphenolic compounds perform

their adverse impact on the male reproductive cells are disruption of the brittle balance

between the antioxidant capacity of cells and prooxidants in testicular tissues, which is linked

to the increased risk of oxidative stress development resulting in the arrest of spermatogenic

processes, production of abnormal sperm cells, and impairment of normal existing sperm cells

in the reproductive tract [11]. Oxidative reactions may lead to the decline of spermatozoa

quality, as observed by the decrease of spermatozoa motility, velocity, and viability values.

Moreover, bisphenol exposure could also result in the depletion of ATP metabolism and

damage to the genetic material by sperm DNA fragmentation [74].

2.2.1. Bisphenol A

Lan et al. [75] evaluated the effects of BPA on two steroidogenic enzymes (CP11A1; CYP19)

essential for the normal steroidogenic process. According to the PCR analysis, the endogenous

gene expression in both was upregulated by BPA at 100–1000 nM. Another steroidogenic

enzyme, CYP17, involved in the testosterone synthesis was also measured. The results showed

that BPA did not affect CYP17 protein expression significantly. However, the authors hypoth-

esized that the balance of steroid hormones may be affected. This was confirmed in the next

part of the study, where the testosterone production was slightly decreased at 1–100 nM BPA

following a 24 h exposure. The next steroidogenic enzyme responsible for the conversion of

pregnenolone to progesterone is 3β-HSD. Ye et al. [76] reported a significant inhibition of the

3β-HSD activity in rats and humans. Human 3β-HSD was more sensitive to BPA’s inhibition

than the rat enzyme. The authors also evaluated the effects of BPA on the testosterone produc-

tion in rat Leydig cells. Experimental doses of 10 and 100 μM markedly decreased the testos-

terone generation. Importantly, evidence exists that exposure to BPA in utero may reduce

the neonatal serum testosterone level [77]. In summary, although BPA directly affects the

steroidogenic genes, it is clear that BPA disrupts the hormone synthesis and contributes to

reproductive disorders. Because of an increased concern over the safety of BPA, European

Union has banned its use in plastic bottles for infants. The viability of Leydig cells is a

significant indicator for a sufficient production of steroid hormones. Lan et al. [75] illustrated

a dose-dependent effect of BPA on this parameter in the MA-10 cell line. The data show a

decrease in the cell viability (1–200 μM) following a 24 h cultivation in vitro. However, signif-

icant differences were recorded only with respect to the highest dose of BPA (200 μM).

Goncalves’s et al. [78] study showed a decrease in the Leydig cell viability upon the exposure

to BPA. The authors found out that experimental doses above 1 μM inhibited the cell viability
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following a 24 h incubation compared to the control. Nonetheless, the viability of TM3 cell line

did not decrease significantly even after a 48 h exposure at concentrations below 50 μM. De

Freitas et al. [79] observed a significant reduction in the viability of human Sertoli cells after the

cultivation with 10 μM BPA for 48 h.

Nowadays, there are many epidemiological studies which evaluated the effect of bisphenols on

the spermatozoa or spermatogenesis. Observable changes were recorded in the spermatozoa

motility, spermatozoa viability, and DNA integrity. In vivo experiments with adult male rats

indicated that the low concentration of BPA (2 μg/kg body weight) administered orally can

effectively inhibit spermatogenesis via disruption of the biosynthesis of reproductive hormones

resulting in the meiosis inhibition of sperm cells and induction of the Fas/FasL pathway with a

subsequent apoptosis. Declining amounts of testosterone were followed by a reduction of sperm

quantity [80]. Evidence showed an obvious link between increased urine levels of BPA and

reduced values of the sperm concentration what can be attributed to the disturbed processes of

spermatogenesis following BPA exposure. Harmful effects of BPA on the spermatogenesis

observed in experimental animals are also in agreement with an epidemiological study focused

on the impact of BPA on exposed human males. Reduced spermatozoa count, indicating a

primary association between BPA exposure and production of sperm cells were attributed to

increased values of BPA in urine when men with high urine BPA levels had more than three

times lower sperm concentration and viability; however, no correlation was observed between

the urine BPA concentrations and semen volume or abnormal sperm morphology compared to

subjects without the presence of BPA in the urine [60]. Also, other in vitro studies revealed a

direct effect of BPA exposure on the sperm quality. Singh et al. [81] used in his in vitro study

chicken sperm to determine environmentally relevant concentrations of BPA (0.18, 0.37 and

0.74mM) related to motility, fertilizing ability, live sperm percentage, and mitochondrial mem-

brane potential after 30 min of BPA treatment. The results showed that 0.74 mM BPA is able to

compromise sperm functions in the case of all analyzed parameters leading to the decline of

sperm fertilizing ability. Data obtained from in vitro experiments by Lukacova et al. [82] refer that

BPA has negative effects on bovine spermatozoa motility in different doses (1, 10, 100, and

200 μg/mL). The results showed that BPA has the ability to reduce the values of mitochondrial

activity and spermatozoa motility, causing mitochondrial damage as evidenced by the increased

values of intracellular superoxide. Spermatozoamotility parameters were significantly decreased

in experimental groups exposed to concentrations of BPA higher than 100 μg/mL. In experimen-

tal mice, the motility analyzed following 6 h of in vitro treatment with 0.0001, 0.01, 1, and 100 μM

BPA, the number of motile sperm cells was also reduced in the case of dose of 100 μM BPA [83].

Administration of different BPA concentrations (0.6, 4.5, and 11.0 μg/L) demonstrated an impair-

ment of motility in fish spermatozoa too [84].

2.2.2. Bisphenol alternatives

More stringent global regulations of BPA production and the use have led to the development

of alternative bisphenol compounds [85]. A few years ago, researchers have begun to deal with

potential properties of 4,40-dihydroxydiphenylsulphone (BPS) or 4,40-dihydroxydiphenlymet-

hane (BPF). Both are presently not regulated and are used without restriction. Additionally,
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currently available toxicological data are scarce and the information about their potential

impact is limited. Nowadays, studies reported the effects of BPS via genomic mechanisms

using extremely high concentrations but there are still no studies evaluating the in vivo toxicity.

Although BPS is less likely to leach from plastic packaging with heat, it does still escape the

polymer in small quantities under the normal use. Chen et al. [86] showed that 40 μM BPS had

a 15-fold lower genomic estrogenic activity than BPA. Only a few studies have evaluated BPS

at low concentration ranges likely to be present in foods, wildlife or humans. Eladak et al. [87]

used the mouse FeTA model to illustrate the effects of BPS and BPF on the testosterone

synthesis. Results from the present study showed that BPF has a similar dose-response effect

as BPA with a significantly decreased amount of testosterone starting from 1000 nmol/L. On

the other hand, BPS had even a more potent inhibitory effect than BPA. Indeed, 100 nmol/L

BPS significantly reduced the testosterone production after 3 days of treatment. Authors also

compared the effects of 10,000 nmol/L BPA, BPS, and BPF on specific gene expression in mice

Leydig cells. All bisphenol alternatives reduced the expression of key genes involved in

steroidogenesis such as Star, hsd3βa CYP17a1, expect CYP11a1. In addition, the expression of

Lhcgr (the gene encoding the LH/CG receptor) was also decreased. This is one of the few

reports that suggest harmful consequences on the reproductive functions in humans and

rodents. According to Ji et al. [88], BPS is able to reduce the level of testosterone as well as

CYP17a and 17β-HSD mRNA levels in zebrafish. It must be noted that the binding activity of

BPS and BPF to estrogen receptor (α; β) is, respectively, 5-or 10-fold lower than that of BPA in

the HELN cells [89].

Effect of BPS exposure on oxidative stress, generation of ROS, and impairment of DNA

integrity of rat sperm cells under the in vitro condition and daily sperm production and sperm

DNA damage under the in vivo condition was examined in the study of Ullah et al. [90].

Spermatozoa were cultivated along with BPS at doses of 0.5, 1, 10 and 100 μg/L and the

analyses showed that the highest concentration of BPS initiated ROS generation, induced

peroxidation of membrane lipids, altered superoxide dismutase concentrations, and increased

the incidence of DNA fragmentation in the sperm cells. The in vivo part of this study revealed

that adult rats exposed to concentrations of 0.5, 5, 25, and 50 μg/kg/day for 28 days demon-

strated a decline in daily sperm production with rising values of DNA damage occurring in

spermatozoa observed in experimental animals treated with the highest dose (50 μg/kg/day) of

BPS; however, the motility parameters were not inhibited. Similarly, treatment with 50 μg/kg/d

lead to the development of oxidative stress in the testes and impaired reproductive functions

in rats [91]. An earlier study on zebrafish embryos focusing on the developmental exposure to

BPS was performed to examine the reproduction potential and hormonal balance in adult

individuals. Embryos of zebrafish were treated and bred in the presence of various doses of

BPS (0, 0.1, 1, 10, and 100 g/L) for 75 days. Following that period, adult males and females were

paired for next 7 days in fresh water and subsequently the impact on individual development,

reproduction, plasma vitellogenin, sex steroids, and thyroid hormone rates were examined.

The results showed skewed sex ratio in favor of females and decreased values of body length

and weight in males exposed to 100 g/L of BPS. The gonadosomatic index showed reduced

values in fish at tested concentrations ≥10 g/L of BPS. In both males and females, a significant

stimulation in plasma vitellogenin level was noticed at ≥10 μg/L of BPS and also thyroxine and
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triiodothyronine levels were significantly decreased at 10 and 100 μg/L of BPS in males. Sperm

count was also reduced in the experimental groups exposed to 10 and 100 μg/L of BPS [92]. In

other studies, cytotoxic, genotoxic [93], and mutagenic [94] effects of BPS in different cell

models were documented. It is proved that the exposure to BPS can violate the cellular

signaling path in the apoptotic and viability ways, which is why it is possible to expect a

reaction of BPS with pro-apoptotic and signaling cascades observed also in the sex cells

resulting in the affected cell cycle and apoptosis [95]. Nowadays, further research is required

to elucidate the effects of bisphenols on the male and female reproductive system.

2.3. Phthalates and their impact on steroidogenesis and spermatogenesis

Numerous environmental contaminants have hormonal or anti-hormonal actions that interfere

with endocrine homeostasis of individuals. As we mentioned above, the group of endocrine

disruptors is very heterogeneous and phthalates, as ubiquitous chemical compounds are

widely used as plasticizers in children’s plastics toys, food packaging, medical tubing, certain

cosmetics, shampoos, soaps, and many others household products [96]. Early experimental

studies found a low level of phthalate toxicity in rodents, but nowadays, a high extent of

carcinogenicity, teratogenicity or testicular atrophy has been widely confirmed. Recent studies

have verified that phthalates are capable to affect many physiological mechanism and func-

tions, especially within the reproductive system. Moreover, disorders linked to reproductive

toxicity may appear in early life stages, puberty, and some of them may manifest in adulthood.

The Department of Health and Human Services estimated that daily human consumption of

commonly used phthalates diethylhexyl phthalate (DEHP) revolves around 5.8 mg and

monoethylhexyl phthalate (MEHP) ranges from 3.26 to 4.15 in males and 2.93 to 3.51 in

females. On the other hand, DEHP is metabolized by intestinal lipases to MEHP, which is

glucuronized and excreted from the organism with minimum tissue accumulation [97, 98].

According to its toxicological profile, MEHP seems to be 10-fold more potent in its toxicity to

Leydig and Sertoli cells in comparison to DEHP, suggesting that DEHP is the pretoxin which

acts via metabolizing into MEHP [99]. Several toxicological reports suggest that DEHP and

MEHP disrupt reproductive development and now it is established that these phthalates

inhibit the biosynthesis of steroid hormones in Leydig cells at different developmental stages.

In utero exposure to phthalates has been shown to reduce male fertility potential in rats.

Subsequent postnatal changes preceded an inhibition in Leydig cell function, including lower

levels of testosterone. Many authors suggest that phthalates exert their effect via multiple

mechanism of action such as the peroxisomes proliferator-activated receptors, estrogen recep-

tors or yet unidentified mechanism.

2.3.1. Diethylhexyl phthalate (DEHP)

Akingbemi et al. [100] investigated the ability of DEHP to affect the biosynthesis of steroid

hormones in rat Leydig cells. Pubertal rats were exposed to 1, 10, 100, and 200 mg/kg/day DEHP

for 2 weeks. The highest experimental dose (200 mg/kg/day) DEHP caused a 77% decrease in the

activity of 17β-HSD and reduced the testosterone production to 50% of the control. Paradoxi-

cally, prolonged time of cultivation to 28 days resulted in significant increases in the testosterone

secretion capacity and in serum LH levels. A few years later, Akingbemi et al. [101] evaluated the

Endocrine Disruptors110



potential effects of DEHP on isolated rat Leydig cells in vitro. When compared to the control,

mRNA levels of PCNA and cyclin D3 were expressed at statistically higher levels of proliferation

following treatment. Additionally, estradiol levels were elevated by as much as 50% above the

control group and aromatase gene expression was also higher in DEHP exposed cells. Several

recent investigations have shown that DEHP disrupts the reproductive system of the male rat in

an antiandrogenic manner. In the present study, Parks et al. [102] explored the antiandrogenic

action of DEHP and MEHP as well as alterations in the testosterone production. Maternal

exposure at 750 mg/kg/day caused a significant reduction in the testosterone levels. In addition,

Liu et al. [103] performed gene expression profiling following in utero exposure to phthalates and

observed a decline in levels of steroidogenic enzymes (CYP11a1; CYP17a1) and lipid transport

(StAR). However, the exact mechanism of action is not fully clear. The negative impact of DEHP

on the male reproductive system has been related to their monoester metabolite MEHP. It has

been shown that this endocrinologically active phthalate may negatively affect the testes and

more specifically suppress Leydig cells functions [104].

2.3.2. Monoethylhexyl phthalate (MEHP)

Dees et al. [105] reported that MEHP inhibits androgen production in MA-10 Leydig cells. By

using different MEHP concentrations over a longer time interval (24 and 2 h), the authors have

demonstrated that even at low experimental doses MEHP inhibits the steroid production (a 50%

inhibition was observed at 10 μM), induces morphological changes such as mitochondrial swell-

ing and vesiculation of the Golgi apparatus. Conversely, at 100 and 300 μM doses, this inhibition

was not seen. Thus, it is possible that the absence of any effect may be mediated through an

unidentified mechanism, distinct to the mechanisms responsible for the inhibition of steroid

production. In the next in vitro study, Jones et al. [106] exposed the primary culture of Leydig

cells to MEHP (1 mM) for 2 h. A moderate decrease in testosterone production was shownwhich

correlated with the changes in the cell ultrastructure. Treatment with MEHP confirmed mito-

chondrial swelling with the loss of matrix granules, reduction in the number of Golgi apparatus

and dilatation of the smooth endoplasmic reticulum. Svechnikov et al. [107] also confirmed the

inhibitory effect on steroidogenesis in rat Leydig cells. The result showed significantly lower

testosterone levels (57–62% inhibition) in exposed cells (250 μM MEHP) after 24 h incubation

when compared with the control group. In order to determine whether the inhibition of testos-

terone secretionwas due to the disruption of StAR, the authors decided tomonitor the expression

of this protein by Western blotting. A marked decrease in StAR expression was observed after

24 h incubation. In addition, the activity of 5α-reductase, an enzyme synthesizing the potent

androgen dihydrotestosterone, was dramatically inhibited in immature Leydig cells. The dys-

function of Leydig cells is postulated to have a direct association with androgen-dependent

parameters of sexual development. Nevertheless, it is necessary to determine whether the effects

of chronic DEPH or MEHP exposure are reversed or mitigated when exposure is terminated.

Numerous studies have evaluated the testicular toxicity of phthalates in different experimental

models and showed that spermatozoa and spermatogenesis were one of the main targets of their

actions. Kasahara et al. [96] indicate associations between DEHP administration and increased

production of ROS and selectively decreased GSH and ascorbic acid in the testis with a conse-

quent induction of rat sperm cell apoptosis leading to testicular atrophy after in vivo DEHP

exposition. More specifically, the results provided by Li et al. [108] when male rats were fed
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DEHP for 2 weeks. The result was that the spermatogenesis became disrupted with decreased

spermatocytes and spermatids counts and in addition, DEHP (20, 100, 500, to 1000 mg/kg)

appeared to inhibit DNA replication. This resulted in the induction of the mitochondrial apopto-

tic pathways and overgeneration of ROS. Also, elevated activity of superoxide dismutase,

reduced activity of glutathione peroxidase, and increased values of malondialdehyde after

exposure to 500 mg/kg/day of dibutyl phthalate in the epididymis support the importance of

oxidative stress as a major mechanism of phthalate action [109]. Likewise, the response to

oxidative stress indicates an increased expression of mitochondrial peroxiredoxin and cyclooxy-

genase-2 in germ cells after phthalate treatment [110]. Apoptosis of germ cells has also been

proposed as a potential effect of phthalates on male reproduction based on the results reporting

an increased membrane localization of Fas and apoptic cells [111, 112]. One essential trace

element necessary in spermatogenesis is zinc and even a slight deficiency of zinc has been

observed to arrest spermatogenesis in both mice and humans [113]. Earlier studies examined

phthalate-induced modifications in metabolism of zinc after treatment with high doses of

phthalates with reduced testicular zinc concentrations [114], a decline of zinc half-life in the

testes [115] and increased excretion of zinc in urine after phthalate exposure [114, 116]. The next

schematic figure (Figure 1) summarizes final findings.

3. Future directions and recommendations

Probably, research is just at the very start of a long journey to refine understanding of the

principal mechanisms of toxicity related to endocrine disruptive compounds and the range of

influence of these hormonally active substances to the human and environmental health in the

Figure 1. The effects of selected EDs on the male reproductive system.
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context of male reproduction. Society will definitely continue to use these materials because of

their undeniable benefits and primary we have to aim future investigation on testing and

development of chemicals to maintain healthier, safe, and more sustainable world for next

generations and on evolve suitable strategies of remediation of EDs. Progress in the experi-

mental area of endocrine disruptors effects provides rich lessons that can be usable in other

fields of science, as well as in the future missions in toxicology and environmental health.

This still controversial and live topic has already improved research of toxicology and risk

assessment and has moved it into certain radically different trends. Further improvement in

this field including reproductive biology rests in modern technology, such as toxicogenomics,

which can study precursor changes on the level of cells and biological molecules and thus offer

understanding of dose and time-dependent responses in more detail. Moreover, the increased

usage of human, rather than animal, cell models keep a promise for intensify issues of human

relevance. However, reality is that new questions are asked while previous issues associated

with impact of EDs on male reproductive organs and behavior persist. The most important

fields of investigation for better understanding of how EDs affect functions of tissues involved

in male reproductive physiology are associated especially with questions such as why are

some tissues, time periods, and even organisms more resistant to EDs exposure; how EDs

effect in model organisms and cells translates to human exposure to EDs. There is also need for

more studies with aim on syndromes and EDs contribution to development of multiple

symptoms at once. The summary of some EDs affecting male reproductive system is presented

in Table 1. There is also necessity to interpret specific cell culture responses in the context of

whole-organism physiology, ideally that of humans. It is well known that endocrine system

Chemicals Cellular effects Source/applications Study

Aldrin Competitive binding to androgen receptors; ↓weight of

testes; ↓ 3β-HSD and 17β-HSD; ↓spermatozoa MOT;

Insecticide,

groundwater

Lemaire et al.

[117]

Chatterjee

et al. [118]

Das Neves

et al. [119]

Alachlor Competitive binding to estrogen and progesterone

receptors; no effects on testosterone production;

↓ spermatozoa MOT and viability;

Herbicide Mikamo et al.

[120]

Gizard et al.

[121]

Bisphenols Estrogenic and anti-androgenic affinity; ↓ 3β-HSD and 17β-

HSD; ↑apoptosis; ↓ sperm MOT, viability and concentration;

Plasticizers, epoxy

resins, dental sealants,

Eladak et al.

[87]

Lukacova

et al. [82]

Akingbemi

et al. [122]

Ahmed [123]

DDT and

metabolites

Competitive binding to androgen receptors, activation of

androgen-sensitive cells proliferation;

↓ expression of steroidogenic enzymes;

↓ testosterone, estradiol, progesterone production;

Pesticides, insecticide Tapiero et al.

[124]

Tesier and

Matsumura

[125]

Castellanos

et al. [126]
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mediates reactions on distant tissues and cells. Therefore, research that focuses only on isolated

components of endocrine system or target tissues may provide incomplete information. Essen-

tial principles of toxicokinetics should be part of key studies related to impact of EDs on

specific structures of organisms.

4. Conclusion

In recent years, a growing incidence of EDs has led scientific community to show how these

substances may affect the male reproductive system. The in vitro evaluation of steroidogenesis

and spermatogenesis are necessary for the screening potential of reproductive toxicants such as

alkylphenols, bisphenols, phthalates, and many others. The mechanism of their negative effect is

by diverse but one important endpoint is reduced processes, essential for normal reproductive

functions. This review has demonstrated that certain groups of EDs may directly or indirectly

interfere with the biosynthesis of steroid hormones and spermatogenesis via different mecha-

nisms of action. Dysfunction of these processes may cause an incomplete masculinization,

suppressed libido, reduced steroidogenic capacity, develop various malformations in spermato-

zoa and subsequently totally inhibit the reproductive potential of humans and animals. It must

be noted that further studies are required to understand the effects of EDs on the male reproduc-

tive functions and their contributions to male sub- or infertility.
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Chemicals Cellular effects Source/applications Study

Mono/Di-(2-

ethylhexyl)

phthalate

↓17β-HSD; ↓ StAR expression,

↑ mitochondrial damages; ↑ ROS;

↓ antioxidant defense; ↑spermatozoa apoptosis;

Plasticizers, cosmetics,

food packaging

Akingbemi

et al. [100,

101]

Svechnikov

et al. [107]

Dees et al.

[105]

Alkylphenols ↓3β-HSD, 17β-HSD, StAR; ↑ ROS production; ↓ cell viability;

↑ apoptosis; ↓ spermatozoa MOT and viability; ↑ DNA

fragmentation,

Cosmetics, pesticides,

paints, food

packaging’s,

Jambor et al.

[21, 57]

Lukacova

et al. [69, 82]

Diemer et al.

[127]

Haavisto

et al. [128]

3β-HSD, 3beta-hydroxysteroid dehydrogenase; 17β-HSD, 17beta-hydroxysteroid dehydrogenase; MOT, motility; StAR,

steroidogenic acute regulatory protein; and ROS, reactive oxygen species.

Table 1. Summary of some EDs affecting male reproduction.
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