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Abstract

Metal stress is among the important environmental stresses, which influences the growth 
and development of plants and crops in many areas in the biosphere. Root is an impor-
tant gate for the absorption of water and mineral nutrition which in many types of lands 
is also accompanied by a higher concentration of metal elements, either essential (such as 
Fe, Mn, and Cu) or non-essential metal elements or heavy metals (such as Al, Pb, Hg, Cd, 
and Ag). In response to metal stress, plant roots sometimes develop a cellular structure to 
prevent excessive concentration of metal components to avoid toxic effects and cellular 
damage. Physiological and biochemical responses at the cellular level, which result in 
ultrastructure changes may occur due to or to avoid the negative effect of metal toxicity. 
In many cases it was followed by the reduction of root growth followed by discontinu-
ing entirely plant growth. On the other hand, the structural changes are an important 
part of root mechanism to sustain the plant from metal toxicity. In this chapter, different 
changes in the cellular ultrastructure resulting from toxic damage or indicating tolerance 
response to metal stress will be elucidated.

Keywords: metal stress, cellular ultrastructure, root anatomy, heavy metal,  
metal toxicity

1. Introduction

In nature, plants will face diverse environmental circumstances including unfavorable condi-
tions due to the presence of toxic compounds such as metal elements at toxic concentrations. 
On the one hand, plants as autotroph organisms require several essential elements from their 
environment which are mostly metal elements such as Cu, Zn, Mn, Fe, Mo, Co, and Ni but 
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in small amounts as microelements (trace elements). These elements are essential for crucial 
biological processes and developmental pathways [1]. But in excessive amounts they will be 
toxic [2]. On the other hand, their environment sometimes also contains non-essential metallic 

elements, such as Al, which are normally abundant in the soils with lower pH or even heavy 
metals such as Pb, Cd, Hg, and Cr on post-mining lands as well as contaminated lands from 
industrial waste [3, 4]. The existence of these elements causes plants to experience stress, 
which consequently inhibits the growth of the roots and canopy and can even cause death.

Metal stress occurs due to the absorption of metal elements that exceeds the required concen-

tration threshold which in turn leads to toxicity. For non-essential metallic elements such as 
Pb, Cd, Cr, and Hg, even at low concentrations, if they are absorbed by plants, they can be 
toxic for them. The toxic effects of these elements include decreased photosynthesis rate, cell 
division inhibition, free radical formation, or the inhibition of water absorption rate, which 

finally cause root growth and plant canopy to be strongly inhibited [5, 6]. Growth is the most 

easily recognizable morphological parameter of plants undergoing metal stress, where root 
growth is commonly the most affected. Furthermore, slow growth will result in low crop 
production if it occurs in cultivated plants.

Some plant species may become resilient to those conditions which allow them to live in 

environments with higher levels of metals. Some plant species are even able to absorb large 

amounts of metals in their body that are known as hyper-accumulators such as in Alyssum 

bertolonii and Berkheya coddii [7, 8] and Camellia sinensis [9]. There are several mechanisms 
that allow plants to keep growing well in environments with high metal content, including: 
(a) plants having the ability to keep metal ions from entering into cells, (b) plants having the 
ability to absorb metals in high concentrations and allocating them certain tissues/organs, and 
(c) plants having mechanisms that allow metals to be detoxified so that they do not to disrupt 
plant growth. There are several evidences to show that metal toxicity have a direct effect on 
growth inhibition of many species, either in roots or in shoots, but the detailed discussion on 
this response, especially on the perspective of cellular growth, is still rarely found. This will 
discuss the general feature of growth inhibition of roots in response to metal toxicity and the 
tentative mechanisms of tolerant plants which are able to sustain their growth under higher 
metal concentration. This chapter is prepared to present the simple and holistic concept of 
plant response to metal stress especially in the context of plant growth extracted from newer 

references and advance researches. The scope is restricted in growth because the initial stage 
that can be recognized is the inhibition of growth, especially root growth, followed by other 

morphological and physiological parameters depending on the tolerance level of the plants.

2. Metal source and contaminants in nature

In nature, the abundance of metal elements comes from several sources: (a) from natural par-

ent rocks [10], (b) environmental conditions that influence metal elements to dissolve and 
cause toxicity to plants such as flooded lands with lower pH [3], and (c) anthropogenic fac-

tors, derived from human activities such as mining, industry, and intensive farming activities. 
Some areas of the Earth have high metal content [11, 12]; one example is the ultramafic bedrock 
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in Sulawesi, Indonesia, which contains magnesium, iron, and nickel in high quantities [13]. 

Such soils usually have extreme characteristics because the macronutrient content such as 
nitrogen, phosphorus, potassium, and calcium is very low while the micronutrient content 
such as nickel is so high that it is difficult for plants to grow well because of toxicity [14].

Environmental conditions may have set up the abundance of metal elements due to acidified 
soil. Acid sulfate soil is an example of this which is characterized by an excess of potentially 
acidic pyritic material over acid-neutralizing free carbonate, adsorbed base, and easily weath-

erable minerals [15], which cause the accumulation of H+, Al3+, Fe2+, and organic acid that are 

toxic to plants [16].

Human activities have influenced the dispersion of metal elements including heavy metals 
such as Pb, Cd, Ag, Hg, and Cr due to several activities including traditional and mining 
activities, and intensive agricultural practices such as pesticide and fungicide applications 
have increased the contamination of metal elements [17–19]. Therefore, heavy metals, espe-

cially, have been addressed as critical substances concerning human health and environmen-

tal issues due to their high occurrence as contaminants, low solubility in biota, and some 
heavy metals also have been classified as having carcinogenic and mutagenic effects [20, 21].

Based on plant requirements, metal elements are divided into two groups, essential and non-
essential metal elements. Some metal elements such as copper, iron, zinc, manganese, molyb-

denum, and nickel have important roles in a wide range of physiological processes in plant 
organs, especially for enzyme activities, which are also known as essential micronutrients 
or trace element [6]. However, at higher concentrations, they can also be toxic to the plants 
[22, 23]. Another group of metals such as chromium, arsenic, cadmium, mercury, and lead 
are non-essential and potentially very toxic to the plants even under lower concentrations 
[22]. Metal toxicity can inhibit photosynthesis and water absorption, disturb carbohydrate 
metabolism, and initiate the secondary stresses such as oxidative stress, which influences 
plant growth and development [24].

3. Growth inhibition due to metal stress

Plant growth is among the morphological characteristics, which is normally inhibited by metal 
stress, and root growth is the most affected, and therefore root growth sometimes becomes an 
important parameter to analyze plants tolerant to metal stress [25]. The inhibition of roots in 
several species in response to metal stress has been reported by many authors, species such 
as rice [26, 27], soybean, sorghum [28], and wheat [29] in higher aluminum concentrations; 
Brassica species [30] and soybean [31] in Zn toxicity; as well as tea plants [32] and tomato-

sensitive as well as tolerant genotypes [33] in cadmium toxicity.

In Vigna unguiculata, Al exposure caused great root inhibition even only 5 h after treatment, 
even though after 18 h the growth recovered with a higher rate for tolerant genotypes while 
it was lower in sensitive genotypes [34]. Figure 1 also shows an example of root inhibition in 

sensitive, transgenic, and tolerant rice in response to aluminum exposure of 15 ppm at lower 
pH [27]. Lower pH (4.5) decreased the root length of tolerant (HB), transgenic (TS34, TS13-5, 
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TS 15-41) and sensitive rice (IR64) altogether, but Al treatment at 15 ppm caused root inhibi-
tion more severe with sensitive variety (IR64) had the lowest root length (Figure 1).

At the tissue level, metal toxicity may cause damage to certain tissues such as epidermis, 
cortex, as well as vascular tissues. The damage of epidermis and cortex tissues was observed 
when rice seedlings were treated with a high concentration of cadmium [35]. A greater num-

ber of nucleoli and vacuoles and enlarged vacuoles were observed in transgenic cotton culti-
vars exposed to cadmium [36].

At cellular level, metal toxicity has a direct as well as indirect effect on plant physiology and 
biochemical mechanisms which result in growth inhibition. The direct effect of metal toxicity 
can be categorized as membrane damage, the alteration of enzyme activity, and the inhibi-

tion of root growth, while the indirect effect of metal toxicity can be the disturbance of hor-

mone balance, the deficiency of essential nutrients, the inhibition of photosynthesis, changes 
in photo-assimilate translocation, the alteration of water relations, and so on, which further 
enhance metal-induced growth reduction [22]. Therefore, root growth inhibition is sometimes 
followed by damage to root cells that can be observed from cellular ultrastructure as shown in 
Figure 2. Aluminum-sensitive plant roots treated with a concentration of 15 ppm experienced 
ultrastructural damage and the cells underwent plasmolysis and had irregular shapes, while 
the transgenic plant cell structure was still intact with a normal tetrahedron shape (Figure 2).

Growth restrictions, especially in roots of plants that undergo heavy metal stress, are caused 
by two fundamental reasons: (a) inhibition of cell division and (b) decrease of cell expansion 
(Figure 3). During the process of growth, cell division in meristematic tissues is an initial 
stage that must go, by which if cell division is disturbed, the growth will slow down. Higher 
cellular activity in the meristematic region of the root tip is a key factor that may be disrupted 
by abiotic stress including metal stress. The inhibition of cell division or cessation of mito-

sis due to metal stress has been documented in many species, such as cowpea plant (Vigna 

Figure 1. Root growth responses of five rice genotypes to low pH and 15 ppm Al stress. Rice seedlings were grown on 
nutrient solution at (A) pH 5.8, (B) pH 4.0, and (C) pH 4.0 + 15 ppm of Al. +Al = 15 ppm Al; −Al = 0 ppm Al (control); 
HB = Al-tolerant rice; IR64 = Al-sensitive rice; T8-2-4, T8-12-5, and T8-15-41 = T4 generations of transgenic lines of IR64. 
Bar = 1000 mm (After [27]).
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unguicalata) exposed to Al stress [34], Zea mays, and Lemna minor exposed to Pb [37, 38]. The 
disorder of cell division often occurs when the basic material for the formation of new cells 
such as carbohydrates, lipids, and nucleic acids (DNA) is disrupted. Damage to proteins and 
DNA is one of the effects of metal stress that occurs in many plant species such as in Urtica 

dioica [39]. In addition, some heavy metal such as Pb has caused microtubule disruption in Zea 

mays which caused mitosis inhibition [38].

In addition to cell division, the capacity of plant growth is also determined by cell enlarge-

ment and expansion. Cell expansion is an important aspect of cellular growth. During cell 
expansion, cell wall stress relaxation occurs and results in a decrease in cell water potential 
and turgor pressure, creating the necessary water potential gradient for water uptake and the 
irreversible process of cell wall expansion [40]. The process of cell expansion involves impor-

tant aspects including cell wall loosening or wall stress relaxation, followed by the absorption 
of water by cells which enlarge and stretch the cells [41, 42]. Therefore, the decrease of cell 
expansion is mostly triggered by several factors: (1) decrease in cell wall extensibility and 
elasticity, (2) inhibiting proteins that work in cell wall loosening, (3) decreasing water absorp-

tion, (4) the disruption of hormone work, especially auxin which plays an important role in 
the growth processes, and (5) the decrease of photosynthesis. Wolf et al. [43] suggested that 
environmental stresses such as salt, heavy metals, osmotic stresses, microbial enzymes, or 
mechanical injury can threaten the integrity of the rearranging carbohydrate and glycoprotein 
networks. There are a lot of papers that have explained that some metals including Al are 

Figure 2. Root tip cell structure after treated with and without 15 ppm Al treatment for 72 h using TEM. (A and D) 
control treatment without Al pH 5.8; (B and E) control treatment without Al pH 4.0; and (C and F) treatments with 
15 ppm Al pH 4.0. Ct = cytoplasm; Cw = cell wall; G = golgi apparatus; IR = IR64; M = mitochondria; MCt = membrane 
of cytoplasm; N = nucleus; RE = reticulum of endoplasm; T = transgenic rice; TEM = transmission electron microscope; 
V = vacuole. Magnification 10,000×. Bar = 500 mm (After [27]).
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bound to the cell wall such as in algal cells like Chara coralline [44], okra hypocotyl [45], and 

tobacco cells [46], which in turn caused decreased cell wall extensibility and consequently 
root growth inhibition [45, 47].

Cell wall loosening is a direct cause and an initial part of cell wall expansion which subsequently 
results in cell growth [48]. Cell wall loosening during cell expansion also involves a group of 
proteins known as expansins which catalyze the pH-dependent extension and stress relaxation 
of cell wall [6]. Under normal conditions the decrease of pH in the cell wall will initiate cell 
wall loosening and cell relaxation. Expansins have the ability to non-enzymatically trigger a pH-
dependent relaxation of the cell wall, which loosens and softens it, thus enabling cell expansion. 
This group of proteins is required in almost all plant physiological developmental aspects, from 
germination to fruiting, by reducing adhesion between adjacent wall polysaccharides [48]. Some 

experiments indicated that metal stress caused the inhibition of this group of proteins signifi-

cantly [49]. In broad beans, some expansin family was also inhibited by Cu and Cd toxicity [50].

Figure 3. Effect of metal toxicity on roots cell growth involving multifaceted physiological inhibition and disruption 
including inhibition of cell division in meristematic tissues and inhibition of cell expansion. Cell division cessation may 
be caused by DNA damage, disruption of carbohydrate, protein and lipid metabolism, and microtubule disturbance. 
Inhibition of cell expansion could be caused by decrease of cell wall extensibility, inhibition of proteins that work in cell 
loosening, decrease water absorption, disruption of hormone work and decrease of photosynthesis.
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Decreased water absorption is one of general effects of metal toxicity, especially generated by 
heavy metal stresses such as Cd and Hg [51]. The interference with water absorption is partly 
due to the inactivation of water channel proteins by heavy metals [25]. In addition, the decrease in 
water potential was probably due to decreased cell wall extensibility or elasticity by cross-linking 
the pectin carboxyl groups in the walls with heavy metals [22]. In addition to the interference with 
the absorption of water, metal stress is also suspected to cause the hampering of plant hormones, 
especially auxins [52]. Although indirect, the decline of photosynthesis also affects cell enlarge-

ment, considering that this process will produce the needed materials to form new cell walls. In 
this phase, photosynthesis also has an important role, so the decline of the photosynthetic rate 

will result directly in the occurrence of cell division barriers. Data suggest that metal stress results 
in a decrease in photosynthesis rates such as Cd and Cr [51] and excessive Cu [53, 54].

4. Physiological responses and oxidative stress induced by metal 

toxicity

In response to metal toxicity, there are several physiological mechanisms exhibited by plants 
involving biochemical processes as well as cellular and ultrastructural changes (Table 1). 
These mechanisms may be species specific and are associated with its characteristics and 
tolerance levels to metal toxicity, which comprise two basic mechanisms: (1) retaining metal 
elements out of cellular cytoplasm through cell wall component binding or active transport 
excluding the cell and (2) detoxification of metals using chemical compounds such as phyto-

chelatines and metallothioneins and accumulating them in vacuoles (Figure 4), which are also 
known as avoidance and tolerance types [55].

To keep metal elements out of the cytoplasm, cell wall has an important role, because cell wall 
is a complex structure composed of cellulose microfibrils and non-cellulosic neutral polysac-

charides embedded in a physiologically active pectin matrix, cross-linked with structural pro-

teins and sometimes with lignin [56]. The ability of the cell wall to bind divalent metal cations 
depends on the number of functional groups such as –COOH, –OH, and –SH occurring in 
cell wall compounds containing cellulose, hemicellulose, and pectin, which are able to bind 
metal elements [57, 58]. In higher plants, the most significant role is especially determined 
by polysaccharides abundant in the carboxyl group homogalacturonans (HGA) [59, 60]. In 
addition to polysaccharide compounds, other compounds such as proteins, amino acids, and 
phenolics also take part in metal element binding [55].

Accumulation and secretion of organic acids was observed in many species exposed to metal 
stress, especially Al, Cd, and Pb [9, 61–64]. This organic acid accumulation is associated 
with the inhibition and avoidance of metals from entering the metabolic-active cellular part 
through forming metal–organic acid complexes in the cytosol or at the root-soil interface [9]. 

Cell wall thickening and lignification are also important histological responses of the plants 
to avoid metal toxicity [35, 42, 63, 65].

It has been well known that plants exposed to heavy metal stresses undergo oxidative stress 
specified by producing higher free radicals [82–84]. At the cellular level, the generation of reactive 
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Metal 

elements

Plant species Physiological responses References

Al Camellia sinensis

Triticum aestivum

Phaseolus vulgaris

Zea mays

Glycine max

Colocasia esculenta

Brassica napus

Avena sativa

Raphanus sativus Secale 

cereale

Fagopyrum tataricum

Malate secretion

Citrate secretion

Citrate secretion

Citrate secretion

Oxalate secretion

Oxalate and citrate

Oxalate and citrate

Oxalate and citrate

Oxalate and citrate

Lower pectin in cell wall

[9]

[61]

[66]

[67]

[68]

[62]

[69]

[70]

[71]

[72]

Pea (Pisum sativum) Lower pectin in cell wall of tolerant cultivar [73]

Rice α-expansins involved in the root cell wall loosening [49]

Medicago sativa exogenous IAA improve tolerance [2]

Cd Rice Cell wall thickening [35]

Cotton Greater number of nucleoli and vacuoles and enlarged 
vacuoles

[36]

Maize Lignin accumulation and the role

apoplastic collenchyma and phloem lignification for 
metal new bound site

[64]

Brassica napus Induced phytochelatin and glutathione [74]

Tomatoes genotypes Induced proline and antioxidant enzymes (APX, GR, 
CAT)

[75]

Avena strigosa Induced antioxidant enzymes and phytochelatines [76]

White lupin Induced Phytochelatines [77]

Sedum alfredii Induced Phytochelatines [78]

Cd and As Rice Disturb IAA biosynthesis

Alter the lateral root primordia

[52]

Cd and As Pteris vittata (fern) Metabolite deposition in intercellular space

Induced GSH and phytochelatines (Pcs)

Cell wall thickening in epidermis and Increase cuticle

[63]

Cu and Cd Broad bean Inhibition of a phytochelatin synthase and/or a member 
of the α-expansin family

[50]

Fe Wheat Regulation of phytosiderophore and induction of 
antioxidative enzymes (CAT, POD, GR) and elevated 
glutathione, cysteine, and proline.

[79]

Hg Maize Induced lipid peroxidation and proline content [80]

Pb Dianthus carthusianorum The development and role of pericyclic tissues [81]

Pb Paraserianthes falcataria Citrate secretion [64]

Table 1. Physiological and ultrastructural changes in response to metal toxicity.

Plant Growth and Regulation - Alterations to Sustain Unfavorable Conditions28



oxygen species (ROS) which includes superoxide anion (O
2
−), hydroxyl radical (*OH), alkoxyl 

(RO*), peroxyl (ROO*), hydrogen peroxide (H
2
O

2
), singlet oxygen (1O

2
), and so on due to metal 

stress results in oxidative damages to lipids, proteins, and fatty acids which disrupt biomem-

brane, ultrastructural cellular components, DNA, and causes programmed cell death [85, 86].

Oxidative damage is among the cause of growth inhibition of roots as well as shoots. These 
reactive oxygen species (ROS) react with lipids, proteins, pigments, and nucleic acids which 
led to the occurrence of lipid peroxidation, membrane damage, and inactivation of enzymes, 
thus destroying cell viability [32]. Lipid peroxidation is the general indicator of oxidative stress 

which is recognized by the accumulation of malondialdehyde (MDA) in the cells or tissues 
when the plants are under stress [87], and MDA content is often used as an indicator for the 
extent of oxidative stress [88, 89]. Some experiments showed that cadmium exposure caused 
gradual the increase of MDA and H

2
O

2
 content in the leaves as well as roots of resistant as 

well as sensitive tomatoes [33]. In Camellia sinensis, the application of cadmium up to 400 μM 
caused a linear increase of MDA content, while it caused a significant decrease of chlorophyll 
and protein content [32]. The significant increase of MDA content was also observed in sensitive 
rice IR64 treated with 15 mM of Al, while the increase was moderate in tolerant varieties [27].

Figure 4. The role of root cells to mitigate metal toxicity involving (1) cell wall barriers such as polysaccharides and 
proteins binding sites, phosphate binding sites, callose development and cell wall lignification to prevent metals 
enter to the cells; and (2) cellular resistance mechanism including metal efflux assisted by ATPase-based transporter, 
phytochelatines, metallothioneins, enzymatic as well as non-enzymatic antioxidant mechanism and accumulation in 
vacuole.
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The plants have specific mechanisms to overcome oxidative stress which in general involves 
(a) antioxidant enzyme activities and (b) non-enzymatic antioxidant processes. Antioxidant 
enzymes such as superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione 
reductase (GR), catalase (CAT), glutathione peroxidase (GPX), and dehydroascorbate reduc-

tase (DHAR) are among the enzymes that have important roles in cellular scavenging from 
ROS [82, 90–92]. In Camellia sinensis, for example, transcription levels of glutathione reductase 
(GR), an enzyme involved in the reduction of oxidized glutathione (GSSG) to reduced gluta-

thione (GSH), showed up-regulation on cadmium exposure [32].

In addition to antioxidant enzymes, to deal with the oxidative stress caused by metal toxic-

ity, the plants sometimes accumulate some non-enzymatic antioxidant compounds such as 
organic acids, glutathione, tocopherol, phytochelatin, metallothionein, and non-protein thiol 
[9, 51, 63, 77, 78]. These compounds are important in protecting the cells from the dam-

age caused by heavy metal stress so that plants that have the ability to accumulate such 
compounds are tolerant to heavy metal stresses [82, 93]. The indication of oxidative stress 
induced by heavy metals was also demonstrated by the application of several agents such 
as ascorbic acid, oxalic acid, citric acid, and malic acid [9]. Using Al-sensitive wheat (cv. 
Scout 66), Ma et al. [29] showed that Al exposure at 10 μM caused a substantial decrease 
of the roots’ elongation of wheat. However, the application of malate, oxalate, and citrate 
gradually recovered the inhibition of Al to the root elongation as compared to the control, 
without organic acid application, even though the most effective treatment was using citric 
acid [29]. Data show that organic acid has an important role in metal toxicity especially Al 
with different specificities among plant species. Organic acid accumulation including oxalic 
acid, malic acid, citric acid and glycolic acid was also observed in tea plants treated by high 

concentrations of aluminum until 2 mM, even though they were decreased when the plant 
was treated with 4 mM of Al [9].

Glutathione (GSH) is also an antioxidant compound that is known to alleviate the plant 
from environmental stress, including metal toxicity [51, 94]. GSH is very important because 
it involves cell protection from free radicals generated from heavy metal toxicity including 
H

2
O

2
. In many species, the increase of GSH concentration in the cell has been observed in 

response to heavy metal treatments, since this compound is known as the precursor of phyto-

chelatin (PC), a typical metal chelator found in plants that facilitates metal sequestration into 
vacuoles [95], and this has been believed to be part of heavy metal tolerance [96]. Interestingly, 
the exogenous application of glutathione was also able to alleviate the toxic effect of metal 
stress especially from Hg toxicity [93]. He explained that the exogenous glutathione applica-

tion effectively prevented mercury absorption by roots and improved plant tolerance to mer-

cury toxicity by significantly decreased H
2
O

2
 and O

2
− levels and lipid peroxidation, while it 

improves the chlorophyll content of Arabidopsis thaliana, tobacco, and pepper in the presence 

of Hg. He also suggested that GSH is a potent molecule capable of conferring Hg tolerance by 
inhibiting Hg accumulation in plants [93].

Interestingly, the exogenous application of H
2
O

2
 on Brassica napus was able to reduce oxida-

tive stress induced by cadmium application indicated by the decrease of MDA and H
2
O

2
 accu-

mulation in the plant and the increase of antioxidant enzyme activities, such as APX, DHAR, 
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catalase, GR, and GST as well as ascorbate and glutathione content significantly [97]. In this 
regard, H

2
O

2
 may become an important substance required to induce antioxidant enzyme 

activities in the plants when the plant undergoes stress.

5. Accumulator plants are resistant to metal toxicity

Although heavy metals cause plant toxicity, there are some groups of plants that have the 
ability to accumulate large quantities of metal elements which are known as accumulator 
plants. These plants are not only able to grow in the area with high metal concentrations 
but also even able to grow better under high metal contents, even though some plants have 
slower growth rate. Tea plants (Camellia sinensis), for example, have the ability to accu-

mulate aluminum in higher amounts. In his experiments Li et al. [9] showed the growth 

of C. sinensis plant on the medium with Al content ranging from 0, 0.1, 0.4, 2, to 4 mM 
for 4 weeks, and the best growth was shown by plants treated with Al 0.4 mM. He also 
showed that even when the plants received Al treatment up to 2 M concentrations they 
had better growth than control plants [9]. This shows that C. sinensis has a high tolerance 

to Al. Several plant species such as Alyssum bertolonii, Brassica juncea, Eichhornia crassipes, 

and Iberis intermedia have been recognized to accumulate metals in higher concentrations 
and therefore have been considered to be used in the phytomining of Ni, Co, Tl, Ag, and Au 
[7, 8, 98, 99]. In an ultramafic area in Tuscany, Italy, Alyssum bertolonii was able to extract 

nickel till 0.7% of its dry weight [7], a very high value of metal component that was there 
in the plant. Another species Brassica juncea was also grown using similar methods that 
accumulated Au up to 57 mg/kg dry mass [99]. Therefore these plants are categorized as 
hyper-accumulator plants.

Plants may have ultrastructure modification in shoots as well as root cells in response to metal 
stress to anticipate the binding or deposition of the metal element when they enter into the 

cell of accumulator plants. Krzesłowska [55], for example, presented the TEM ultrastructure 
analysis of poplar root protonema apical cell exposed to lead of 32 μM, and she found that 
in the cell wall there were extremely large crystalline-like deposits of Pb which thickened the 
cell wall. She also found internalization of Pb deposits together with pectin in the protonema 
apical of Funaria hygrometrica exposed to 1000 μM of lead.

In maize leaves, the increase of the transversal area occupied by collenchyma in the foliar 
nervure as well as of the cell wall lignification was pronounced in response to cadmium treat-
ment in combination with lime, even though collenchyma’s lignification was not found in 
the treatment without lime [64]. Another example is cotton, where ultrastructure analysis 
found cadmium in the form of crystals and electron-dense granules both in the vacuoles and 
attached to the cell walls, which reveals that the sequestration of cadmium was possibly facili-
tated by binding with the non-functional parts of the cell, and the increase in number and size 
of vacuoles and greater number of nucleoli might be important characters of tolerant geno-

types to cadmium toxicity in cotton plants [36]. Data show that the accumulation of metals for 
accumulator or even hyper-accumulator plants may be facilitated by both the capacity of the 
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cell wall to bind particular metals and the ability to detoxify and have a safer metal-transport 
mechanism to cell vacuole or other non-active organs. This response may be supported by the 
dynamic modification of physiological, anatomical, and even ultrastructural changes which 
allow the plant to sustainably grow under metal stress.

6. Conclusions

Metal toxicity is one of the conditions plants face in the growing environment. Essential trace 

elements such as Cu, Zn, Fe, and Mn are important to support metabolic processes in the 
plant, but under high concentrations, they can result in metal toxicity. The presence of non-
essential metals such as Al, Pb, Cd, Cr, and Hg in plant media is very toxic to plants even 
at lower concentrations. Common responses of plants to metal poisoning are the inhibition 

of growth, chlorosis and necrosis at the leaves, decreased photosynthesis, and even death. 

The plants have mechanisms to avoid metal toxicity which can be divided into two processes:  
(1) by avoiding metal elements entering into the cell involving metal-cell wall binding or pre-

venting metal insertion by the chelation mechanism facilitated by organic acid or active exclu-

sion pump and (2) by producing compounds that are able to neutralize the damage when the 
metal element enter the cell through phytochelatine or metallothionein compounds as well as 
antioxidant mechanisms before being deposited into vacuole. Ultrastructure changes and cell 
wall thickening and lignin formation are among the cellular responses that have been observed 
in many species, while the other phenomena including the increase in the number and size of 
vacuoles and vesicles inside the cells containing crystalloid-metal elements were also detected.
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