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Abstract

It has been shown that patients carrying HIV-1 accumulate damage to cells and tissues 
that are not directly infected by the virus itself (e.g., neurons). Importantly, these include 
changes known as HIV-Associated Neurodegenerative Disorder (HAND) leading to the 
loss of neuronal functions. HAND is an outstanding problem in the clinical management 
of HIV-1 patients because suppression of infectious virus by c-ART does not completely 
block neurodegenerative changes. Neuropsychological studies disclose cognitive altera-
tion (such as loss of Spatial and Declarative Memory) in a substantial proportion of HIV-1 
infected patients, and analysis of post-mortem brain tissues isolated from HIV-1 patients 
treated with c-ART show signs of neurodegeneration. In the absence of HIV-1 infection 
of neurons, several mechanisms have been proposed for HAND, including indirect 
inflammatory effects in the CNS and direct effects of viral proteins (e.g., gp120) shed 
from activated HIV-1-infected cells. The fact that these viral proteins enter the neurons 
through several pathways suggests the presence of many competing mechanisms that 
can contribute to HAND, each of which has its advocates. Their relative contributions to 
clinical disease in vivo remain to be sorted out, and this is an outstanding problem in HIV 
research. This chapter will shed some light on the mechanisms used by HIV-1 leading to 
memory impairments and premature brain aging.

Keywords: HIV, brain, aging, mitochondria

1. HIV-1 and structural changes

1.1. Thinning of the cortex: white/gray matter (methods and results)

Physiological brain aging is associated with a decrease in gray matter (GM) volume between 
adulthood and old age, while the volume of white matter (WM) increase from age 19 to 40 and 
will regress after that [1]. The reduction of gray matter is probably the result of neuronal shrinkage 
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and the reduction of synaptic spines [2]. Ventricular enlargement associated with normal aging 

and the Evans’ index is used to distinguish normal and pathological enlargement [3].

Different techniques are used to evaluate different categories of brain changes: neurophysiology, 
neurochemistry, brain structure, and brain activation networks. Structural magnetic resonance 

imaging (MRI), diffusion MRI, and X-ray computed tomography (CT) are the tools for struc-

tural neuroimaging. Neurometabolites or neurochemicals can be tracked with positron emission 

tomography (PET) using radiotracers and by magnetic resonance spectroscopy (MRS). Brain 

activation networks can be studied by functional magnetic resonance imaging (fMRI) methods 

based on blood oxygenation level-dependent (BOLD) contrast, and arterial spin labeling (ASL) 

perfusion contrast shows changes in cerebral blood flow (CBF) and blood oxygenation.

Using imaging techniques, scientists and clinicians determined that the global cerebral vol-
ume is smaller in HIV-1 patients than in the seronegative population [4]. The HIV+ subjects 

also present a higher neuronal loss [5] and the patients with detectable viral loads had the 

highest rates of gray (GM) and white (WM) matter loss [6].

MRI technique also revealed that the gray matter of HIV+ subjects may present cortical 
atrophy [7, 8] and volumetric loss in the caudate, amygdala, and hippocampus [4, 7, 9–12]. 

Moreover, the medial and superior frontal gyri can show an atrophy [13], as well as the pos-

terior and inferior temporal lobe, parietal lobe, and cerebellum [14].

If changes of white matter integrity are common with age, the abnormalities are more pro-

nounced in aged HIV+ subjects [15]. The white matter of HIV+ subjects displayed some 
changes, like a tissue loss in the corpus callosum [9], as well as corpus callosum thinning and 

ventricular expansion [16]. HIV+ subjects showed increased mean diffusivity in frontal and 
parietal white matter, putamen, and genu [17]. Lower fractional anisotropy is also found at 

an older age in HIV+ subjects in white matter of frontal, temporal, and parietal lobes but a 
higher mean diffusion only in the occipital white matter [18]. Small white matter hyperin-

tensities (WMH) are associated with age in seronegative adults [19, 20] and are attributed 
to inflammatory, vascular, or blood–brain barrier changes [21, 22]. However, these WMHs 
can be connected to dementia, multiple sclerosis, and cerebrovascular diseases [23, 24]. The 

increase of WMH volume is linked to lesser brain integrity in the sagittal stratum and the 
corpus callosum. HIV+ adults over age 60 showed a higher ratio from abnormal to normal 
WMH, with a subset of individuals in this age group with a significantly high WMH. This 
high ratio is associated with cardiovascular and is inversely correlated with global psychomo-

tor and cognitive performance. The examination of the microstructure of the white matter 
by diffusion tensor imaging (DTI) brings a promising disease-activity marker [25]. A disease 

more advanced associated with a higher rate of decline of the CD4 count is linked to a greater 
atrophy of the gray and white matter in the brain [26].

Away from human, this degeneration in gray and white matter was also observed in HIV-1 
Tat transgenic mice model. The expression of Tat protein diminishes cortical gray matter 
density in young Tat transgenic mice [27] and alters the structure of myelin examined by 

either DTI imaging [28] or electron microscopy [29], with declines of fractional anisotropy 

and behavioral changes.
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Finally, more developed tools and methods (e.g., brain PAD) were also used to measure the 
influence of HIV-1 on aging. This integrative tool measures brain-predicted age difference (brain-
PAD) scores. It associates structural neuroimaging data with neuropsychological test scores, try-

ing to predict brain age and to assess the correlation of brain age to chronological age [30].

1.2. Loss of neural circuits and brain plasticity: implication of long-term 

potentiation in learning and memory

Long-term potentiation (LTP) is a persistent increase in the synaptic activity leading to the 

signal transmission between two neurons. The canonical mode of LTP induction at CA1 hip-

pocampal synapses relies on the glutamate receptor NMDAR and the following biochemical 

cascade triggered and maintained by the synaptic protein calcium/calmodulin-dependent 

protein kinase II (CaMKII). The impairment of this cascade would lead to an acute deficit in 
learning and memory storage. LTP is involved in learning and memory functions in structures 

like the hippocampus or the amygdala. It is generated by short repetitive high-frequency 
stimulation (HFS) and may persist for hours or days.

An early study in 1999 demonstrated that some factors secreted by HIV-1-infected monocytes-
derived macrophages (MDMs) inhibit the induction of LTP in the CA1 region of the rat hippocam-

pus [31]. Later, a study shows that mice with severe combined immunodeficiency (SCIDs) injected 
by HIV-1-infected human monocyte-derived macrophages (MDMs) into the basal ganglia present 

a gradual decrease in synaptic function, followed by decreased cognition and later by an impair-

ment of multiple phases of synaptic potentiation [32]. Impairment of synaptic functions, as well 

as the induction and maintenance of LTP, is described in mice with HIVE [33]. HIV-infected brain 

mononuclear phagocytes (MP) (macrophages and microglia) are the reservoirs for persistent viral 

infection. They secrete soluble factors like chemokines, free radicals, proinflammatory cytokines, 
nitric oxide, and eicosanoids. HIV-infected MDM culture supernatants containing same soluble 

factors have the capability to inhibit synaptic transmission and block LTP from the CA1 part of the 
hippocampus of rats. A deeper investigation of the mechanism involved shows that IL-8 severely 

reduces Ca2+ currents in the septal neurons, triggering the closure of L- and N-type Ca2+ channels 

[34]. Without an increase of the intracellular Ca2+ flux, the LTP in the CA1 region of the hippocam-

pus is impaired [35].

The study of isolated HIV-1 proteins on CA1 long-term potentiation (LTP) gave us more 
information about the mechanisms involved in the impairment of learning and memory by 

HIV-1. Mice-expressing HIV-1 gp120 are showing a significant decrease in CA1 hippocampal 
LTP. Gp120-induced impairment is prevented by a pre-treatment with the NMDA receptor 
antagonist, suggesting that excessive activation of the NMDA receptor, that can lead to exci-

totoxic cell death, is responsible for the degenerative process triggered by gp120 [36]. HIV-1 

gp120 protein inhibits LTP via the chemokine receptor CXCR4 and binds to it through the V3 
loop epitope KRIHI [37]. Gp120-associated reduction of LTP is alleviated by a systemic admin-

istration of 4-AP, a Kv, channel antagonist. This result supports the evidence that the neuronal 
voltage-gated potassium (K+) channels (Kv) are targeted by gp120 during the inhibition of LTP 
and that Kv channels are linked learning and memory deficiencies in HAND [38]. With nor-

mal, non-pathological aging, dendritic trees experience gradual regression in dendritic arbors 
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of pyramidal neurons situated in the superior temporal, precentral, and prefrontal cortices 

in humans [8]. HIV-1 Tat expression in pyramidal CA1 neurons decrease the number of api-
cal dendritic spines, without the evidence of pyramidal death but with the disruption of the 

distribution of the synaptic proteins gephyrin and synaptogtagmin2 [39]. The Tat expression 

induces synapto-dendritic modifications in the hippocampus that will disrupt the LTP in CA1 
pyramidal neurons and subsequently bring deficits in learning and memory.

HIV-1 Tat protein injection into the hippocampus showed that Tat plays on extra-synaptic 

NMDA receptors but not on synaptic. Additionally, it suppresses long-term potentiation 

(LTP) followed by a diminution of spatial learning. Tat protein induces the phosphorylation 

of NMDA receptor subunits NR2A and NR2B in a tyrosine kinase-dependent manner, which 
triggers Ca2+ flux. Ca2+ entry through synaptic NMDA receptors activates cAMP response 

element binding protein (CREB) activity, and confers antiapoptotic ability, while Ca2+ entry 

through extrasynaptic NMDA receptors shuts off CREB pathway [40]. Some recent work 

shows that CREB protein holds an essential role in memory formation. CREB protein brings 
changes in global neuronal excitability. CREB overexpression results in more action potential 
for each pulse and a smaller after-hyperpolarization (AHP) after a chain of action potentials. 

AHP is usually engendered by K+ channels, and CREB might be involved in variations in 
K+ conductance. By enhancing neuronal excitability, CREB might increase the inclusion of 
neurons into the memory trace [41].

2. Neuropsychological changes

2.1. Depression: serotonin loss

With normal aging, the brain suffers from serotonin (5-HT) neuron and neurotransmitter loss. 
This deficit in serotonergic neurotransmission might promote the occurrence of depression in 
the elderly population [42]. The incidence of major depression is estimated from 1 to 10% in a 
population older than 60 years of age, while depressive symptoms may affect up to 20% [43, 44]. 

Even if it is not considered as a normal aging event, the loss of serotonin and subsequent depres-

sion is a common even among the elderly.

Depression is significant comorbidity with a prevalence superior to 30% in some studies in 
HIV-infected patients [45, 46]. Among a cohort of 13,874 HIV-infected patients, 44% percent of 
the study population had depression, and 15% of the whole cohort was prescribed SSRIs [47].

The essential amino acid l-tryptophan (Trp) is the precursor of some essential metabolites 

produced during the course of its degradation, along with different pathways, like the kyn-

urenine (KYN) pathway and the serotonin, 5-hydroxytryptamine or 5-HT pathway. During 
the kynurenine pathway, the tryptophan is converted by the enzymes Tryptophan 2,3-dioxy-

genase (TDO) or indoleamine 2,3-dioxygenase 1 (IDO1), IDO2. The resulting product is fur-

ther degraded to kynurenine (KYN), which is a precursor of bioactive compounds, including 
quinolinic acid (QUIN), that subsequently activate or inhibit NMDA neurotransmission. Pro-
inflammatory cytokines, including interferon-γ (IFN-γ), interleukin-1 β (IL-1β), and IL-6, can 
further induce IDO-1 and TDO and thus activate this pathway, reducing the availability of 

TRP for the serotonin synthesis pathway [48–51].
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HIV-1 clade B Tat is responsible for the up-regulation of IDO and the down-regulation of 

5-HT gene and protein expressions. Also, HIV-1 clade B Tat reduces 5-HT with a concomitant 

increase in KYN levels as compared to HIV-1 clade C Tat [52].

HIV+ subjects present a reduced breakdown of Phe to tyrosine (Tyr) [53, 54] and a faster con-

version of trp to kynurenine (Kyn) [55], which is correlated with higher levels of immune acti-

vation markers like interferon-γ (IFN-γ) or neopterin in HIV-1 individuals [56]. Accelerated 

trp breakdown was correlated with neuropsychiatric symptoms in HIV patients [55, 57].

It is interesting to note that serotonin treatment decreases the HIV-I replication in human 

macrophages. Indeed 5-HT decreases the β-chemokine receptor, CCR5, and increases the 
CCL5 chemokine, MIP-1α, implying an effect of 5-HT on 5-HT1A receptors on macrophages 
[58]. Further, some studies show that in HIV+ individuals the blocking of the re-uptake of 
serotonin (SSRIs) is associated with the up-regulation of NK cells [59, 60]. Serotonergic path-

ways are important in the function of natural killer (NK) cells and CD8 + T cells [61].

2.2. HIV-1 and risks of Alzheimer’s disease (AD) pathogenesis

Apolipoprotein (apo) E isoforms (apoE2, apoE3, and apoE4) play a role in cardiovascular 
disease and lipoprotein metabolism but are mainly studied for their contribution in neurode-

generation in Alzheimer’s disease [62–64]. HIV-associated dementia (HAD) is a neurological 

condition with clinicopathological features similar to Alzheimer’s disease [65].

Early research presented in Nature Medicine in 1998 measures the risk of dementia in patients 
who presented E4 isoform for apolipoprotein E (APOE). Compared to the normal subjects, 
they presented twice more dementia and peripheral neuropathy, concluding that a long-term 

infection brings an increased risk of dementia for E4(+) subjects [66], with an even bigger risk 

with low CD4+ cell count and length of infection. It is today widely accepted that the APOE 

ε4/ε4 genotype is associated with a faster disease course and progression to death compared 
with the APOE ε3/ε3 genotype. However, an association between the ε4/ε4 genotype and 
HIV-associated dementia (HAD) was not identified [67].

APOEε4 allele(s) may lead to premature aging with neurodegeneration in younger HIV 
patients preceding the development of HAND, potentially because of greater neuroinflam-

mation or more abundant amyloid deposition in younger HIV subjects with APOEε4 allele(s) 
[4, 68]. Recent neuroimaging studies present conflicting results. One study on 237 patients 
shows that the ApoEε4 allele does not affect brain integrity, gray, or white matter, in their 
cohort of HIV+ individuals [69]. Another study on 76 patients shows brain atrophy, especially 

in the posterior corpus callosum, thalamus, and brainstem [70]. These individuals were older 

than 60, which could explain the discrepancy between the studies; the deleterious effects 
could be age dependent [71].

The APOEε4 genotype is a risk factor for elevated cholesterol in ART-adherent HIV(+) men 
aged >50 years [72] with a risk for a higher cognitive decline associated and cardiovascular 

problems.

All these studies taken together, it is now clear that individuals with HIV and the ApoE gene 

exhibited greater cognitive deficits when tested for attention, executive function, and working 
memory than HIV-infected individuals with ApoE4 genotype carriers.
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3. Gait/balance

Aging is associated with a cascade of events affecting the function of the Substantia Nigra (SN) 
neurons, from the dopamine metabolism to the mitochondrial dysfunction and the alteration 

in protein degradation. The addition of cellular defects linked to aging increases the risks of 

developing Parkinson’s disease [73, 74].

With aging, the density of dopamine transporters and dopaminergic neurons decreases, and 
there is a correlation between the decline of the dopamine system function and the executive 

function [75]. Several studies show evidence of a link between aging, memory, learning, and 

dopaminergic change [76–79]. HIV-1 penetrates the brain immediately after the initial infection 

and is disseminated in various concentrations in different parts of the brain, with a particu-

lar affinity for the subcortical regions like the basal ganglia, including the putamen, caudate 
nucleus, globus pallidus, and Substantia Nigra [80]. HIV-1 RNA is also identified in different 
regions of the postmortem brain, especially in different nuclei of the basal ganglia [81–83]. 

Since basal ganglia is the main target of HIV infection in the brain, it is not surprising that 

the dopaminergic function located in the Substantia Nigra will be altered. Neuropathological 

assessments of HIV+ patients show that the degeneration of Substantia Nigra is common. 

Moreover, it could explain the sensitivity of some patients to drug-induced Parkinsonism [84].

HIV-1 and Parkinson’s disease both affect nigrostriatal structures with subsequent dopami-
nergic dysfunction. HIV-1 patients display signs of hypomimia, bradykinesia, poor hand 

agility, and action or postural tremor exacerbated by age [85]. The aging HIV+ population 

treated with HAART shows more frequent presentation of HIV-1 Parkinsonism. A significant 
decrease of dopamine in the Substantia Nigra was subsequently found in the postmortem 
examination of the HIV+ brains [86]. Alpha-synuclein is one of the major factors in Parkinson’s 

disease pathology, and its expression was found to have increased in the Substantia Nigra of 

HIV+ postmortem brain [87]. Alpha-synuclein plays a role in the apoptosis of dopamine cells 

and reinforces the idea that the aging brain of HIV+ individuals may develop PD. Different 
studies report that the dopamine concentration in the HIV-infected brain can decrease by 50% 
[80, 86, 88]. The decrease in DA levels in SN was significantly correlated with the decrease in 
performance in learning, memory, speed of processing information, and verbal fluency.

The presynaptic dopamine transporter (DAT)-mediated dopamine reuptake is crucial for 

regular dopamine homeostasis and subsequent brain functions like memory, learning, and 
attention. However, it has been reported that HIV patients with dementia had substantially 
lower DAT availability in ventral striatum and putamen [89]. The DAT expression and func-

tion is also altered by HIV proteins in animals. HIV-1 Tat induces inhibition of the transporter 

by an allosteric binding to DAT [90]. DAT function and expression is modified in the HIV-1-tg 
rats [91]. HIV-1 gp120 was similarly described to cause a loss of dopamine-secreting neurons 
in rats [92–94]. HIV-1 Nef is another viral protein disturbing the dopamine functions, reduc-

ing striatal dopamine levels in HIV-1 mice. The animal will consequently develop mania-like 
behaviors and present a reduced content of dopamine and DAT [95].

HIV+ subjects present a diminished motor performance at multitasking and a decreased veloc-

ity compared to the control group. This may affect the daily life and require more attention to 
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every motor task [96]. A psychomotor slowing of HIV patients was already described in early 

neuropsychological studies [97], which was presumed to be from the frontostriatal origin. The 

first hypothesis for the gait and balance problems was a neuropathy of the peripheral nervous 
system [98, 99]. However, the cerebellum, and the pons more exactly, is also implicated in 

HIV infection [100–105].

There is evidence of cerebellar damage [105–107] and an important degeneration of the cer-

ebellar granular cell layer and axonal swelling. CT and MRI show pontocerebellar damage in 
HIV infection [108] and 3–6% of an HIV-infected group [109]. Men and women show tissue 

volume deficits in combined pons, vermis tissue, and cerebellar hemispheres. This will result 
in a deficit in motor performance like static postural stability, and tandem walking, particu-

larly when the patients have their eyes closed during the test. The psychomotor speed and the 

finger dexterity were also impaired.

The pediatric HIV-1 infection will present different complications, involving deep abnormali-
ties in the striatal dopamine system including the basal ganglia. The HIV-infected children 

present a slower-than-normal information processing and poor attentional abilities [110–112].

4. Epigenetic changes

4.1. Methylation levels

Epigenetic alterations are one of the hallmarks of aging. As epigenetic changes accumulate 

upon aging, DNA methylation can be a precise predictor of chronological age [113, 114], since 

certain CpG sites are highly associated with age [115].

A first large-scale epigenome-wide association study in 2016 analyzed DNA methylation dur-

ing HIV infection [116] and found a differential DNA methylation associated with the infec-

tion. HIV-1, as other viruses, can alter the expression of DNA methyltransferases (DNMTs), 

like DNMT1 [117, 118] and DNMT3b [119], affecting maintenance and de novo DNA meth-

ylation maintenance. The alteration of methylation could be an epigenetic outcome of the 

integration of HIV-1 DNA into the host genome and could decrease genome stability. These 

studies were made in blood, and because of the presence of the blood-brain barrier, it was 

necessary to analyze methylation directly in the brain tissue.

A 2015 study uses blood and brain tissue to find a relationship between HIV status and epi-
genetic age acceleration [120]. It eliminates different hypothesis explaining age acceleration 
effects in the brain tissue. It concluded that the telomere length is not involved and finds 
difficult to explain the age acceleration in the brain by the increase in the amount of senes-

cent or exhausted T-cells like it is working in the blood, because of the blood-brain barrier. 

The retained hypothesis is an effect of the age acceleration, and independently the T-cells 
exhaust, confounding the relationship between these two events. In 2016, a comparative DNA 
methylation profiling on monocytes derived from HIV-infected individuals, with or without 
impairment, identifies a specific immunoepigenetic signature of cognitive impairment [121]. 

A total of 1032 loci differentially methylated are associated with cognitive impairment, with 
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loci connected to gene networks in the central nervous system and preferentially located in 

intergenic regions of the gene and over gene bodies. A more recent analysis was made on 

DNA from the occipital cortex of 58 HIV+ subjects that were followed for neurocognitive 

evaluation within 1 year of death [122]. It is the first study to associate HAND status with 
the epigenetic age of frontal cortex tissue, with an average relative acceleration of 3.5 years. 

This accelerated epigenetic aging was not the consequence of CD4+ cell count or viral load, 
the activity of HAART on the CNS, or comorbidities. Interestingly, the entire HAND group 
presented accelerated aging in the brain tissue, but that was not correlated with HAND grav-

ity or neurocognitive performance. This accelerated aging seems linked to the duration of 

the infection and suggests that a low level but chronic HIV replication in brain reservoirs 

maintains pathological processes.

4.2. microRNA

The genome-wide expression analysis of miRNA in aging brains showed a unique expression 
profile which emphasizes how crucial their role is in the neurodegeneration and the aging 
process [123].

MiR-34a has been linked to the regulation of several proteins including sirtuin 1 (SIRT1) 
[124]. SIRT1 is an enzyme implicated in the deacetylation of proteins involved in cell stress, 

longevity, and glucose metabolism [125]. Mir-34a up-regulation, the reciprocal decline of its 
target SIRT1, is the biomarker for aging in the brain and a good predictor of deterioration 

of the brain function. The miR-34a expression is significantly increased in HIV-infected vas-

cular endothelial cells (ECs) [126] as well as in primary neuronal cultures and neuronal cell 

lines [127]. MiR-146a was also up-regulated in these cells. HIV-1 vpr has the same ability to 
strongly overexpress miR-34a and miR-146a in neuronal cells and to down-regulate miR-106a 
[128]. The up-regulation of miR-34a and miR146a [129] and the down-regulation of miR-106a 
[130] are described to be associated with aging. The increase of miR-34a can cause abnormal 
mitochondrial dynamics and dysfunctional autophagy [131].

4.3. HIV-1 disrupts the calcium signaling in the brain

Changes in calcium signaling are major factors leading to aging, as many vital functions of 
the brain depend on precise calcium homeostasis [132]. Khachaturian presented in 1994 his 
hypothesis of aging [133] to try to elucidate the neurophysiological mechanisms of Ca2+ sig-

naling that they are associated with aging and neurodegeneration.

HIV-1 disturbs the functional expression and activity of voltage-gated calcium channel 

(VGCCs) (changes in evoked Ca2+ spikes and L-channel expression) in the mPFC in an age-
dependent way and implies that ion-channel dysfunction associated with HIV-induced 

medial PreFrontal Cortex (mPFC) hyper-excitability progresses with age/HIV duration [134].

HIV-infected individuals, especially as they age, are subject to neuronal Ca2+ dysregulation and 

neurotoxicity elicited by the HIV-1 proteins gp120, Tat, and Vpr [135–137]. Tat protein increases 

neuronal Ca2+ levels via IP3R and NMDAR and L-type Ca2+ channels, followed by mitochon-

drial Ca2+ uptake and ROS production, leading to caspase activation and neuronal apoptosis 

[137–139]. In microglia and astrocytes, Tat and gp120 can interact and trigger the production 
of cytokines, nitric oxide, and excitotoxins which can intensify the neurotoxic effects of Tat and 
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gp120 [137]. HIV-1 Vpr is also able to activate the expression of cytokines, ROS, and inflam-

matory proteins in uninfected and infected cells. Vpr will elicit a slow but persistent elevation 

of Ca2+ leading to glutamate signaling impairment in neuronal cells. Moreover, the calcium 

homeostasis is disturbed by Vpr via down-regulation of endogenous PMCA [136].

4.4. Inflammation links aging to the brain

The neuroinflammation is present even in the absence of productive infection and may have 
a different cause, like an undetectable level of virus production, the effects of combination 
antiretroviral therapy (cART) itself, and/or a chronic and systemic immune action. Together, 

these factors contribute to HIV-1 neurodegeneration. The stimulated microglia will synthe-

size neurotoxic molecules, inflammatory mediators like cytokines/chemokines, and provoke 
glutamate receptor-mediated excitotoxicity, disrupt intracellular calcium concentration and 

ion channel expression, and mechanisms controlling cAMP levels. Viral latency and residual 

inflammation are codependent mechanisms promoting each other [140]. The peripheral 

immune activation and production of peripheral cytokines increase inflammation within the 
CNS and have been associated with lower cognitive performance [141–148].

In the HIV-infected brain, the microglia will produce NF-kappa B, triggering the secretion of 
the pro-inflammatory cytokine TNFα which stimulates NF-kappa B signaling in neurons of 
the medial basal hypothalamus in a feed-forward loop. IKKβ/NF-κB inhibits GnRH and acti-
vates aging-related hypothalamic GnRH degeneration. The inhibition of IKKβ/NF-κB activa-

tion or GnRH treatment can reverse the aging effects of HIV-1 and increase the lifespan [149]. 

This feedback loop has been linked to the hypothalamic programming of systemic aging 

[149]. In primary astrocytes, HIV stimulates C3 expression indirectly, via NF-κB-dependent 
induction of IL-6, which will activate the C3 promoter [150].

A senescence-associated secretory phenotype (SASP), a central aspect of cellular senescence, 

is activated when the certain chemokines/cytokines, especially IL-6, IL-8, and IL-1 α, are 
secreted. These interleukins play a major role in brain aging [151–153]. HIV-1 infection is 

quickly followed by the inflammasome activation, allowing the release of IL-6, IL-8, IL-18, 
IFN-γ, IL-1β, IL-2Rα, IL-3, IL-6, TNFα, IL-1Rα, IL-10, IL-1α, and TNFβ [154, 155].

4.5. Influence of cART on neurotoxicity

The development of highly active antiretroviral therapy (HAART) has changed the neuro-

degeneration pattern and prevented the major cognitive impairments of AIDS, increasing 
survival times.

To be effective in the brain, combination antiretroviral therapy (cART) has to cross the 
blood–brain barrier and be metabolized. However, if these drugs made it possible to alleviate 

cognitive impairment, they can contribute to it and damage nerve cells. Indeed, long-term 

cART can generate toxic effects and contribute to HAND. The efavirenz (EFV) metabolites 
7-hydroxyefavirenz (7-OH-EFV) and especially 8-hydroxyefavirenz (8-OH-EFV) can provoke 
damage to dendritic spines. Furthermore, the 8-OH-EFV metabolite can trigger calcium flux 
in neurons, mainly mediated by L-type voltage-operated calcium channels (VOCCs), and 
acts as a potent neurotoxin [156]. The mitochondrial respiratory capacity (SRC) is reduced by 
maraviroc, raltegravir, lopinavir, darunavir, zidovudine, emtricitabine, abacavir, nevirapine, 
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and efavirenz but not by indinavir. Efavirenz and maraviroc provoke a reduction of ATP at 

the synapse that may contribute to its dysfunction [157, 158]. Additionally, the non-nucleo-

side reverse transcriptase inhibitor efavirenz can decrease neural stem cell proliferation [159]. 

Non-nucleoside reverse transcriptase inhibitors (NRTIs) are key players in HAART-induced 

mitochondrial toxicity due to their capacity to inhibit the DNA polymerase in charge of the 

synthesis of mitochondrial DNA, Pol-γ [160–162]. Some brains under HAART present neu-

roinflammation combined with mononuclear phagocyte activation, notably in the hippocam-

pus, and can reach the level seen in AIDS and HIVE pre-HAART [163].

4.6. Anti-oxidant defense

Oxidative phosphorylation is a highly efficient way of generating energy to produce adenos-

ine triphosphate (ATP). Oxygen is a key player in this metabolic pathway in mitochondria 

to break down the glucose. Reactive oxygen species (ROS), hydroxyl radical (OH−), hydro-

gen peroxide (H2O2), and superoxide (O2
−) are usually produced at low levels. If the balance 

between antioxidants and pro-oxidant is disturbed, oxidative damage can occur, followed by 

mitochondrial dysfunction and accumulation of cytotoxins leading to cell death. The brain 

is rich in fatty acids, which make neurons highly sensitive to oxidative alteration and per-

oxidation [164], in particular because it has fewer antioxidants than other tissue and higher 

iron levels. Under oxidation, the membrane lipids can undergo lipid peroxidation producing 

malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE). The endogenous brain defense 
against oxidative stress is composed of glutathione peroxidase (GPx1), superoxide dismutases 
(SOD), catalase, and glutathione (γ-l-glutamyl-l-cysteinylglycine, GSH) [165].

In HAND, oxidative stress increased levels of oxidized proteins and lipid peroxidation 

products, at the same time than a deficit in GSH and GPx1 [166–169]. The lipid peroxidation 

induced by HIV-1 affects the specific region of the brain [170] and is correlated with the grav-

ity of HAND [171]. Several viral proteins are involved in this mechanism. Tat is inducing the 

reactive oxygen species (ROS) superoxide (O2
−) and hydrogen peroxide (H2O2), increasing at 

the same time the levels of lipid peroxidation. It is able also to induce nitric oxide synthase 

(iNOS) to generate nitric oxide (NO), which when combined with superoxide (O2
−) will form 

the peroxynitrite (ONOO) [172]. Gp120 triggers the release of arachidonic acid in glial cells 
[173], from the lipoxygenase and cyclooxygenase pathways [173]. Gp41 can provoke neuronal 
cell death by a mechanism involving NO formation, iNOS, and a deficit in glutathione, which 
will subsequently disrupt the mitochondrial function [174, 175]. Vpr induces the production 

of ROS after a reduction in the total GSH/GSSG ratio and an increase in the level of oxidized 
glutathione (GSSG) [176].

4.7. Mitochondria

In the mitochondrial theory of aging (or free-radical theory of aging), the reactive oxygen 

species, which are the products of respiration, damage the membranes, mitochondrial DNA 

(mtDNA), and proteins, causing an accumulation of cellular and molecular injuries subse-

quently responsible for aging. It creates a “vicious cycle” when the mtDNA damage increases 
ROS production, which will damage even more the mtDNA [177].
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The HIV-1 infection initiates changes in mitochondrial electron transport chain (ETC), mito-

chondrial trafficking proteins, glycolytic pathways, and proteins implicated in several energy 
pathways. In the presence of HIV-1 proteins, the mitochondria face a higher energy demand, 

will consume more oxygen, and show a higher capacity to produce ATP. These mechanisms 

are usually observed when there is cellular damage leading to ROS production [178].

During HAND, mitochondrial fission/fusion mechanism is dysregulated. The mitochondrial 
fission protein (dynamin 1-like, DNM1L) is decreased in frontal cortex tissues of HAND 
patients, and the soma of damaged neurons presents elongated and enlarged mitochondria. 

The GFAP-gp120 mice present the same phenotype, and gp120 also decreases the DNML1 
levels. The mitochondrial fusion seems to be the predominant mitochondrial dynamic in the 

brains of HAND patients [179]. HIV-1 Tat provokes a massive diminution in the mitochon-

drial membrane potential, a mechanism closely linked to fusion and fission. It is probably 
the consequence of the quick increase Tat caused on the intracellular Ca2+, whether via the 

NMDA receptor or L-type calcium channels. The levels of mitochondrial fission protein Drp1 
are consequently increased and the mitochondrial morphology is altered by Tat. Unbalanced 
mitochondrial fission and fusion are responsible for several neurodegenerative disorders [180]. 

HIV-1 Vpr promotes the formation of permeability transition pores in mitochondria, which 

disturbs the transmembrane potential and the ATP synthesis. This process permeabilizes the 

mitochondria and allows the release of cytochrome c via a cascade of caspase and leads to 

apoptosis [181]. Moreover, Vpr decreases rapidly the mitochondrial membrane potential [182], 

which provokes the formation of the permeability transition pore complex (PTPC) [183], com-

posed by the adenine nucleotide translocator (ANT) on the inner mitochondrial membrane 

and the voltage-dependent anion channel (VDAC) on the outer mitochondrial membrane. This 
creation of mitochondrial conductance channels will allow the release of apoptosis-inducing 

factor cytochrome c into the cytoplasm, as described in striatal and cortical neurons of rats [184]. 

Following HIV-1 Vpr treatment, the intracellular glutathione is reduced, maybe the result of 
decreased ATP availability when Vpr binds to the ANT on the inner mitochondrial membrane 

[185]. HIV-1 Vpr is also described to impair the mitochondria axonal transport [186].

4.8. Autophagy

Defects in autophagy can lead to several neurodegenerative diseases like Parkinson’s dis-

ease, Alzheimer’s disease, and amyotrophic lateral sclerosis (ALS) for the most common 

[187]. Without autophagic cleaning, protein aggregates will accumulate and become toxic 
to the cells. Aging is slowing down the efficiency of cell autophagy (macroautophagy and 
chaperone-mediated autophagy) either by diminishing the autophagic flux or by too much 
cargo accumulation from chronic cell injury [187]. Some interventions intend to increase the 

autophagy levels like caloric restriction or autophagy-inducing drugs can attenuate age-
linked pathologies and lengthen the lifespan [188–190].

The activation of autophagy is beneficial for the virus during the initial phase of HIV-1 infec-

tion in many cell types [191]. However, the autophagy inhibition is necessary for virus rep-

lication in later phases of infection, stimulating the biogenesis of exosomes enclosing viral 

products [192]. In HIV-1 dementia, the neurodegeneration seems to be associated with the 
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inhibition of neuronal autophagy, a decrease in autophagy-inducing protein, and an increase 

in sequestosome-1/p62 [193]. Autophagy genes like SQSTM1, ATG5, and LAMP1 appear to 

be differentially regulated at the transcriptional, translational, and post-translational levels 
by HIV-1 in the brain at a different stage of the disease [194]. Basal autophagy is inhibited by 

the HIV-1 infection in CD4+, monocyte/macrophage lineage [195], as well as in neurons and 

astrocytes and leads to neuro-glial toxicity [196].

Nef binds BECN1 and inhibits the proteolytic stages of autophagy in HIV-infected macro-

phages [197, 198]. In astrocytes, Nef is also blocking the fusion of autophagosome to lysosome 

to escape the viral degradation, increasing LC3II and p62/SQSTM1 levels. It is interesting to 
note that LC3 and Gag interact and that basal autophagy promotes optimal Gag processing 
and yields of HIV in macrophages [195]. Gag processing is increased when autophagy is 
induced, manipulating the autophagy process to maximize the viral replication in infected 

macrophages. The Gag protein is the main target of autophagy, but HIV-1 has taken advan-

tage of Gag targeting for its replication, especially in macrophages. HIV-1 Tat is targeted for 
degradation via an ubiquitin-independent pathway, as an anti-HIV effect, interacting with 
p62/SQSTM1 in CD4+ T lymphocytes. However, Tat can counteract this degradation by 
decreasing the quantity of the autophagy markers LC3II andp62/SQSTM1 coupled with the 
membrane in neurons [199]. Moreover, Tat can bind to the lysosomal-associated membrane 

protein 2A (LAMP2A) to regulate the fusion of autophagosomes with lysosomes. Through 
this interaction with LAMP2, Tat may allow abnormal autophagolysosome formation, lead-

ing to neurodegeneration [199]. Gp120 on the opposite is inducing autophagy in neuronal 
cells [200], probably as a protective mechanism from the toxic effects of gp120 [201].

5. Conclusion

The aging mechanism linked to aging is the consequence of multiple heterogeneous processes 
and is the interplay of several areas including physiological changes, metabolical aging, or 

cognitive impairment. The HIV-associated aging is distinct from chronological aging and 

should be treated as well. It will be influenced by the cognitive reserve of the patient, modeled 
by its social, cultural, physical, and economic environment.
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