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Abstract

Fourier transform profilometry (FTP) is an established non-contact method for 3D sensing
in many scientific and industrial applications, such as quality control and biomedical
imaging. This phase-based technique has the advantages of high resolution and noise
robustness compared to intensity-based approaches. In FTP, a sinusoidal grating is
projected onto the surface of an object, the shape information is encoded into a deformed
fringe pattern recorded by a camera. The object shape is decoded by calculating the
Fourier transform, filtering in the spatial frequency domain, and calculating the inverse
Fourier transform; afterward, a conversion of the measured phase to object height is
carried out. FTP has been extensively studied and extended for achieving better slope
measurement, better separation of height information from noise, and robustness to
discontinuities in the fringe pattern. Most of the literature on FTP disregards the software
implementation aspects. In this chapter, we return to the basics of FTP and explain in
detail the software implementation in LabVIEW, one of the most used data acquisition
platforms in engineering. We show results on three applications for FTP in 3D metrology.

Keywords: 3D reconstruction, Fourier transform profilometry, FTP, LabVIEW

1. Introduction

Three-dimensional (3D) shape measurement techniques are widely used in many different fields

such as mechanical engineering, industry monitoring, robotics, biomedicine, dressmaking,

among others [1]. These techniques can be classified as passive, like in stereo vision in which

two or more cameras are used to obtain the 3D reconstruction of a scene, or as active, like in

fringe projection profilometry (FPP) in which a projection device is used to project a pattern onto

the object to be reconstructed. When compared with other 3D measurement techniques, FPP has

the advantages of high measurement accuracy and high density. There are two types of FPP

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



methods: phase shifting and Fourier-transform profilometry (FTP). Phase-shifting methods offer

high-resolution measurement at the expense of projecting several patterns onto the object [2–4],

whereas FTP is popular because only one deformed fringe pattern image is needed [5]. For this

reason, FTP has been used in many dynamic applications [6] such as vibration measurement of

micromechanical devices [7] and measurement of real-time deformation fields [8].

FTP was proposed by Takeda et al. [5, 9] in 1982 and has since become one of the most used

methods [3, 10]. Its main advantages are full-field analysis, high precision, noise-robustness

[11], among others. In FTP, a Ronchi grating, or a sinusoidal grating, or a fringe pattern from a

digital projector is projected onto an object, and the depth information of the object is encoded

into the deformed fringe pattern recorded by an image acquisition device as shown in Figure 1.

The surface shape can be decoded by calculating the Fourier transform, filtering in the spatial

frequency domain, and calculating the inverse Fourier transform. Compared with other fringe

analysis methods, FTP can accomplish a fully automatic distinction between a depression and

an elevation of the object shape. It requires no fringe order assignments or fringe center

determination, and it needs no interpolation between fringes because it gives height distribu-

tion at each pixel over the entire field. Since FTP requires only one or two images of the

deformed fringe pattern, it has become one of the most popular methods for real-time 3D

reconstruction of dynamic scenes.

Although FTP has been extensively studied and used in many applications, to the best of our

knowledge a complete reference in which the implementation details are fully described is

nonexistent. In this chapter, we describe the FTP fundamentals and the implementation of an

FTP system in LabVIEW one of the most used engineering development platforms for data

acquisition and laboratory automation. The chapter is organized as follows. In Section 2 we

describe the FTP fundamentals and a general calibration method, in Section 3 we describe how

FTP is implemented in LabVIEW, and finally in Section 4 we show three applications of FTP

for 3D reconstruction.

Figure 1. Fringe projection system.
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2. FTP fundamentals

There are many implementations of FPP. However, all share the same underlying principle. A

typical FPP setup consists of a projection device and a camera as shown in Figure 1. A fringe

pattern is projected onto a test object, and the resulting image is acquired by the camera from a

different direction. The acquired fringe pattern image is distorted according to the object shape.

In terms of information theory, it is said that the object shape is encoded into a deformed fringe

pattern acquired by the camera. The object shape is recovered/decoded by comparison to the

original (undeformed) fringe pattern image. Therefore, the phase shift between the reference and

the deformed image contains the information of the object shape.

By projecting a fringe pattern onto the reference plane, the fringe pattern (with period p0 ¼1=f 0)

on the reference plane observed through the camera can be modeled as

g0 x; yð Þ ¼ a0 x; yð Þ þ b0 x; yð Þcos 2πf 0xþ ϕ0 x; yð Þ
� �

: (1)

Likewise, when the object is placed on the reference plane, the deformed fringe pattern obser-

ved through the camera is given by

g x; yð Þ ¼ a x; yð Þ þ b x; yð Þcos 2πf 0xþ ϕ x; yð Þ
� �

, (2)

where a0 x; yð Þ and a x; yð Þ represent the non-uniform background illumination, b0 x; yð Þ and

b x; yð Þ the contrast of the fringe pattern. f 0 is the fundamental frequency of the observed fringe

pattern (also called carrier frequency). ϕ0 x; yð Þ and ϕ x; yð Þ are the original phase modulation

on the reference plane Rwhere z x; yð Þ ¼ 0 and the phase modulations resulting from the object

height distribution, respectively. a x; yð Þ, b x; yð Þ and ϕ x; yð Þ are assumed to vary much slower

than the spatial carrier frequency f 0. The principle of FTP is shown schematically in Figure 2.

The input fringe pattern from Eqs. (1) and (2) can be rewritten using Euler’s formula in the

following form

Figure 2. Principle of the filtering via Fourier transform (FT) method. IFT, inverse FT.
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g x; yð Þ ¼ a x; yð Þ þ c x; yð Þexp 2πif 0x
� �

þ c∗ x; yð Þexp �2πif 0x
� �

, (3)

with

c x; yð Þ ¼
1

2
b x; yð Þexp iϕ x; yð Þ

� �
, (4)

where ∗ denotes a complex conjugate.

Next, the phase of the fringe patterns is recovered using the Fourier Transform method. Using

one-dimensional notation for simplicity, when we compute the Fourier transform of Eqs. (1)

and (2) the Fourier spectrum of the fringe signals splits intro three spectrum components

separated from each other, which gives

G f x; y
� �

¼ A f x; y
� �

þ C f x � f 0; y
� �

þ C∗ f x þ f 0; y
� �

, (5)

as shown in two dimensions in Figure 2. With an appropriate filter function, for instance, a

Hanning filter, the spectra are filtered to let only the fundamental component C f x � f 0; y
� �

. A

Hanning window is given by [11],

H f x
� �

¼ 0:50 1þ cos βπ
f x � f 0

f c

� 	
 �
, (6)

where f c is the cutoff frequency at a 50% attenuation ratio, β ¼ 1=2 and f x varies from f 0 � f c=β

to f 0 þ f c=β. The inverse Fourier Transform is applied to the filtered component, and a complex

signal is obtained

bg0 x; yð Þ ¼
1

2
b x; yð Þexp i 2πf 0xþ ϕ0 x; yð Þ

� �� �
, (7)

bg x; yð Þ ¼
1

2
b x; yð Þexp i 2πf 0xþ ϕ x; yð Þ

� �� �
: (8)

The variable related to height distribution is the phase change Δϕ x; yð Þ [9]:

Δϕ x; yð Þ ¼ Φ x; yð Þ � Φ0 x; yð Þ ¼ ϕ x; yð Þ � ϕ0 x; yð Þ, (9)

with

Φ0 x; yð Þ ¼ tan�1 ℑ bg0 x; yð Þ½ �

ℜ bg0 x; yð Þ½ �

� 	
, (10)

Φ x; yð Þ ¼ tan�1 ℑ bg x; yð Þ½ �

ℜ bg x; yð Þ½ �

� 	
, (11)

where ℑ :½ � and ℜ :½ � denote the imaginary and the real part, respectively. The phases obtained

from Eqs. (10) and (11) are wrapped into the principal value �π;π½ �. The wrapped phase is

Digital Systems6



unwrapped by using a suitable phase unwrapping algorithm [12] that gives the desired phase

map as shown in Figure 2. The phase map Δϕ x; yð Þ is proportional to the height of the object

surface.

2.1. System calibration

The calibration of FPP systems plays an essential role in the accuracy of the 3D reconstructions.

Here we describe a simple yet extensively used calibration called the reference-plane-based

technique, i.e., to convert the unwrapped phase map Δϕ x; yð Þ to height z.

The optical axis geometry of the FTP measurement system is depicted in Figure 3. The optical

axis E
0

p � Ep of a projector lens crosses the optical axis E
0

c � Ec of a camera lens at a point O on a

reference plane R. This reference plane is normal to the optical axis E
0

c � Ec and serves as a

reference to measure the height of the object z x; yð Þ. d is the distance between the projector and

the camera, l0 is the distance between the camera and the reference plane. The fringe pattern

image (with period p) is formed by the projector lens on plane I through point O. p is related to

the carrier frequency by f 0 ¼ 1=p0 ¼ cosθ=p. The height of the object surface is measured

relative to R. From the point of view of the projector, point A on the object surface has the

same phase value as point C on the reference plane R, ΦA ¼ Φ
R
C, where the superindex R

denotes a point on the reference plane. On the camera sensor, point A on the object surface

and point D on the reference plane are imaged on the same pixel. By subtracting the reference

phase map from the object phase map, we obtain the phase difference at this specific pixel

Figure 3. Fringe projection system.

Fourier Transform Profilometry in LabVIEW
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ΔΦAD ¼ ΦA � Φ
R
D ¼ Φ

R
C � Φ

R
D ¼ Φ

R
CD: (12)

The triangles ΔEpEcA and ΔCDA are similar, and the height AB of point A on the object surface

relative to the reference plane can be related to the distance between points C and D

Δz x; yð Þ ¼ AB ≈

l0
d
CD∝ΔΦR

CD ¼ ΦA � Φ
R
D: (13)

Combining Eqs. (12) and (13) a proportional relation between the phase map and the surface

height can be obtained for any point x; yð Þ

Δz x; yð Þ∝Δϕ x; yð Þ ¼ Φ x; yð Þ � Φ0 x; yð Þ, (14)

where Φ x; yð Þ is the object phase map and Φ0 x; yð Þ is the reference plane phase map. Assuming

the reference plane has a depth of z0, the depth value for each measured point can be

represented as

z x; yð Þ ¼ z0 þ k0 � Φ x; yð Þ � Φ0½ �, (15)

where k0 is a constant determined through calibration and z0 is usually set to 0.

We have shown how the object surface height is related to the recovered phase through FTP.

The model described by Eq. (15) has many underlying assumptions and is often extended to

cover more degrees of freedom. Moreover, a general calibration process in FPP can be carried

out employing the methodology shown in Figure 4. First, we propose a model that best

describes the system, while also considering metrological requirements such as speed, robust-

ness, accuracy, flexibility and reconstruction scale. Some authors have proposed to use several

calibration models based on polynomial or fractional fitting functions [13, 14], bilinear inter-

polation by look-up table (LUT) [15] and stereo triangulation [16–18]. These calibration models

require different strategies or techniques that allow relating metric coordinates with phase

values. In step II, we select or design a strategy that fits the proposed calibration model and

characteristics of the elements to a given experimental setup, such as the type of projector (i.e.,

analog or digital projection) and camera (i.e., monochrome or color). These strategies consist in

projecting and capturing fringe patterns onto 3D-objects [19] or 2D-targets [16, 20] with highly

accurate known measurements. In some cases, the calibration consists in displacing the targets

along the z axis using a linear translation stage [19]. The purpose is to obtain a correspondence

between a metric coordinate system and the phase images captured with the camera. In step

III, the correspondences are used to calculate the parameters that are part of the proposed

Figure 4. General calibration methodology.
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model, and the best data obtained in step II. Finally in step IV, with the complete model, we

can find mathematical expressions that convert phase maps to XYZ-coordinates.

3. LabVIEW implementation

In this section, we explain the details of the FTP software implementation in LabVIEW.

LabVIEW stands for Laboratory Virtual Instrument Engineering Workbench and is a system-

design platform and development environment for a visual programming language from

National Instruments [21]. It allows integrating hardware, acquiring and analyzing data, and

sharing results. Because it is a visual programming language based on function blocks, it is a

highly intuitive integrated development environment (IDE) for engineers and scientists famil-

iar with block diagrams and flowcharts. Every LabVIEW block diagram also has an associated

front panel, which is the user interface of the application.

The acquisition and processing strategies described in this section require the installation of the

following software components:

• NI vision acquisition software, which installs NI-IMAQdx. This software driver allows

the integration of cameras with different control protocols such as USB3 Vision, GigE

Vision devices, IEEE 1394 cameras compatible with IIDC, IP (Ethernet) and DirectShow

compatible USB devices (e.g., cameras, webcams, microscopes, scanners). NI vision

acquisition software also includes the driver NI-IMAQ for acquiring from analog cam-

eras, digital parallel and Camera Link, as well as NI Smart Cameras. This hardware

compatibility is the main advantage of using LabVIEW for vision systems. This compati-

bility greatly facilitates the development of applications for different types of cameras and

busses.

• NI vision development module (VDM). This package provides machine vision and

image processing functions. It includes IMAQ Vision, a library of powerful functions for

vision processing. In this library, there is a group of VIs that analyze and process images in

the frequency domain. We will make use of these functions throughout the entire chapter.

NI VDM and Vision Acquisition Software are supported on the following operating systems:

• Windows 10; Windows 8.1; Windows 7 (SP1) 32-bit; Windows 7 (SP1) 64-bit; Windows

Embedded Standard 7 (SP1); Windows Server 2012 R2 64-bit; Windows Server 2008 R2 (SP1)

64-bit.

3.1. Image acquisition

There are two primary ways to obtain images in LabVIEW: loading an image file or acquiring

directly from a camera. The wiring diagram in Figure 5(a) illustrates how to perform a

continuous (grab) acquisition in LabVIEW using Vision Acquisition Software. A Grab acquisi-

tion begins by initializing the camera specified by the Camera Name Control and configuring

the driver for acquiring images continuously. Using IMAQ Create, we create a temporary

Fourier Transform Profilometry in LabVIEW
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memory location for the acquired image. This function returns an IMAQ image reference to the

buffer in memory where the image is stored. The reference is the input to the IMAQ Grab VI

for starting the acquisition. The grabbed image is displayed on the LabVIEW front panel using

an Image Indicator (see Figure 5(b)), which points to the location in memory referenced by

the IMAQ image reference. A while loop statement allows adding each grabbed image to the

image indicator as a single frame. Finally, the image acquisition is finished by calling the

IMAQ close VI that releases resources associated with the camera and the interface.

The acquired image is written to a file in a specified format by using the IMAQWrite File 2 VI.

The graphics file formats supported by this function are BMP (windows bitmap), JPEG, PNG

(portable network graphics), and TIFF (tagged image file format). However, note that lossy

compression formats, such as JPEG, introduce image artifacts and should be avoided to ensure

accurate image-based measurements. The saved image can be displayed in a secondary image

indicator by enabling the Snapshot option. When enabling the Snapshot Mode, the Image

Display control continues to display the image as it was when the image was saved during

the Case Structure execution, even when the inspection image has changed. To configure the

Image Display control for working in Snapshot Mode, right-click on the control on the front

panel and enable the Snapshot option.

Another way to acquire an image using a camera is presented in the Figure 6. This example uses

the NI Vision Acquisition Express to perform the acquisition stage. The Vision Acquisition

Express VI is located in the Vision Express palette in LabVIEW, and it is commonly used to

quickly develop image acquisition applications due to its versatility and intuitive development

environment. Double-clicking on the Vision Acquisition Express VI makes a configuration win-

dow appear which allows choosing a device from the list of available acquisition sources,

selecting an acquisition type, and configuring the acquisition settings. Concerning the acquisition

types, there are four mainmodes: single acquisition with processing, continuous acquisition with

inline processing, finite acquisition with inline processing and finite acquisition with post-

processing. The last two acquisition types are similar, except that for a finite acquisition with

post-processing the images are only available after they are all acquired. The configuration of the

Figure 5. Grab acquisition in LabVIEW. (a) Block diagram. (b) Image indicator in front panel.

Digital Systems10



acquisition settings is one of the most relevant processes during configuration and allows the

simultaneous manipulation of camera attributes like Exposure Time, Trigger Mode, Gain,

Gamma Factor, among others. For this example, we configured the acquisition for working in a

continuous acquisition with inline processing mode, which continuously acquires images until

an event stops the acquisition. Additionally, the Exposure Time attribute can be modified during

the acquisition process by using a Numeric Control. As with the example in Figure 5, the

captured image is displayed in a secondary image indicator during the Case Structure execution.

In Fringe Projection systems, the manipulation of certain camera attributes (e.g., the Exposure

Time attribute) is required to capture high-quality images and to enable to work under

different lighting environments with different constraints. In the example above, we intro-

duced the possibility of manipulating camera attributes during acquisition using the Vision

Acquisition Express. This manipulation of attributes is also possible by programming a simple

snap, grab, or sequence operation based on low-level VIs (as in the example in Figure 5) using

IMAQdx property nodes. The attribute manipulation requires providing the property node

with the name of the attribute we want to modify and identifying the attribute representation,

which can be an integer, float, Boolean, enumeration, string or command. In general, cameras

share many attributes; however, they often have specific attributes depending on the manu-

facturer. These attributes should be known beforehand to ensure good acquisition control. At

the development stage, LabVIEW does not know or display the name of the attributes or

representations. Furthermore, if the documentation is not available, we suggest using the

Measurement and Automation Explorer (MAX). MAX is a tool that allows the configuration

of different acquisition parameters and is useful when it is required to manipulate attributes of

a device with a specific interface within the LabVIEW programming environment. For exam-

ple, suppose we want to modify the exposure time of our camera (Basler Aca 1600-60gm), but

we do not have information about supported attributes. Here is where MAX becomes a

Figure 6. Continuous acquisition using IMAQ vision acquisition express. (a) Block diagram. (b) Image indicator in front

panel.

Fourier Transform Profilometry in LabVIEW
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powerful tool for vision system developers. This attribute verification is done by selecting the

desired attribute from the Camera Attributes tab in the Measurement and Automation

Explorer and identifying its name (i.e., ExposureTimeAbs) and representation (i.e., floating-

point format). Therefore, the section of the block diagram inside a red box in Figure 5 can be

modified in order to allow setting the ExposureTimeAbs attribute value using a Property

Node as shown in Figure 7.

Both acquisition methods have their advantages and disadvantages concerning their imple-

mentation in vision systems. On the one hand, the use of the NI Vision Acquisition Express

allows to quickly and easily develop acquisition applications, even without having a high

knowledge of the tools for image acquisition offered by LabVIEW. However, this could be a

disadvantage if our purpose is to have complete control over the acquisition. On the other

hand, the low-level VIs provide greater control and versatility over the application develop-

ment, but the implementation of vision systems based on low-level VIs can be a complicated

task for novice users of NI Vision Acquisition Software and LabVIEW.

Once the acquired fringe image file has been written to disk, it is loaded for processing. The

block diagram in Figure 8 illustrates how to perform this procedure in LabVIEW. The IMAQ

ReadFile VI opens and reads an image from a file stored on the computer into an image

reference. The loaded pixels are converted automatically into the image type supplied by

IMAQ Create VI. From now on we refer to the Fringe Image to the loaded fringe image.

3.2. Fringe pattern projection

In the previous section, we described several acquisition methods for capturing images from a

camera in LabVIEW. However, in fringe projection systems there are many different fringe

pattern projection technologies and choosing the correct one becomes extremely important for

an accurate three-dimensional reconstruction. A fringe pattern projector can be considered as

an analog device (e.g., LED pattern projector) or as a digital device (e.g., DLP, LCoS, and LCD

digital display technologies). LED pattern projectors are ideal for high-resolution three-

dimensional reconstruction applications. If equipped with an objective lens and a stripe pat-

tern reticle, these projectors offer great versatility for manipulating the optics of the system and

obtaining results according to the metrological requirements. The main disadvantage of this

type of projection system is the impossibility of manipulating the projected fringe pattern.

Therefore, its use is often restricted to techniques in which only a single fringe image is

necessary to obtain the 3D information, such as in the case of FTP.

Figure 7. Setting the ExposureTimeAbs attribute value using a property node.
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Fringe Projection systems can also take advantage of a computer to generate sinusoidal fringe

patterns that are projected using a digital projector. The key to a successful 3D reconstruction

system based on digital fringe projection focuses on generating high-quality fringes to meet the

metrological requirements. Ideally, assuming the projector is linear in that it projects grayscale

values ranging from 0 to 255 (0 black, and 255 white), the computer-generated fringe patterns

can be described as follows,

I i; jð Þ ¼
255

2
1þ cos

2πi

pd
þ φ

� 	
 �

, (16)

where pd represents the number of pixels per fringe period, φ refers to the phase shift, and i; jð Þ

are the pixel indices. Eq. (16) is implemented using the numeric functions provided by the NI

LabVIEW Base Package. An example of a pattern generator block diagram is shown in Figure 9.

In this program the Numeric Indicators enable the modification of the fringe pitch and the

phase shift according to the application requirements.

An alternative to a block diagram implementation of Eq. (16) LabVIEW provides a MathScript

RT Module as a scripting language. The module allows the combination of textual and graph-

ical approaches for algorithm development. In Figure 10 we provide an example on how to

use the MathScript RT Module for fringe generation in LabVIEW.

Once the fringe images have been generated, they are sent to a digital video projector for projec-

tion. A video projector is essentially a second monitor. Therefore the fringe image is displayed by

Figure 8. Reading an image file in LabVIEW.

Figure 9. Block diagram for fringe pattern generation.

Fourier Transform Profilometry in LabVIEW
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using the External Display VIs provided by the NI Vision Development Module. Here, we use

IMAQ WindDraw VI to display the image in an external image window. The image window

appears automatically when the VI is executed. Having beforehand the information from all the

available displays on the computer, including their resolution and bounding rectangles, we set the

position of the image window to be displayed on the desired monitor. This setting is done with

IMAQ WindMove VI. Additionally, using IMAQ WindSetup VI the appearance and attributes of

the window can be modified to hide the title bar. Note that the default value for this attribute is

TRUE which shows the title bar. The block diagram in Figure 11 illustrates a projection stage in

LabVIEW. Here, we use a Property Node for obtaining the information about all the monitors on

the computer. The Disp.AllMonitors property Returns information about their bounding rectan-

gles and bit depths.

3.3. Phase retrieval

Phase retrieval is carried out by Fourier transform profilometry. In LabVIEW, the IMAQ FFT

VI computes the discrete Fourier transform of the fringe image. This function creates a com-

plex image in which low frequencies are located at the edges, and high frequencies are

grouped at the center of the image. Note that for the IMAQ FFT VI a reference to the destina-

tion image must be specified and configured as a Complex(CSG) image. Once the deformed

fringe pattern is 2-D Fourier transformed, the resulting spectra are converted into a complex

Figure 10. Fringe pattern generation example using the LabVIEW MathScript RT module.

Figure 11. Second monitor configuration in LabVIEW.
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2D array to perform the filtering procedure, thus obtaining the fundamental frequency spec-

trum in the frequency domain. The following step is to compute the inverse Fourier transform

of the fundamental component. The Inverse FFT VI is for computing the inverse discrete

Fourier transform (IDFT) of a complex 2D array. By using this function, we calculate the

inverse FFT of the fundamental component which contains the 3D information. Finally, we

obtain the phase by applying Eq. (11). Here, we use Complex To Re/Im Function to break the

complex 2D array into its rectangular components and Inverse Tangent(2 Input) Function for

performing the arctangent operation. With the example in Figure 12(a) we illustrate the phase

retrieval process in LabVIEW. In this figure, the Fringe Image and Hanning W refer to the

fringe pattern image shown in Figure 12(b) and the Hanning window filter array, respectively.

The resultant wrapped phase map is shown in Figure 12(c).

3.4. Hanning filter design

In Section 2 we showed that in FTP a filtering procedure is performed to obtain the fundamen-

tal frequency spectrum in the frequency domain. Once the Fourier transform is computed, the

resultant spectrum is filtered by a 2-D Hanning window defined by Eq. (6). In LabVIEW, the

IMAQ Select Rectangle VI is commonly used to specify a rectangular region of interest (ROI) in

an image. We use the IMAQ Select Rectangle VI for manually selecting the region in the

Fourier spectrum corresponding to the fundamental frequency component. Here, the image is

displayed in an external display window and through the use of the rectangle tools, provided

by the IMAQ Select Rectangle VI, we estimate the optimal size and location of the filtering

Figure 12. Phase retrieval process in LabVIEW. (a) Block diagram. (b) Fringe pattern image. (c) Wrapped phase map.

Fourier Transform Profilometry in LabVIEW
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window that guarantees the separation between the fundamental frequency component and

other unwanted contributions. The block diagram shown in Figure 13(a) indicates the IMAQ

Select Rectangle VI to manually select the region corresponding to the first order spectrum.

The Fringe Image is the fringe pattern image in Figure 12(b). The IMAQ FFT VI computes the

Figure 13. Manual selection of the filtering window. (a) Block diagram. (b) External display window and rectangle tools.

Figure 14. Hanning filter design in LabVIEW. (a) Continuation of the block diagram in Figure 13(a). (b) Fourier transform

magnitude spectra displayed by the external window in Figure 13(b). dx and dy relate to the size in x and y of the filtering

window, respectively. (c) 2D-hanning window.
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discrete Fourier transform of the Fringe Image. The resultant complex spectrum is displayed

using an external display window as shown in Figure 13(b). By using the selection tools

located on the right side of the window, we can manually select the rectangular area of interest.

The IMAQ Select Rectangle VI returns the coordinates (i.e., left, top, right and button) of the

chosen rectangle as a cluster. Therefore, it is necessary to access each element from the cluster

to extract the window information. For this reason, we add the Unbundle By Name function to

the block diagram which unbundles a cluster element by name. Based on this information, we

calculate the size and location of the Hanning window filter. Finally, using the Hanning

Window VI two 1-D Hanning windows are created whose lengths correspond to the size of x

and y of the filtering window, respectively. The two-dimensional Hanning window is obtained

by the separable product of these two 1-D Hanning windows [22]. The block diagram in

Figure 14(a) illustrates the filtering design stage in LabVIEW. dx and dy, in Figure 14(b), relate

to the size in x and y of the selected filtering window, respectively. Finally, the obtained 2D

Hanning window is shown in Figure 14(c).

3.5. Phase unwrapping

The phase unwrapping process is carried out comparing the wrapped phase at neighborhoods

and adding, or subtracting, an integer number of 2π, thus obtaining a continuous phase. This

definition is for the one-dimensional phase unwrapping process. However, for two-dimensional

(2-D) phase unwrapping this is not readily applicable, and additional steps must be taken to

Figure 15. Bidimensional phase unwrapping in LabVIEW. (a) Wrapped phase map. (b) Unwrapped phase map.
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obtain the unwrapped solution. The conventional approach for 2-D phase unwrapping can be

accomplished by applying 1-D phase unwrapping first row-wise followed by 1-D phase

unwrapping column-wise in two steps. The block diagram in Figure 15(a) illustrates this process.

Here, the Unwrap Phase VI unwraps a 1D-phase array by eliminating discontinuities whose

absolute values exceed π. Thus, a for loop is required to compute the continuous phase for each

row of the 2-D wrapped phase array. For 1-D phase unwrapping column-wise, we use the

Transpose Matrix Function to calculate the conjugate transpose of the resultant array before

executing the for loop statement. Figure 15(b) and (c) show a wrapped phase map and its

unwrapped counterpart, respectively. In addition to this approach, many 2D phase-unwrapping

algorithms have been proposed, especially to address discontinuities and noise [12]. These other

methods can also be implemented in LabVIEW either with block diagrams, using math scripts,

with precompiled C++ code in .dll files, or via integration of external functions with other

environments such as MATLAB. However, an explanation of the details of these other appro-

aches is beyond the scope of this chapter.

4. Applications

FPP is often used as a non-contact surface analysis technique in industry inspection. In this

section, we show the 3D surface reconstruction of a dented steel pipe. A dent is a permanent

plastic deformation of the cross-section of the pipe. In the example shown in Figure 16 the dent

was produced penetrating the pipe with a diamond cone indenter. In Figure 16(a) and (b) we

show the tested object, and the deformed fringe pattern image, respectively. The goal is to

measure the depth of the dent with high accuracy and to obtain the surface shape of the pipe

for subsequent deformation analysis. In Figure 16(c) and (d), we show the wrapped, and

unwrapped phases obtained by FTP, respectively. The unwrapped phase map is converted

to metric coordinates using a calibration model. In Figure 17(a), we show the reconstructed

pipe shape with the texture map. A profile across the reconstructed pipe, thought the dent, is

shown in Figure 17(b). Analyzing this profile, we can measure the depth of the dent to

approximately 4 mm.

Figure 16. FTP analysis of a indented pipe. (a) Texture image. (b) Deformed fringe pattern. (c) Wrapped phase.

(d) Unwrapped phase.
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Another application of FPP is in facial metrology, where several patterns are projected onto the

face to obtain a 3D digital model. 3D shape measurement of faces plays an important role in

several fields like in the biomedical sciences, biometrics, security, and entertainment. Human

face models are widely used in medical applications for 3D facial expression recognition [24]

and measurement of stretch marks [25]. Usually, the main challenge is the movement of the

patient. The movement can produce errors or noise in the 3D reconstruction affecting its

accuracy. Hence, 3D scanning techniques that require few images in the reconstruction process,

like FTP, are commonly used. In Figure 18 we show an experimental result of reconstructing a

live human face. The captured image with the deformed fringe pattern is shown in Figure 18(a).

In Figure 18(b) and (c)we show the 3D geometry acquired rendered in shaded mode and with

texture mapping, respectively. Note that several facial regions with hairs, like the eyebrows,

are reconstructed with high detail. While other areas, under shadows, like the right side of the

nose, are not correctly reconstructed.

Finally, another area where FPP has frequently been used is in cultural heritage preservation. The

preservation of cultural heritage works requires accurately scanning sculptures, archeological

remains, paintings, etc. In Figure 19we show the 3D reconstruction of a sculpture replica.

Figure 17. (a) 3D reconstructed shape. (b) Cross section of the 3D reconstruction.

Figure 18. (a) Fringe pattern onto face. (b) 3D rendered model in shaded mode. (c) 3D rendered model with color texture

mapping.
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