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Abstract

Carbon capture aims to mitigate the emission of CO2 by capturing it at the point of
combustion then storing it in geological reservoirs or applied through enhanced oil recov-
ery (EOR) in a technology known as miscible flooding, so reduce CO2 atmospheric emis-
sions. Miscible CO2-EOR employs supercritical CO2 to displace oil from a depleted oil
reservoir. CO2 improve oil recovery by dissolving in, swelling, and reducing the oil
viscosity. Hydrocarbon gases (natural gas and flue gas) used for miscible oil displacement
in some large reservoirs. These displacements may simply amount to “pressure mainte-
nance” in the reservoir. In such flooding techniques, the minimum miscibility pressure
determined through multiple contact experiments and swelling test to determine the
optimum injection conditions.

Keywords: miscible flooding, enhanced oil recovery, swelling test, minimum miscibility
pressure

1. Background

CO2 concentration in atmosphere increases due to the industrial revolution that attributed to the

combustion of fossil fuels [1]. CO2 is responsible of 64% of environmental pollution [1], so there

is a dire need to mitigate its concentration to avoid global warming emissions. CO2 miscible

flooding in crude oil reservoirs is a currently successful technique to reduce its amount in the

atmosphere, in addition to increasing the mobility of the oil and, consequently, increase the

reservoir productivity [2]. It is preferred other than hydrocarbon gases since it does not only

increase oil recovery but also causes a reduction of greenhouse gas emissions [3]. Moreover, it is

a cheap technology as an ultimate long-term geologic storage solution for CO2 owing to its

economic productivity from incremental oil production offsetting the cost of carbon sequestra-

tion, and exhibit high displacement efficiency and the potential for environmental contamination
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decrease through its disposal in the petroleum reservoir [1, 4]. This chapter aims to provide basic

technical information concerning enhanced oil recovery by CO2 flooding.

2. Enhanced oil recovery (EOR) processes

Owing to increased oil demand, improved oil recovery become a challenging task [3], since fossil

fuels are the dominant source of the global energy supply [2] and represent about 85% of energy

needs. Crude oil production occurs through three distinct phases [5–9]. The first stage is known

as primary recovery, in which oil is recovered by natural reservoir energy including expansion of

rock, fluid and dissolved gases, gravity drainage, and aquifer influx, or combination of these

factors, which drive the hydrocarbon fluids from the reservoir to the wellbores. Primary oil

recoveries range between 5 and 20% [10] of the original oil-in-place (OOIP). As reservoir pressure

declines with the sustained production process, so the reservoir pressure must be built-up by

injecting either water or natural gas, which drive reservoir fluid to wellbore [11]. This stage is

known as secondary oil recovery, in which the recovered oil estimated to be in the range of 20–

40% of the OOIP [10]. At the end of secondary recovery, a significant amount of residual oil

remains in the reservoir and becomes the target for additional recovery using tertiary recovery or

enhanced oil recovery (EOR) methods. EOR refers to the displacement of the remaining oil in the

reservoir through injection of materials not normally present in the reservoir [10, 12–17]. Gener-

ally, EOR processes comprise the following three categories:

2.1. Thermal EOR

Injection of steam has historically been the most widely applied EORmethod. Heat from steam

or hot water dramatically reduces heavy oils viscosity, thus improving its flow. The process

involves cyclic steam injection (“huff and puff,” where steam is first injected, followed by oil

production from the same well); Continuous steam injection (where steam injected into wells

drives oil to separate production wells); hot water injection, and steam assisted gravity drain-

age (SAGD) using horizontal wells. Another set of thermal methods include, in situ combus-

tion or fire flooding are currently implemented [18–20].

2.2. Miscible EOR

Miscible EOR employs supercritical CO2 to displace oil from a depleted oil reservoir. CO2

improve oil recovery by dissolving in, swelling, and reducing the viscosity of the oil. CO2 is a

cheap injection source for increasing recovery factor by the rate of 1–2$/Mscf [21]. Most CO2

flooding processes occur in United States [22]. Hydrocarbon gases (natural gas and flue gas) in

addition to compressed nitrogen used for miscible oil displacement in high deep reservoirs.

These displacements may simply amount to “pressure maintenance” in the reservoir [23–25].

2.3. Chemical EOR

Chemical flooding was, up to 2000s, a less common EOR method than thermal and gas

flooding, but now, huge projects are retrieved. The chemical flooding processes involve the
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injection of three kinds of chemicals; alkaline, surfactant and polymer (soluble and cross-linked

polymers), in addition to other chemicals such as foaming agents, acids and solvents [26] and/

or combination of alkaline-surfactant-polymer flooding (ASP) [27]. In the polymer flooding

method, water-soluble polymers aimed to shut-off the high-permeability areas of the reservoir

and increase injected water viscosity to increase the swept areas in the reservoir [28, 29]

leading to a more efficient displacement of moderately viscous oils. Addition of a surfactant

to the polymer formulation may, under very specific circumstances, reduce oil–water interfa-

cial tension (IFT) and hence remobilizing the trapped oil [30], changing surface wettability, so

enhance the oil production. For some oils, alkaline may convert some naphthenic acids within

the oil to surfactants that increase oil recovery. The alkaline may also play a beneficial role in

reducing surfactant retention in the rock [31–34].

3. Fundamentals and mechanism of CO2 flooding

Improvement of oil recovery occurs through different techniques, one of which is CO2 flooding

in low permeable and light-oil reservoirs [35, 36], as it can increase recovery factor from 10 to

20% [37]. Moreover, it reduces atmospheric gas emissions through CO2 storage [38]. Gas

miscible flooding implies that the displacing gas is miscible with reservoir oil either at first

contact or after multiple contacts, which in turn improve the volumetric sweeping and dis-

placement efficiencies (Ev and Ed) respectively [39, 40]. A transition zone will develop between

the reservoir oil and displacing gas, where the miscibility of the injected gas depend on

reservoir pressure, temperature, and oil properties [41, 42]. CO2 miscible flooding comprises

two mechanisms.

3.1. Miscible flooding

Miscible flooding depends on mobilizing the oil light components, reduction of oil viscosity, the

vaporization and swelling of the oil, and the lowering of interfacial tension [41]. The injected CO2

completely dissolve through crude oil at the minimum miscibility pressure (MMP) which deter-

mined experimentally through slim-tube tests or by mathematical correlations [3, 43, 44] and

defined as, the pressure at which more than 80% of original oil-in-place (OOIP) is recovered at

CO2 breakthrough [45]. However, on an industrial scale, an oil recovery of at least 90% at 1.2

pore volume of CO2 injected is used as a rule-of-thumb for estimating MMP [46, 47]. When the

reservoir pressure is above the MMP, miscibility between CO2 and reservoir oil is achieved

through multiple-contact or dynamic miscibility, where the intermediate and higher molecular

weight hydrocarbons from the reservoir oil vaporize into the CO2 (vaporized gas-drive process)

and part of the injected CO2 dissolves into the oil (condensed gas-drive process) [48]. This mass

transfer between the oil and CO2 allows the two phases to become completely miscible without

any interface and helps to develop a transition zone [49] that is miscible with oil and CO2. CO2

miscible flooding comprises; 1 first contact; vaporizing gas drive, and condensing gas drive [10].

A. First contact: in which miscible solvents mix with reservoir oil in all proportions and the

mixture remains in one phase. Either through single or multiple contacts, and resulting in

much improved oil recovery [50].
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B. The vaporizing gas-drive process (high-pressure gas drive): achieves dynamic miscibil-

ity by in situ vaporization of the intermediate-molecular-weight hydrocarbons from the

reservoir oil through injection of lean gases or CO2 [51].

C. The condensing gas-drive process (enriched gas drive): achieves dynamic miscibility by

in situ transfer of intermediate molecular weight hydrocarbons from rich solvent to lean

reservoir oil through condensation process [52].

3.2. Immiscible flooding

Immiscible flooding depends on oil viscosity reduction, oil phase swelling, the extraction of

lighter components, and the fluid drive [53]. When the reservoir pressure is below the MMP or

the reservoir oil composition is not favorable, the CO2 and oil will not form a single phase (i.e.,

immiscible). However, CO2 will dissolve in the oil causing oil swelling, viscosity reduction and

solution gas derive which in turn improve sweeping efficiency and facilitate further oil recov-

ery [54]. Like hydrocarbon gases, CO2 miscibility through crude oil increases with pressure

and decreases with temperature [55, 56].

4. Properties of CO2

In order to fully understand CO2-EOR flooding, it is important to look at the properties of CO2

and the fundamentals of the CO2-EOR process. Under ambient conditions, CO2 is a colorless,

odorless gas and about 1.5 times heavier than air. CO2 is (2–10 times) more soluble in oil than

in the water. CO2 increases the water viscosity and forms carbonate acid, which has a beneficial

effect on shale and carbonate rocks [57]. Its properties under standard and critical conditions

are summarized in Table 1. Above critical pressures and temperatures, CO2 is in the supercrit-

ical state and forms a phase whose density is close to that of a liquid, even though its viscosity

Properties at standard conditions (14.7 psia, 0�C)

Molecular weight 44.010 g/mol

Specific gravity 1.529

Density 1.95 kg/m3

Viscosity 0.0137 mPa/s

Critical properties

Critical pressure (Pc) 1070.6 psia

Critical temperature (Tc) 87.98�F

Critical volume (Vc) 94 cm3/mol

Critical viscosity (μc) 0.0335 cp

Table 1. Properties of CO2 under standard and critical conditions.
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remains quite low (0.05–0.08 cp). This dense CO2phase can extract hydrocarbon components

from oil more easily than gaseous CO2 [49].

5. CO2 flooding and injection designs

Depending on the reservoir geology, fluid and rock properties, the CO2 flooding involves the

following;

5.1. Continuous CO2 injection

This process requires continuous CO2 injection with no other fluid. Sometimes a lighter gas,

such as nitrogen, follows CO2 injection to maximize gravity segregation.

5.2. Continuous CO2 injection followed with water

This process is the same as the continuous CO2 injection process except for chase water that

follows the total injected CO2 slug volume.

5.3. Conventional water-alternating-gas (WAG) followed with water

In this process, a predetermined volume of CO2 is injected in cycles alternating with

equal volumes of water. The water alternating with CO2 injection helps overcome the

gas override and reduces the CO2 channeling consequently, improving overall CO2 sweep

efficiency.

5.4. Tapered WAG

This design is similar in concept to the conventional WAG but with a gradual reduction in the

injected CO2 volume relative to the water volume.

5.5. WAG followed with gas

This process is a conventional WAG process followed by a chase of less expensive gas (e.g., air

or nitrogen) after the full CO2 slug volume has been injected.

6. CO2-EOR flooding projects and case studies

Several literatures stated about implementation of CO2 and carbonated water to improve oil

recovery since 1951 [45, 54, 58, 59], owing to its availability in adequate amounts from both

natural and industrial sources [60]. The first field-wide application occurred in 1972 at the

SACROC (Scurry Area Canyon Reef Operators Committee) unit in the Permian Basin, where

the CO2 was transported via a 200-mile-long pipeline from the Delaware-Val Verde Basin
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[10]. Hashemi and Pouranfard [1] reported about the investigation of immiscible miscible

CO2 injection southwest of Iranian oil field, which has two reservoirs: Gurpi and a shallower

Asmari reservoir. Main reservoir in this field is the Asmari formation with Oligocene and

Miocene ages, which is divided into seven zones. Therefore, only the Asmari formation has

been producing oil at commercial scale. The Asmari formation in this field consists of

fractured carbonates with a low permeability matrix. The matrix has a porosity and perme-

ability of about 0.088% and 3.4 md, respectively [1]. They concluded that the minimum

miscibility pressure (MMP) was 4630 psia, The optimum injection rates for immiscible and

miscible CO2 injection scenarios were 17,000 and 30,000 Mscf/day, respectively and oil

recovery factor reach 36.59% [1]. Al-Aryani and others [61] have reported on the first CO2-

EOR pilot test in the Middle East where pulsed neutron logging was used to monitor the

performance of a CO2 flood in one of the largest oil fields in Abu Dhabi, United Arab

Emirates. The results of this test will be viewed with great interest based on the fact that it

will have a significant impact on the application of CO2-EOR in many oil-rich countries in

the Middle East with the potential for very large additional oil recoveries. In India, a CO2-

EOR feasibility study was implemented in an oil field on the west coast, but the results are

not yet publically available [62]. In China, there is ongoing research and pilot testing of CO2-

EOR and carbon sequestration in the Jilin oil field with plans to expand to other fields [63].

As of 2012, there were 15 CO2-EOR projects outside of the United States—six in Canada,

three in Brazil, five in Trinidad, and one in Turkey [64]. Of the six CO2-EOR miscible projects

in Canada, the Weyburn project is the most significant because it was the first project with

the primary objective of injecting CO2 for additional oil recovery as well as for carbon

sequestration to help mitigate climate change. In recent years, there have been some serious

efforts by Scottish Carbon Capture & Storage (SCCS), the Scottish Government, and other

companies to investigate the possible application of CO2-EOR in the North Sea. This interest

is based on the potential for additional oil recovery from depleted oil fields using CO2

captured from power plants and industry [10]. The objective is to gain a better understand-

ing of the use of CO2 in EOR operations with the goal of extending the producing life of

North Sea oil fields using CO2 captured from large emitters, such as power plants and

industrial facilities, and permanently store the greenhouse gas in offshore oil reservoirs. It

is estimated that there is the potential to recover 24 billion barrels of additional oil in the

North Sea using the CO2-EOR process. About 60 active miscible CO2 projects were in

operation in the United States in 1996, whereas in Canada, hydrocarbon miscible floods

reach nearly �40 active projects [35, 65]. Most CO2-flooding projects carried out in the

United States in Colorado, Louisiana, Mississippi, NewMexico, Michigan, Oklahoma, Texas,

Utah, and Wyoming. During 2014, about 22 companies implemented CO2 flooding projects;

where 128 projects contributed about 126 million tons of oil [66], applied through carbonate

and sandstone reservoirs with a percentage of 55 and 37% respectively, while the other 6%

were implemented in tripolite reservoirs [67]. The range of porosity is from 4 to 29.5% with a

permeability of 100 mD. The main operators and their productions reported in Table 2. The

increased implementation of CO2 flooding projects resort to its availability from natural and

industrial sources in addition to its relatively low cost as a displacing agent compared to

other alternatives [68]. It is observed that the outcome of these projects summarized in

Table 2, where the recovery factor ranged from 0.15 to 36.37%. The reservoirs properties are

summarized in Table 3.
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7. Screening criteria for CO2 flooding

Screening criteria for miscible CO2 flooding comprise reservoir depth, pressure and tempera-

ture, minimummiscibility pressure (MMP), residual oil saturation, net pay thickness, crude oil

gravity, and viscosity in addition to permeability, porosity, and reservoir heterogeneity [40]. In

Operator No. of projects Improved production (�104 tons) Recovered oil (%)

Occidental 33 459.63 36.37

Kinder Morgan 3 138.34 10.94

Chevron 7 126.30 9.99

Hess 4 106.89 8.46

Denbury Resources 18 86.82 6.87

Merit Energy 7 71.12 5.63

Anadarko 6 55.79 4.41

ExxonMobil 1 45.36 3.59

Breitburn Energy 5 36.87 2.92

ConocoPhillips 2 28.42 2.25

Whiting Petroleum 1 24.51 1.94

Apache 5 23.88 1.89

XTO Energy Inc. 4 13.43 1.06

Chaparral Energy 8 9.18 0.73

Fasken 5 4.30 0.34

Core Energy 9 1.90 0.15

Others 12 31.19 2.47

Table 2. CO2 miscible flooding operator and production dataset [66, 69, 70].

Property Minimum Maximum Median Mean

Porosity 4 29.5 12 14.25

Permeability, mD 2 700 14 44.35

API gravity 27 45 38 37

Viscosity, cp 0.4 6 1.8 1.3

Temperature, �F 83 260 108.5 133.9

Depth, ft 1150 11,950 5500 6107.3

Oil saturation (% PV) 26.3 89 46 49.6

Net thickness, ft 15 268 90 110

Minimum miscibility pressure (MMP), psia 1020 3452 1987.5 2058.4

Table 3. Properties of reservoirs subjected to CO2 flooding.
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preliminary screening, according to National Petroleum Council, the optimum reservoir

criteria for CO2 miscible flooding [64, 71] are summarized in Table 4. Any deviation from

these criteria would depend on the size of the reservoir and potential hydrocarbon recovery.

For example when reservoir temperatures are greater than 120�F, additional pressure ranges

from 200 to 500 psi is required to achieve miscibility. The density of CO2 depends on the

injection depth, which controls the ambient temperature and pressure and range from 0.6–

0.8 g/cc [72]. The CO2 should be injected at depth greater than 800 m, where it is in a dense

phase (either liquid or supercritical) [2]. High saline reservoirs are more susceptible to CO2

storage than low salinity reservoirs.

All reservoir lithology, including carbonate and siliciclastic are appropriate for CO2-EOR

flooding as long as they have interconnected pore space for fluid accumulation and flow.

Proper reservoir characterization leads to accurate estimates of OOIP and a convenient evalu-

ation of reservoir behavior. The OOIP calculated volumetrically, by the following equation;

OOIP ¼
7758∗A∗

H
∗

Φ
∗

Soið Þ

Boi
(1)

7758, multiplying factor, (barrels/acre-feet); A, reservoir area,(acres);h; average net reservoir

thickness, (feet); Ø; average porosity of formation; Soi; initial oil saturation in pore space; Boi;

oil formation volume factor at initial reservoir pressure (bbl/STB).

8. CO2-miscible flooding performance and simulation

Before conducting a CO2-flooding, its miscibility with the reservoir is determined through

measurement of MMP. After that, a pilot test is conducted to check the success of the CO2-

EOR process on a small scale in the field. If all results are positive, reservoir simulation is

Criteria Optimum condition

Depth, ft 2500 [73]–3000 [74]

Reservoir temperature, �F <120

Reservoir pressure, psi >3000

Total dissolved solids (TDS) <10,000 mg/L

Oil gravity Medium to light oils (27–39�API)

Oil viscosity, cp <3

Reservoir type Carbonate reservoirs preferred than sandstone one

Minimum miscibility pressure (MMP), psi 1300–2500

Oil saturation >20% [73]

Net pay thickness, ft 75–137

Porosity >7%

Permeability >10 mD

Table 4. Optimum screening criteria for CO2 miscible flooding.
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carried out to (a) scale-up the EOR process to an entire oil field and (b) define the optimum

design of the WAG ratio and hydrocarbon pore volume injection volumes for maximum oil

recovery [75]. The performance of a flooding process evaluated by exploring the slug of CO2

and water, the performance of oil-production wells, gas-oil ratio and water cut, and the

injection wells for fluid distribution among various reservoir layers, since these parameters

greatly effect on the recovery factor [76].

9. Operational aspect

In order to implement a successful CO2-miscible flooding several parameters are considered;

9.1. CO2 source

There are three possible sources of CO2: (1) natural hydrocarbon gas reservoirs containing CO2

as an impurity (generally less than 25%), (2) industrial or anthropogenic sources with wide

variation of CO2 percentage in the effluent like power plants and so on [2], and (3) natural CO2

reservoirs [49].

9.2. Surface facilities

The facility requirements for CO2-EOR include the following items.

i. CO2 extraction: it is extracted from the separator gas, which begins to show increasing

quantities of CO2 after its breakthrough in producing wells [77].

ii. CO2 processing: it is purified to specification after its extraction from the separator gas

and is dehydrated before compression [78].

iii. CO2 compression: it is compressed to raise its pressure for injection [79].

9.3. Technological challenges

Technical challenges of CO2 flooding can be summarized in the following [80].

1. Increasing CO2 injection volumes,

2. Optimizing flood design and well placement for extracting more of the residual oil,

3. Improving the mobility ratio by increasing the viscosity of water by use of polymers, and

4. Extending miscibility by reducing the miscibility pressure through the use of liquefied

petroleum gas (LPG).

10. Conclusion

The primary and secondary oil recovery produces about 20–40% of the OOIP [48]. Consequently,

there is a huge amount of potentially unrecovered oil left in the reservoir, which becomes the
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target for suitable EOR processes. One of thewidely implemented EOR processes is CO2-miscible

flooding which recovers high amounts of crude oil and reduces environmental pollution results

from gas emissions. CO2 can be injected either as a continuous stream, water-alternating gas

(WAG). Implementation of successful CO2 miscible flooding require an accurate investigation of

reservoir screening criteria comprising reservoir porosity and permeability, API gravity, oil

viscosity, reservoir temperature, depth, oil saturation, and net pay thickness.
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