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Abstract

In this chapter we present the theory of phononic crystal, classification of PnC according to
its physical nature, and phononic crystal (PnC) phenomena in locally resonant materials
with 2D, and 3D crystals structure. In this chapter, phononic crystal (PnC) micro-electro
mechanical system (MEMS) resonators with different transduction schemes such as electro-
statically, piezoresistively, piezoelectrically transduced MEMS resonators are explained. In
this chapter, we employed phononic crystal strip inMEMS resonators is explained to reduce
anchor loss, and analysis of eigen frequency mode of the resonators. The phononic crystal
strip with supporting tethers is designed to see the formation of band gap by introducing
square holes, and improvement of quality factor and harmonic response. We show that
holes can help to reduce the static mass of PnC strip tether without affecting on band gaps.

Keywords: MEMS resonator, phononic crystal, piezoelectric, band gap, anchor loss

1. Introduction

Because of merits of easy fabrications and less power consumption and the better performance

with high accuracy phononic crystals MEMS resonator has become hot topic in the family of

flexible electronics. The concept of phononic crystal followed by a few years the analogous

concept of photonic crystals [1, 2] for the propagation of electromagnetic waves.

Phononic crystals are actually the acoustic waves with periodic structures which is same as

electrons crystalline structure, sometimes the acoustic waves are also refer to elastic waves.

Simply we can say phononic crystals are the artificial materials are arranged in a highly ordered

microscopic structure of array of particles. Phononic crystals (PnCs) have paid attention by

researchers over the past two decades [3]. Phononic crystals have many potential applications,

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



especially in the field of information and communication technologies. Propagation of waves

can be control by phononic crystals. The field of phononics is progressing very quickly.

Nowadays there are many advances in the field of phononic crystals. Scientist and engineers

are paying deep attention in phononic crystals (PnCs) MEMS resonator. The PnCs have

significance role in the advancement of micro- and nanofields. PnCs supported tether config-

urations to isolate the energy leakage from resonator body into substrate [4]. A perfect PnC

allows for the design of devices like waveguides and cavities to control the propagation of

acoustic waves inside the band [5, 6, 34]. The PnCs can operate as coupling elements between

resonators [6, 7]. Moreover the combination of PnCs and n-type doped silicon in nano-

structures is a potential/promising candidate for thermoelectric applications [7].

In fact, the concept of phononic crystals is extended from one of photonic crystals for the

propagation of electromagnetic waves [1–9]. The nature of phononic crystals is controlling

and manipulating the propagation of elastic/acoustic waves. For example, the PnCs can pro-

hibit the propagation of acoustic (elastic waves) inside their structures through existence of

band gaps (PBG). Band gap is a frequency range in which there are no resonant guided modes

or wave propagation within the structure.

2. Theory of phononic crystal

As mention above that phononics crystal is an artificial material composed by a periodic

repetition of incorporation in a matrix. This periodic structure is formed by scattering inclu-

sions located in consistent material as a lattice structure resemble with crystal lattice existed in

the crystalline solid [10–12].

2.1. Lattice structure

The phononic band structure may be tailored with appropriate choices of materials, and

crystal lattices. An ideal crystalline solid composed of the atoms or basis (group of atoms) are

arranged by attachment of every lattice point. Let any lattice point r´ can be formed from any

other lattice point r in the space using translational operation [10]

r
0
¼ rþ T (1)

In above equation, T is the translation vector can be written as

T ¼ u1a1 þ u2a2 þ u3a3 (2)

where a1, a2 and a3 three fundamental translation vectors (primitive vectors/axis) can be lie in

arbitrary directions and u1, u2 and u3 are three arbitrary integers.

Lattice is formed by the repetition of smallest unit cell called a primitive cell. A primitive cell

(volume of space having one lattice point) is the parallelepiped defined by primitive axes a1, a2
and a3. For primitive crystal Systems with higher symmetry we use reciprocal lattice (the sum
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of the components in the k-space). Therefore, the axis vectors of the reciprocal lattice can be

constructed from three fundamental translation vectors a1, a2 and a3 [10] (Figure 1).

b1 ¼
2π a2 � a3ð Þ

a1:a2 � a3
, b2 ¼

2π a3 � a1ð Þ

a1:a2 � a3
, b3 ¼

2π a1 � a2ð Þ

a1:a2 � a3
(3)

Any periodic structure, the propagation of acoustic waves in a phononic crystal is determined

by the Bloch [12] from which the band structure can be derive in the Brillouin zone. The

Brillouin zone is a unit cell in the reciprocal lattice. It should be noted that Brillouin zone can

be in one (1D), two (2D), or three dimensions (3D). For desiring the possibility of absolute band

gaps phononic crystals has been studied in One Dimension (1D) phononic crystals [13] on the

basis of literature, Two Dimension (2D) [14, 15], and Three Dimension 3D [14, 15].

2.2. Band gap

Band gaps are used to explain electronic band structures of materials. Bloch theorem tells us that

waves of a certain frequency can propagate without scattering through periodic media. But the

propagation of waves is stopped at other frequencies. The frequencies range where the propa-

gation is allowed is called bands and where the propagation is stopped is called band gaps.

Phononic band gap in the periodic structure can cause the reflection of mechanical wave when

incident on phononic crystals. So the propagation is stopped by generating the mechanical

wave inside the phononic crystal. The propagation of mechanical wave with audible frequency

range is not permitted in phononic crystals of periodicities ranging from meters to centimeters.

Figure 1. Brillouin zones of two-dimensional cross sections of square and hexagonal lattices with elementary unit cell of

lattice parameter “a,” and the radius of the inclusions “r.”

Phononic Crystal Resonators
http://dx.doi.org/10.5772/intechopen.78584

107



To find the band gap in a phononic crystals, we need to understand the energy band structure

of a solid for electrons in a crystalline solid by using following Schrödinger equation [16]:

Eψ rð Þ ¼ �
ℏ
2

2m
∇

2 þ V rð Þ

� �

ψ rð Þ (4)

where E is the total energy, Ψ is the wave function, ħ is the Planck’s constant, m is the effective

mass and V is the potential, r is the position vector, and ∇
2 is the differential operator.

The above single nonrelativistic particle Eq. (4) shows the total energy is the sum of kinetic

energy, and potential energy. Bloch proved the solutions of the wave function in the Schrödinger

equation for a periodic potential with periodic function u analogous with crystal as

ψ
k
rð Þ ¼ uk rð Þeikr (5)

where ψ is the Bloch wave, k is the crystal wave vector, r is the position, e is Euler’s number

with imaginary unit i. Actually it consist of product of a plane wave, and a periodic function

uk. The band structure is usually in the form of a dispersion relation between the angular

frequency ω and the wave vector k. And k should be in the primitive cell of the primitive lattice

vectors of the reciprocal lattice (the first Brillouin zone). Let “a” is the periodicity of one

dimensional system, then primitive reciprocal lattice vector is P = (2π/a). So the region [(�π/a),

(π/a)] is the first Brillouin zone (Figure 2) [10].

Note that gaps width depends upon the difference of wave velocities in the two materials. It

means that more difference in periodic medium gives wider band gap. Now comes to

phononic band gap. As we are much familiar that in a solid medium (material) atoms cannot

move independently since they are connected by chemical bonds and also they move around

their equilibrium positions and exert a force on their neighboring atoms to displace, and this

displacement cause the phonons creation. The phononic crystals’ band structure depend upon

the propagation of the elastic/ acoustic waves with suitable materials, shape, crystal lattices,

and inclusions with background material [17–19] based on Bragg scattering [17] or by local

Figure 2. Frequency vs. wave vector for one dimensional linear homogeneous medium (dotted lines), and two dimen-

sional periodic medium (solid lines).
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resonance (LR) mechanism [17, 20] in which band gap formed by the internal resonances of the

individual inclusions.

As we are familiar with propagation of wave with the motion of atom (say n) with wave

number k and angular frequency ω which satisfy the following equation

ψn ¼ Aeiknaeiωt (6)

With dispersion relation ω, and upper bound limit of angular frequency ω0

ω ¼ ω0 sin k
a

2

�

�

�

�

�

�
(7)

So the dispersion relation is in symmetric interval wave vector k ∈(�π/2, π/2).

2.3. Dispersions in phononic crystal

The dispersion relations are expressed in terms of the angular frequency ω(k) and wavenumber

(wave vector) k. Dispersion represent the band structure.

ω kð Þ ¼ V kð Þk (8)

where V(k) is the wave speed (V is the function of k), and k is the wave vector can be written as

k = 2π/λ. In term of phase velocity k should be Vp=ω/k. So the rate of change of angular

frequency with respect to time is

Vg ¼
∂ω

∂k
(9)

Eq. (8) shows that dispersion curves are dependent of materials characteristics like elastic

constant, and phononic crystal structure. The band gap can be calculated as frequency range

between two continuous dispersion curves associated with wave vector k. The propagation of

acoustic wave in phononic crystal can be more due to large gap. Figure 14 describes the band

structure with dispersion curves in phononic crystal.

3. Physical nature of phononic crystal

Nature of materials (solid or fluid), and physical characteristics (density and elastic constants)

of the inclusions plays an important role in the gaps bandwidth. So, PnC can be define into

three classification according to its physical nature.

3.1. Solid–solid phononic crystals

The band gap in these structures is formed by the low and high contrast [20] between different

materials. This type of PnC can be square, triangle, and honeycomb [21] which shows its band

Phononic Crystal Resonators
http://dx.doi.org/10.5772/intechopen.78584

109



gap impact. Moreover for two dimensional solid-solid PnC the elastic displacement is perpen-

dicular to the cylindrical axis in-plane propagation, and parallel to the cylindrical axis out-of-

plane propagation [22].

3.2. Fluid–fluid phononic crystals

Only longitudinal modes can exist in these PnCs. These PnCs made up of two different fluids.

Large band gap for this PnC can be found by arrangement of Soft polymer hollow cylinders in

a water background at low frequencies [23].

3.3. Solid–fluid (mixed composite) phononic crystals

These PnCs can be constructed by solid inclusions in a fluid (condensed liquid [24, 25, 33] or a

gas [26, 27]) matrix and vice versa. Only complex modes of vibration occur from longitudinal

in the fluid to longitudinal and transverse in the solid region. So that is why the mixed

composite PnCs’ acoustic band structures cannot be predicted accurately by using plane wave

expansion (PWE) method [23].

Moreover shape of the inclusions play an important role in the formation of band gap. According

to geometry PnCs can be in one (1D), two (2D), or three dimensions (3D). Absolute phononic gap

should be appear at frequency below the Bragg limit, so this phenomena can happen in locally

Resonant materials [28] and can obtained in 2D, and 3D phononic crystals.

4. Phononic crystal composition

Phononic crystals consist of different dimensional periodicity structure having their own

characteristics.

4.1. One dimensional phononic crystal

One dimensional phononic crystals (PnCs strip) [4, 18, 20, 29] are composed of two or many

layers repetition of geometrical space in a certain direction. The one -dimensional PnCs are

also called super lattices (SLs) [30]. The combination of solid–solid or solid–fluid-layered

formed each cell of super lattices. The only one direction is responsible for the propagation of

an elastic (acoustic) waves in these models.

The periodic band gap structures of SLs consist of crystalline, amorphous semi-conductors.

One-dimensional PnC is made up of N cells which show two types of confined states [12]:

i. N–1 states in the allowed bands

ii. One and only one state corresponding to each band gap and do not depend on the width

of the crystal N [31].
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From 1D systems we conclude that their design is more suitable and based on very simple

analytical and numerical calculations to understand different physical properties relevant with

band gaps. One dimensional PnCs mainly focus on exploiting the properties of stubs like the

shape of the stubs, locations of stubs on the background material, types of waves and creation

of defect of background to widen or lower band gaps [18]. In the range of low-frequency there

is a wave speed for propagation perpendicular/parallel to layering [31, 32], the one-wave speed

for propagation perpendicular to the layering, and two-wave speeds for propagation parallel

to the layering (Figure 3).

4.2. Two dimensional phononic crystal

As compare to one dimension (1D) PnC the two dimension (2D) PnC has better ability to trap the

elastic energy. Repetition of the periodicity in two directions of the space formed a 2D PnCs

structure. Its structural arrangement is like the pattern of air holes on silicon or piezoelectric

materials [5, 6]. This type of PnC slab can be constructed in square, triangle, hexagonal lattices, or

folded structure [34] stepped pillars and holes [3], honeycomb lattice [33], square pillar [19],

chessboard-patterned bi-component array, square lattice with cylinder pillars [35], and polygonal

graphene like lattice [36]. Following is the schematic of square pillars PnC plate (Figure 4) [18].

Figure 3. 1D phononic crystal structure.

Figure 4. 2D phononic crystal structure.
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A triangular Bravais lattice crystal [37] having cylinders shaped assembled structure with

vertices of the equilateral triangles with vectors a1, a2 considered as direct lattice, and b1, b2
correspond to reciprocal lattice as shown in structure below.

ai
!

:bj
!
¼ 2πδij, and b1

!
j ¼ b2

!
j ¼ 4π

a
ffiffi

3
p

�

�

�

�

�

� , δij is known as Kronecker delta.

4.3. Three dimensional phononic crystal

Crystals with scattering units (rod, sphere) [25] that are simply air void cylinder which gives

rise to Bragg reflections of the acoustic (elastic) waves. So constructive or destructive interfer-

ence creates in crystal and these constructive and destructive interference creates frequency

range at which wave propagate or block. The propagation, and blocking of waves refer to pass

bands, and stop bands respectively. Structure of crystal plays an important role in the creation

of band gap. It means that contrast between the materials can be produced with the large band

gaps. Like changing from water to epoxy (liquid matrix to the solid) gives larger band gaps

[38]. The fabrication process of the 3D phononic crystals requires high accuracy of structural

patterns (Figure 5) [38, 51].

Structure of 3D phononic crystal is made up of a face-centered cubic (FCC) crystal having

spheres shaped assembled structure obtained from one sphere which is added to the center of

each face of the simple cubic unit cell.

Figure 5. 3D phononic crystal structure.
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where a1
!
, a2
!
, a3
!
, b1
!
, b2
!
, b3
!

are the primitive vectors, and a is the cube edge length.

a1
!j ¼ a2j j ¼ a3j j ¼ a

ffiffi

2
p

�

�

� , and b1

!
j ¼ b2

!
j ¼ b3

!
j ¼ 2

ffiffi

3
p

π

a

�

�

�

�

�

�

�

�

� .

So artificially complex structure of 3D phononic crystal fascinating the researcher to develop

new kind of phononic crystal with more precise attenuation band in the range of acoustic

frequency with better performance used in an engineering field.

5. Phononic crystal based MEMS resonator

Now a days MEMS technologies and the applications of MEMS resonators in communication

systems are widely used. MEMS technologies covers many of devices like micro-sensors,

actuators, accelerometers, variable capacitors, switching filters, oscillators, couplers, and the

main is resonators, and other sensing devices. These operation of PnC MEMS devices is based

on the energy conversion between the mechanical and electrical domains [9]. There are many

MEMS component which are used in electronic application systems, Telematics, Medical

Electronics, etc., but PnC MEMS resonator play an important role in such kind of application

systems and improve the performance of devices by resonant frequency stability, quality

factor, motional resistance, nonlinearity, and power handling. Insertion loss in the filters, and

phase noise in the oscillators can be reduce by PnC MEMS resonators. It can also help to avoid

signal distortion and stabilize the operating frequency. Air scattering inclusion on solid back-

ground and two-dimensional structures are common employing in PnCs MEMS resonators.

The micro-mechanical structures of MEMS resonators operate on an electromechanical trans-

duction mechanism. This mechanism is the conversion of reversible process between electrical

and mechanical energy [39]. Electrostatic, piezoresistive, and piezoelectric are the three main

Figure 6. Transduction mechanism.
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Transduction methods which are used in MEMS resonators. Following diagram shows the

basis transduction mechanism in MEMS resonators (Figure 6).

5.1. Electrostatically-transduced MEMS resonators

Electrostatically-transduced MEMS Resonators are also known as capacitive MEMS resonators.

The basic principle of this kind of resonator is variation between electrodes and resonating body

when the resonant structure vibrates in its mode shape so that the capacitance change. The

current is change at output due to change in capacitance by following relation [11].

im ωð Þ ¼
∂Cd

∂x
VDC _x ωð Þ (10)

where im (ω) is the motional current, ω is the angular frequency, Cd is the capacitance between

the gap and resonant body with bias voltage VDC, and _x ωð Þ is the vibration amplitude of the

resonator. A direct current (DC) (which is bias voltage) is applied to the resonator body, and an

alternating current (AC) signal to input electrodes. So the capacitance takes place between the

output electrode and resonant body. Due to this phenomena an electrostatic force between the

input/drive electrodes and resonant body generates from the combination of the AC and DC

voltages. So the structure is set into its resonant mode (frequency of the drive signal is same as

the resonant frequency of the resonator) (Figure 7).

The above structural mechanism is quite very simple it consist of two parallel-plates called

electrodes one is input (excite) and other is output (sense) electrode placed at two sides of the

resonator. Applied the DC voltage to the resonant body through anchor/support tether. The

output signal is taken from the sense electrode by giving AC signal to excite electrode.

Although a very high Q is the great advantage of electrostatic transduction through capacitive

MEMS resonators. But the main drawback of such resonator are high impedance and low

transduction efficiency at the high frequency [40].

5.2. Piezoresistively-Transduced MEMS resonators

In 1856 L. Kelvin discovered the piezoresistive effect, and later this effect is applied on MEMS

resonators as a transduction which is studied by some researchers. [41–44]. These kind of

Figure 7. Electrostatic transduction scheme.

Phonons in Low Dimensional Structures114



MEMS resonators operate based on the change of electrical resistance of material caused by

applied mechanical stress or material deformation by using transduction scheme with silicon

piezoresistive. Such phenomena can be seen in some crystalline (non-amorphous) materials.

Piezoresistive MEMS resonator show low effective impedance. Moreover piezoresistivity

depend upon electrical resistivity by following Eq. (11)

Δr

r
¼ GFð Þε (11)

where Δr/r is the relative change in specific resistivity with piezoresistor strain ε, and GF is the

strain factor (Gauge factor). Some times GF can be expressed as πE. Here E is the Young’s

modulus and π is the piezoresistivity matrix expressed below.

The principle of piezoresistively-transduced MEMS resonator is not so complicated. The elec-

trodes of resonator is applied by both voltage sources AC and DC then vibration is generated

by the electrostatic force and the resistance of resonator changes due to this effect, also an AC

current is induce by this vibration [44, 45] (Figure 8).

VDC is connected through the resistors while VAC is applied through the capacitor, and from the

supporting tether the output current has been taken.

5.3. Piezoelectrically-transduced MEMS resonators

In 1880 French physicist P. Curie was first found the piezoelectric phenomena [46] on crystals

of quartz, tourmaline, cane sugar, topaz. Piezoelectrically transduced MEMS resonators have

been developed in recent years based upon piezoelectric effects and early studies on quartz

Figure 8. Schematic of piezoresistive resonator.
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piezoelectric resonators. The basic principle of the piezoelectric MEMS resonators is that

piezoelectric effect happening in piezoelectric materials to induce electric charges on surface

of output electrodes. DC voltage must applied to resonator for operation. The impedance of

the resonators can be reduced by increasing the DC voltage, so it can improve the performance

of resonator. Electromechanical coupling of the resonators is effected by the gap between

electrodes and resonant body. Coupling can be high if the gap is narrow. In Electrostatically-

Transduced, and piezoresistively-Transduced MEMS Resonators there is a problem of high

motional impedance, so this sort of problem can be reduce by piezoelectrically-Transduced

scheme because piezoelectric operates on vibration mode then induces charges on the surface

of output electrodes when AC is applied to electrodes.

Moreover the performance of resonator depends upon quality factor, resonant frequency,

motional resistance, power handling, nonlinearity and frequency stability. Quality factor and

operating frequency are the two main parameters that can improve the performance of MEMS

devices such as electrostatically-transduced MEMS devices and piezoresistively-transduced

MEMS devices which is known as silicon-on-insulator (SOI) technology [42, 49]. But the elec-

trostatically transduced based designs is almost limited at high frequencies due to their inher-

ently small coupling coefficients.

5.4. Quality factor and band width

Quality factor is the ability of energy storage under damping mechanisms at their resonant

frequency. When the quality factor is higher, the better the performance of resonator will be

better. An ideal resonator can have an infinite quality factor value. Attenuation of quality factor

may cause the damping sources. Damping can be generated by temperature, and the nature of

materials. If Q factor is higher, then energy loss is low.

Figure 9 above shows the resonance width (band width) Δf, and f (refer to fr) is the resonant

frequency. So Q = f/Δf = 2π Estored/Edissipate per cycle, where E refers to energy.

Figure indicates the high, low, and intermediate Q factors are said to be an underdamped (Q >

1/2), over damped (Q < 1/2), and critically damped (Q = 1/2) respectively. The parameters like

bandwidth, spurious signals, ringing also dependent on Q. When the value of Q factor increase

Figure 9. Different frequency responses in MEMS resonators.
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the band width of circuit must decrease, so energy storage is better and response of circuit can

increase. Moreover when the value of Q increase the spurious signals can be removed by the

circuit (losses decrease) and circuit will be able to ring more.

5.5. Motional resistance

Motional resistance is an impedance of resonator can be expressed by the following formula

having angular frequency ω, resonator’s equivalent mass meq, and quality factor Q.

Rm ¼
ωmeq

η1η2Q
(12)

where

meq¼
eq rT

Um xm; ym
� �2

ð ð

U x; yð Þ2dxdy (13)

In above equation η is the mechanical coupling coefficient which depends upon piezoelectric

transduction mechanism (ratio of the current passing through the resonator to the maximum

velocity) can be expressed as

η ¼
i

vmax
¼

QT

Umax
(14)

where QT is the induced electric charge can be expressed as

QT ¼

ð ð

Didxdy (15)

The motional resistance and quality factor of MEMS resonators are inversely proportional to

each other.

6. Phononic crystal strips in MEMS resonator

The phononic crystals are presented as main theories for designing the support tethers in thin

film aluminum nitride on diamond contour mode MEMS resonators.

6.1. Support tether configuration

Here we introduce our work [47] on MEMS Resonators with supporting tether configurations

which is based on reflector and phononic crystal strip by using thin films piezoelectric material

(Aluminum Nitride) on diamond. Diamond is used as a substrate material. Figure 10 shows

the PnC strips support tethers of MEMS resonators.
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In this work the quality factor has been improved. Because the tether structures improve the

quality factor of MEMS resonators. PnCs also support elimination of anchor loss in the resona-

tors. PnCs can also be designed for sensor applications.

From Figure 11 we see that each resonator consists of a thin-film aluminum nitride piezoelec-

tric layer sandwiched between two gold (Au) metallic electrode layers which is located on

thick diamond substrate layer and operate at 115 and 156 MHz, respectively. Gold has a very

high electrical conductivity and very low resistivity [47] so it can reduce the energy dissipa-

tion. When thin film aluminum nitride is applied by an electric field from gold electrodes then

strain field is created in the thin film and mechanical vibration of resonators increase. Follow-

ing Eq. (16), and Eq. (17) represent the resonant frequency of WG and WS resonator with

effective mass density reff respectively.

fWG ¼
1

2L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eeff

1þ Veff

� �

reff

s

(16)

fWS ¼
1

2W

ffiffiffiffiffiffiffi

Eeff

reff

s

(17)

where L is the side length, and W is the side width of WG resonator, and WS resonator

respectively, Eeff, and veff is the effective Young’s modulus, and the effective Poisson’s ratio

respectively. We can calculate the values of Eeff, νeff, and reff by using following formula

Peff ¼
tAINpAIN þ 2tAUpAU þ tDipDi

tAIN þ 2tAU þ tDi
(18)

where tAlN, tAu and tDi are the thickness of aluminum nitride.

Clamping of tether with MEMS resonators at corners is obtained by COMSOL through FE

simulation as shown in Figure 11 above. Now come to the PnC strip with supporting tether

[47], as we discussed above that PnC is a highly periodic structure of unit cell which is the basic

block. In this work we take the PnC strip of five unit cells as shown below (Figure 12).

Figure 10. PnC MEMS resonator with supporting tethers.
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Moreover this work only investigates the band gap variation with Ws (stub width), Ls (stub

length), and Wh (side hole) of unit cells of the PnC strip.

The parameters of the WG and WS mode resonators and a unit cell of the PnC strip are given

in Table 1. Following Figure 13 shows the analysis of eigen frequency mode of the resonators

for positioning of anchor tether placement location.

As we discussed above that band gaps is used to explain electronic band structures of mate-

rials and can cause the reflection of mechanical wave in the periodic structure when incident

on phononic crystals. So here is the band structure with simulated dispersion curve represented

as blue dotted lines, and band gaps represented in yellow area having stub width: Ws = 28 μm,

stub length: Ls = 30 μm, and hole width: Wh = 2.5 μm (Figure 14).

From these results we arrived at this point that.

The role of Stub is important in the formation of band gaps, particularly in its length. If Ls is

large the band gap is wide.

i. Holes can help to reduce the static mass of the PnC strip tether without effecting on band

gaps.

Figure 11. Resonators with Eigen mode shapes.

Figure 12. Phononic crystal strip.
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WG WS

Resonator Electrode Substrate Piezoelectric Resonator Electrode Substrate Piezoelectric Unit cell Stub

Thickness

(μm)

0.1 3 0.4 0.1 3 0.2 3

Width

(μm)

60 60 48 23 6 28

Length

(μm)

60 80 30

Table 1. Parameters of PnC strip WG and WS mode resonators.

Phonons in Low
 D

im
ensional Structures

120



6.2. Quality factor and harmonic response

Several MEMS resonators has been fabricated [48] with high quality factor, temperature stabil-

ity with high frequency. Several techniques have been used to minimize the anchor loss, and

improve quality factor in resonator such as impedance mismatching between resonator body

and support tethers, quarter-wavelength tethers, narrowed-width tethers, geometrical shape-

based tethers, acoustic wave reflection based tethers. And one of the sound technique is

phononic crystal (PnC) based tethers [47] which is highly effective in reduction of anchor loss,

and improve the quality factor in resonator. High quality factor reduces motional resistance.

Phononic crystals boosting the anchor quality factor and present the ability of acoustic/elastic

wave propagation isolation as well as reflection. Figure 15 shows the Q factor, and anchor Q

factor for PnC strip tethers.

Figure 13. Resonators with Eigen mode shapes.

Figure 14. Band structure with dispersion curves in PnC.
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The maximum value of Q obtained from WG mode resonator with five-unit cell PnC strip

tethers is 398.5% and from WS mode resonator with three-unit cell PnC strip tethers is

591.1%. The values of Q and Qanchor for WS WG mode resonator, and WS mode resona-

tor for their corresponding unit cells are shown in Table 2.

To see the harmonic response of resonators voltage is applied by two sources 1 V and -1 V.

Figure 15 depicted the curve between frequency and displacement. Narrow curve indicate that

the quality factor is much higher, but this is fact that the quality factor is always limited by

energy losses. In MEMS resonator the harmonic response is represented by electric charge and

admittance (Figure 16).

6.3. Anchor loss

Anchor is basically the attachment of supporting frame mechanical connection between

the resonators In all micromechanical resonator there must be the energy loss called an anchor

damping or anchor loss due to radiation of acoustic wave energy from the resonant structure via

supporting tether [10, 48, 50, 51], so the energy entered in the substrate when resonator vibrate.

Figure 15. WG and WS modes for PnC strip supporting tethers.

Figure 16. Harmonic response: WG and WS mode PnC strip resonators with supporting tethers.
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In other words we can say that in the resonator, elastic waves are trapped at resonance. This

phenomena may cause the loss of energy. The anchor size is responsible for the loss of energy

(anchor loss). One way of reduce the anchor loss is to increase the number of tethers and slightly

reduce the size of tethers [52].

7. Summary

This chapter has employed the theory of phononic crystal, classification of PnC according to its

physical nature, and PnC phenomena in locally resonant materials with 2D, and 3D crystals

structure. In this chapter PnC MEMS resonators with different transduction schemes such as

electrostatically, piezoresistively, piezoelectrically-transducedMEMS resonators are explained. In

this chapter phononic crystal strip in MEMS resonators is explained to reduce anchor loss, so

phononic crystal strip with supporting tethers is designed to see the formation of band gap by

introducing square holes, and improvement of quality factor. Moreover few simulation tools like

COMSOL Multi-physics for designing, MATLAB for extracting parameters and EXCEL for

representation of graphs are used.
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