
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 5

Brain-Computer Interface and Motor Imagery Training:
The Role of Visual Feedback and Embodiment

Maryam Alimardani, Shuichi Nishio and
Hiroshi Ishiguro

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.78695

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original work is properly cited. 

Maryam Alimardani, Shuichi Nishio and 
Hiroshi Ishiguro

Additional information is available at the end of the chapter

Abstract

Controlling a brain-computer interface (BCI) is a difficult task that requires extensive 
training. Particularly in the case of motor imagery BCIs, users may need several training 
sessions before they learn how to generate desired brain activity and reach an acceptable 
performance. A typical training protocol for such BCIs includes execution of a motor 
imagery task by the user, followed by presentation of an extending bar or a moving object 
on a computer screen. In this chapter, we discuss the importance of a visual feedback that 
resembles human actions, the effect of human factors such as confidence and motivation, 
and the role of embodiment in the learning process of a motor imagery task. Our results 
from a series of experiments in which users BCI-operated a humanlike android robot 
confirm that realistic visual feedback can induce a sense of embodiment, which promotes 
a significant learning of the motor imagery task in a short amount of time. We review the 
impact of humanlike visual feedback in optimized modulation of brain activity by the 
BCI users.

Keywords: motor imagery, BCI training, visual feedback, android robot, positive bias, 
embodiment, performance, neurorehabilitation

1. Introduction

Brain-computer interfaces (BCIs) have been considered for years as a new method of con-

trol and communication with the outside world not only for disabled patients who have lost 
motor control [1, 2] or speech abilities [3], but also for healthy users who are seeking new 
ways of interaction with virtual reality (VR) environments [4] and gaming applications [5]. 
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However, despite their popularity and potentials, BCIs still remain mostly used inside labo-

ratories and barely commercialized for real-world applications. The main reason behind this 
slow progress is the lack of reliability and poor performance of the BCI systems [6]. Even 
the finest BCI classifiers developed to date are not yet able to extract the relevant features 
from brain activity with high accuracy and robustness, particularly if the activity is recorded 
with electroencephalography (EEG) and contains noise. Many BCI researchers have made it a 
quest of their life to develop systems and algorithms that can decode EEG activity with high 
accuracy [7]. However, beside the algorithms, there is another element in the BCI loop that 
often gets neglected and that is the human user who is the source of the input signals [6, 8]. 

Although it has been previously shown that not every user is capable of controlling a BCI, the 
so-called BCI illiteracy [9], most users can obtain a decent level of “skill” with a few sessions 
of training.

Motor imagery-based BCIs demand particularly longer training time compared to ERP-based 
BCIs (such as P300 speller) or BCIs that use steady-state visual-evoked potentials (SSVEPs). 
This is due to the fact that motor imagery task, the mental rehearsal of a movement without 
actually performing it, is a counterintuitive task for the majority of individuals. Most users 
cannot visualize a vivid picture of the movement and its kinesthetic experience. Hwang et al. 
refer to this as the unknown “feel of motor imagery” [10]. An imaginary action can range from 

the visualization of a self-performed movement from a first-person perspective, to a third-
person view of the self-body movement, to the manipulation of an external object that is either 
physical or imaginary [11]. Although these types of motor imagery all involve voluntary 
actions, they may not involve similar cognitive processes. For novice BCI users, the instruc-

tion about a motor imagery task is normally given verbally by an experimenter, and it is up 
to the user to find the optimum image, by trial and error, that leads to a high performance.

On the other hand, similar to any other interface, BCI users should receive feedback of their 
performance in order to close the control loop between them and the interface. Over years, 
various feedback paradigms for motor imagery training have been proposed, most of which 
are based on visual and auditory feedback [12, 13]. One of the main issues in the design of 
visual feedback in most of motor imagery-based BCIs is that the feedback presentation is not 
congruent with the subject’s image of a bodily movement. For example, in the training para-

digm introduced by Pfurtscheller and Neuper, subjects imagined either a right- or a left-hand 
movement and watched a horizontal feedback bar on a computer screen that was extended 
to the right or to the left based on the classifier output [12]. Blankertz et al. presented a falling 
ball on the screen that could be horizontally displaced either to the left or right side if the 
user’s left- or right-hand imagery was successfully detected by the classifier [13]. In another 
study, Nijboer et al. employed two feedback designs: a visual feedback with a cursor on a 
screen that moved up and down based on the subject’s sensorimotor rhythm and an auditory 
feedback that presented different types of sound in existence or the absence of motor imagery 
activation [14]. In all of the given examples, the feedback design that was employed had no 
congruity with the type of image that the subjects held (image of a bodily hand or a foot). Not 
only the disparity between the visual feedback and the type of image can confuse the subjects 
during the task, but it also prevents them from obtaining “the feel of motor imagery” and 
correcting their imagery strategy.
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To overcome such a deficiency, some studies have employed a double-modality design. For 
instance, Chatterjee et al. introduced a vibrotactile feedback paradigm that delivered haptic 
information during BCI control [15]. Every time subjects imagined a hand movement, the 
classifier result was presented to them in the form of a cursor movement (visual feedback) and 
a vibration on their corresponding arm (tactile feedback). A design like this can enormously 
change the interaction a clinical BCI user has with a neuroprosthesis and may facilitate the 
decoding of sensorimotor rhythm during neurorehabilitation therapy with BCIs [16]; how-

ever, in the case of a healthy user, the application of vibration on a part of body that is not 
involved in the imagination of movement (arm instead of the hand) can again disturb the 
conduct of the motor imagery task by the user.

Another commonly faced problem in the BCI training protocols is the lack of motivation for 
novice users. Motor imagery BCI takes a very long training that is often accompanied with 
unsuccessful and unsatisfying results in the beginning. It has been shown that motivation 
[17, 18] along with other mental states such as fatigue and frustration [19] can substantially 

influence BCI performance. To alleviate this problem, some of the previous studies have given 
their attention to the design of a more interactive feedback environment by means of virtual 
reality techniques [18, 20]. A few others have tried to improve users’ level of confidence and 
perception of control over the BCI system by intentionally biasing the presented feedback 
accuracy [21, 22].

What is important, and often neglected in the BCI research, is that the interaction between a 
user and the interface is the most critical component in the BCI loop, and therefore an inappro-

priate training design can hinder the user’s learning of the task and BCI skills. In this chapter, 
we address the importance of training and feedback design in the production and control of 
the EEG components that are required for a motor imagery-based BCI. We first review research 
on the compatibility of the feedback appearance with a real human body and its impact on 
learning of the motor imagery task. We then discuss works that have tried to improve the 
motivation level of a user either by making the environment playful or by positively faking the 
performance of the user. In the following, we investigate the role of embodiment, the feeling 
of owning a controlled body, which has long been disregarded in the BCI research. In the final 
part of this chapter, we introduce our android-based training paradigm that has exhibited a 
promising potential for improving motor imagery learning in novice BCI users.

2. Motor imagery and action observation

It has been shown that mental imagery of a motor action can produce cortical activation simi-
lar to that of the same action executed [23, 24]. For instance, the execution of a hand movement 
results in the suppression of mu rhythm (8–12 Hz) in sensorimotor regions and so does the 
motor imagery of the corresponding hand [25]. By monitoring single-trial EEG signals and 
measuring event-related desynchronization (ERD), it is even possible to detect whether the 
imagined hand was the right or the left one [26]. However, previous studies suggest that the 
detection of hand imagery can only achieve a high rate when the user has employed a kin-

esthetic motor imagery strategy (first-person process) [27]. In the same study, Neuper et al. 
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report that the observation of a left- or a right-hand movement could also lead to high clas-

sification accuracies at parieto-occipital regions [27]. Many neuroimaging studies have found 
empirical evidences that combining motor imagery with action observation could induce a 
stronger cortical activation compared to either condition alone [28]. This has been associated 
with the firing of mirror neurons [29] that become active during the observation of a motion 
and represent high-level information about goals and intentions [28]. It also indicates a shared 
neurocognitive process between motor imagery and action observation that could be utilized 
in BCI training and control. Particularly, if the action is congruent with the motor imagery, the 
observed image is a simulation of one’s own action, the combination of the two conditions can 
lead to a “sense of effort,” a sense of agency, and imagined kinesthetic sensations that would 
arise during one’s own motor execution [30].

Ono et al. examined the effect of visual feedback on ERD during a motor imagery task [31]. In a 

series of training sessions, they hired different groups of subjects and trained them on different 
types of visual feedback, including a conventional feedback bar, a human hand that was shown 
on a screen in front of the subject and a human hand that was shown on a screen as the exten-

sion of one’s own arm. They found that by the end of the training, the group that was presented 
anatomically congruent feedback produced the highest ERD value and classification accuracy. 
Neuper et al. have also investigated the impact of a visual feedback presentation on sensorimo-

tor EEG rhythms and BCI performance [32]. They trained two groups of subjects on a motor 
imagery-based BCI using two feedback designs: a realistic feedback (a video of a moving hand 
that grasped a glass) and an abstract feedback (a moving bar that extended horizontally). Their 
results, however, showed no difference between the two feedback groups in terms of motor 
imagery learning and ERD changes. An explanation for this, as authors have indicated in their 
discussion, could be the short training period and few number of feedback sessions.

With recent advancement in videogames and VR technology, a more rich, realistic, and engag-

ing visual presentation of the BCI output has become possible. Pineda et al. designed a three-
dimensional first-person shooter game that enabled BCI users to make navigational movements 
by left and right motor imageries [33]. Their results indicated that subjects could learn to control 
levels of mu rhythm very quickly, within approximately 3–10 hours of training that was sched-

uled over a course of five weeks. Leeb et al. also reported a case study with a tetraplegic patient 
who was able to navigate through VR by imagination of his feet movements that was translated 
into movements of an avatar [34]. The most obvious benefits of VR in the construction of visual 
feedback are the richness of details that could be incorporated, the sense of embodiment it 
induces (see Section 4), and a relatively low cost. Particularly, in terms of detailed feedback, it 
can involve different types of movement and inclusion of goal-oriented tasks. Past studies have 
shown that motor cortex is sensitive to different forms of observed motor behavior [35] and 

subjective perspective [30, 36]. Muthukumaraswamy et al. have shown that the observation of 
an object-directed precision grip produces more mu suppression than the observation of a non-
object-directed grip [35]. In our previous study, we compared motor imagery learning between 
two groups of BCI users who operated either a pair of robotic gripper or a pair of humanlike 
robotic hands [8]. We found a more robust learning of the BCI task for the second group who 
were trained with a pair of humanlike robotic hands. This result provides evidence that visual 
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feedback with a more detailed appearance and compatible action to one’s real hand can extend 
larger effect on neural plasticity and reinforcement of motor imagery learning.

It is worth noting that BCI training along with visual feedback of a body movement (action 
observation) has been employed in neurorehabilitation studies and with stroke patients as well 
[37–42]. It is suggested that providing anthropomorphic feedback during motor imagery works 
in a similar way as does mirror therapy for phantom limb patients [39]. That is, providing 
feedback of a bodily movement can activate neural networks associated with action observa-

tion system and induce a “motor resonance” [40]. Thereby by directly matching the observed 
or imagined action onto the internal simulation of that action, motor resonance can further 
facilitate the relearning of the impaired motor functions [41]. For instance, Foldes et al. trained 
spinal cord injury patients with hand paralysis on a motor imagery-based BCI combined with a 
virtual hand feedback. Results showed that all patients could successfully modulate their brain 
activity in order to grasp the virtual hand and two of three participants could improve their 
sensorimotor rhythms in only one session of feedback training [39]. Kim et al. also combined 

an action observation training with a motor imagery-based BCI and found promising results 
in terms of actual functional improvements in the upper arm movement of stroke patients [42].

The above review shows that a neurofeedback paradigm that merges motor imagery with the 
observation of a bodily action has the potential to promote plastic changes in somatosensory 
activation, the recovery of motor functions, and the improvement of motor performance [43]. 

In a very similar way, such combination can bring significant benefits to BCI training, by help-

ing the user to activate motor-related cortical areas and generate brain signals that are easily 
detectable by the BCI classifier.

3. Human factors and BCI learning

To control a BCI, the user has to perform a mental imagery task and generate distinguishable 
brain activity for signal-processing algorithms. Modulation of one’s own brain signals is not 
an intuitive task, and therefore the user needs to practice and learn the BCI “skill.” However, 
an efficient learning of a skill requires optimized training protocols that consider the user’s 
psychological states (such as motivation, attention, confidence, and satisfaction) in order to 
ensure more effort and better performance from the user’s side [44]. Kleih et al. have shown 
that in the control of a P300 BCI, the level of P300 amplitude was significantly correlated with 
the level of self-rated motivation, that is, highly motivated subjects were able to communicate 
through BCI faster than less motivated subjects [45]. In another BCI study with ALS patients, 
Nijboer et al. reported that motivational factors, specifically challenge and confidence, were 
positively correlated with BCI performance, whereas fear had a negative influence [46]. It 

is suggested that even with highly motivated subjects, users can experience a low level of 
satisfaction if they do not succeed in accomplishing the BCI-control task [47].

In order to overcome such issues, many researchers have explored alternative BCI training 
protocols. Leeb et al. suggested employment of VR environments in designing attractive BCI 
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training paradigms that increase user’s engagement [18]. Their results show that users are 
likely to perform better in a VR navigation task compared to the conventional training with 
cue-based feedback. Lotte et al. proposed improvement of engagement and motivation in a 
social context by the application of a BCI game between two users [44]. Users could either 
participate in a collaborative game, where the sum of the BCI outputs from both users was 
used to direct a ball on a screen, or in a competitive version, where the users had to push the 
ball toward the opposite direction. They observed that multiplayer version of the games could 
effectively improve BCI performance compared to its single player version.

Multimodality and closing the sensorimotor loop has also been suggested as another method 
to increase user’s engagement and performance. Jeunet et al. compared users’ performances 
in a motor imagery-based multi-task BCI with different feedback modalities (visual vs. tac-

tile) and found a significant improvement when subjects received continuous tactile feedback 
compared to an equivalent visual feedback [48]. This is consistent with the study in [16] where 
haptic feedback, provided in a synchronized manner with the subject’s execution of a motor 
imagery task, could facilitate decoding of movement intentions and increase classification 
accuracy for both healthy and stroke patients.

In addition to the above strategies, some studies have proposed manipulation of the feedback 
either by biasing the feedback accuracy (i.e., giving the user a perception that he/she did bet-
ter/worse than what he/she actually did) or by error-ignoring (i.e., presenting feedback only 
when the user performed the task correctly) [21, 22, 49, 50]. Barbero et al. investigated the 
influence of a biased feedback on BCI performance when subjects navigated a falling ball on 
a screen by right- and left-hand imageries. They found that subjects with a poor performance 
benefitted from positive biasing of their performance level, whereas for those already capable 
of the BCI task, the bias of feedback impeded the results [21]. This is while Gonzalez-Franco 
et al. found larger learning effects for negative feedback than for positive feedback [49]. In 

our previous studies with BCI operation of a pair of humanlike robotic hands, we found a 
general improving effect, both when subjects received a positively biased feedback of their BCI 
performance and when their mistakes were not presented to them, that is, error ignoring [22]. 

This improvement could have been associated with the higher sense of embodiment that users 
experienced during operation of the hands (see Section 4).

Overall, previous research demonstrates that human psychological factors play a significant 
role in the process of BCI training. It is even suggested that parameters such as personal-
ity, motivation, and attention span could predict performance in a single session of motor 
imagery-based BCI control [51]. Future training environments should take these parameters 
into account in order to enhance learning of the BCI task as well as to address the problem of 
“BCI inefficiency” that concerns users who are unable to learn BCI control.

4. The role of embodiment

Recent view of cognitive development suggests that our cognitive skills are dynami-
cally shaped through our bodily interaction with the environment and thus are grounded in 
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sensory and motor experiences [52, 53]. Under this view, the mind (mental images, thoughts, 
representation) is created from processes that are closely related to brain representations of 
the body and the way it interacts with the real world [54]. This fosters the notion of neural 
plasticity during the learning of new motor skills and tool use that might lead to temporary 
or long-term incorporation of new objects and augmented cognition [55]. When extended 
to external body parts (dummy limbs), the experience of embodiment is often described 
by the two senses of body ownership (to what extent the seen body part was perceived as 
one’s own body) and agency (to what extent the motions of the seen body were attributed to 
one’s own movements) [56]. Although there are some counter arguments [57], embodiment 
is generally conceived as an important component in establishing interaction between a 
patient and medical BCIs (such as neural prostheses) for better incorporation of the artificial 
limb [58]. However, with the recent advancements in VR and robotic technology, the con-

cept of embodiment has also been proposed as a reinforcing factor for immersive experience 
of healthy users.

The first question, however, is whether BCI control of a non-body object would evoke a 
sense of embodiment for the operator. Here, we mainly focus on the sense of embodiment 
that is induced over a humanlike body shape rather than embodiment in physical space 
and for general objects as it is reported in [59]. Perez-Marcos et al. combined virtual reality 
and a motor imagery-based BCI in order to induce a sense of ownership for a virtual hand 
[60]. Although they did not assess motor-related features of the collected EEG signals in 
this study, they showed that BCI control of a virtual hand could induce an illusion of body 
ownership and trigger an electromyogram (EMG) response when the virtual hand suddenly 
fell down. Using a real-time fMRI setup, Cohen et al. also proposed a robotic embodiment 
for a humanoid robot in France that was remotely controlled by subjects performing motor 
imagery in Israel [61]. While they did not perform a systematic evaluation of the sense of 
embodiment and the number of subjects was limited, post-experiment interviews indicated 
a high level of tele-presence and embodiment for at least two of the four subjects who par-

ticipated in this study.

In a similar direction, the authors of this chapter have reported an illusion of body owner-

ship for a pair of humanlike robotic hands that were controlled by a BCI system [62]. In 

this experiment, subjects watched robot’s hands from a first-person perspective in a head-
mounted display and performed a right or a left motor imagery in order to grasp a lighted 
ball inside the robot’s hands (Figure 1). Our subjective (questionnaire) and physiological 
measurements (skin conductance response) revealed that the subjects experienced a feeling 
of owning the robot’s hands, and this feeling had a significant correlation with their BCI 
performance [22].

In addition to the enhancement of the immersive experience, the feeling of embodiment has 
been shown to have a positive impact on neurofeedback training and motor imagery learning 
at the neural level. Braun et al. reported a sense of ownership for an anthropomorphic robotic 
hand that was placed in front of the subjects and was controlled by a right motor imagery 
task [63]. Interestingly, their results indicated a stronger ERD in alpha and beta frequency 
bands when the robotic hand was in a congruent position (higher embodiment) compared to 
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an incongruent condition. Leeb et al. also compared the influence of feedback types on the 
motor imagery performance and BCI classification accuracy. They found that an immersive 
feedback (walking inside a VR environment) resulted in a better task performance by the 
subjects than a simple BCI feedback (bar presented on a computer screen), although this did 
not seem to affect the BCI classification accuracy [64].

The results obtained from the above studies are all consistent with our previously reported 
findings in [8] where subjects practiced motor imagery task in a BCI-control session with 
two types of feedback (Figure 2A). As mentioned earlier in this chapter, subjects who 
were trained with a more humanlike android robot could perform better on the motor 
imagery task in the final BCI-control session than those who were trained with a pair of 
metallic gripper (Figure 2B). In this study, “motor imagery performance” was defined as 
how well subjects could generate discriminant brain patterns for the two classes of right 
and left motor imageries and it was obtained by the Fisher’s discriminant criterion in a lin-

ear discriminant analysis that observed the distribution of EEG features [8]. The ΔMotor 
imagery performance in Figure 2B represents the ratio of this criterion between the two 
evaluations and training sessions (for more details, refer to [8]). In another study, we also 
reported that in comparison with a classical feedback bar, motor imagery training with a 
humanlike android feedback that induces a sense of embodiment could lead to a stronger 
mu suppression in the sensorimotor areas and eventually improved subjects’ online BCI 
performance [65].

Research suggests that cortical connections mediating motor activation are formed through 
experience [66], making perception-action coupling an important functional factor in the 
learning of new motor skills [67]. Under this view, a procedural memory of motor programs 
together with their sensory concomitants is stored during motor learning which gives rise to 
anticipatory mechanisms that predict sensorimotor outcomes of planned actions in real time 

Figure 1. Users controlled a pair of humanlike robotic hands by performing right- and left-hand imageries while 
watching first-person perspective images of the robot’s body.
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[11]. The usage of a humanlike android in our studies could have influenced motor imagery 
learning twofold. First, it is speculated that the visual feedback provided from the android’s 
body resembled a self-body action—as we experience it in our daily activities—and therefore 
matched with the visual anticipations of the motor intentions. Second, a more detailed and 
compatible visual feedback from the android’s body (in terms of appearance and motion) 
could have excited motor memories more intensely, and therefore subjects trained with a 
humanlike android recalled more vivid and explicit images of the movement during the 
imagery task [8].

Not only that embodiment can reinforce learning of the motor imagery and BCI task, it has 
also been shown that the two share spectral and anatomical mechanisms [68]. In the study of 
[68], subjects watched either a pair of virtual arms or a pair of non-body objects projecting out 
from their body inside a head-mounted display. For both visual feedbacks, they first received 
a visuotactile stimulation to experience a body ownership illusion similar to rubber hand illu-
sion (RHI) [69], and then they were instructed to perform a motor imagery for either their 
right or left hand. Their overall results demonstrated that both illusory hand ownership and 
motor imagery were associated with a mu-band modulation, and more importantly, there was 
an overlap between the areas that were activated during illusory hand ownership and motor 

Figure 2. Effect of embodiment on motor imagery learning. (A) Two groups of subjects practiced motor imagery task 
while receiving visual feedback from a humanlike android robot and a pair of metallic gripper. (B) Subjects who were 
trained with the android robot demonstrated a significantly more robust learning of the motor imagery task compared 
to the group who were trained with the non-humanlike gripper.
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imagery conditions. This finding suggests that multisensory mechanisms related to the sense 
of body ownership and embodiment share neural processes with motor imagery and thus 
could be used in the activation and classification of EEG patterns in BCIs. Indeed, the two pro-

cesses have been shown to go hand in hand as in [70], we demonstrated that the BCI control of 
a pair of humanlike robotic hands by means of motor imagery induces a higher sense of body 
ownership and agency compared to a direct control by means of motor execution. It could be 
speculated that because of the shared mechanism between embodiment and motor imagery, 
there is a positive loop effect: motor imagery of the hands induces a strong sense of embodi-
ment and embodiment activates more motor-related neurons detectable by the BCI classifier.

5. Our proposed model

Based on our review in this chapter, we summarize three elements that should be considered 
in the design of a BCI training protocol:

• Feedback should be realistic and compatible with the task content. Particularly, in a motor 
imagery-based BCI, users would benefit from observation of movements that are consistent 
with their mental images.

• Human factors such as motivation, confidence, and fatigue can significantly affect user’s 
interaction with the BCI system and subsequently influence their performance in the BCI 
task. Employment of interactive environments such as VR and providing positively biased 
feedback are two techniques that can enhance motor imagery learning particularly for nov-

ice BCI users.

• The sense of embodiment and body ownership establishes a positive interaction with sub-

jects’ motor imagery performance, and therefore, it is important to provide a realistic visual 
feedback that resembles a human body in terms of appearance, movement, and perspective.

By integrating the knowledge we obtained in our previous experiments [8, 22, 62] and the 
abovementioned points, we proposed an android-based training protocol in [65]. In this 
study, two groups of novice participants practiced hand grasp imagery either by a classi-
cal cue-based feedback (arrow and feedback bar) or by watching first-person perspective 
images of a humanlike android robot that made hand grasps based on the subject’s EEG 
patterns (Figure 3). In addition, subjects’ performance was positively biased during the 
training phase in order to boost their confidence and motivation for the motor imagery 
task. More importantly, we added a pre-training phase for the android group, where 
subjects could practice motor imagery, followed by kinesthetic motor actions. Results 
from this study revealed that participants who were trained with an android-based BCI 
achieved a significantly higher mu suppression in the sensorimotor areas (C3/C4 scalp 
positions) as well as a significantly better online BCI performance in the final evaluation 
phase compared to the participants who were trained with a classical training paradigm. 
We believe that the improved modulation of the sensorimotor rhythms in the proposed 
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training protocol is highly influenced by the sense of embodiment that participants per-
ceived during BCI control of the robot’s hands.

6. Conclusion

In this chapter, we highlighted the importance of a human user in the BCI loop and addressed 
some of the deficiencies in the training and feedback design of the classical motor imagery-based 
BCI systems. We provided empirical evidence that a careful training design that views BCI 
experience from the user’s perspective and considers such factors as task-feedback compatibil-
ity, motivation, and embodiment could reinforce users’ learning of the motor imagery task and 
consequently improve their BCI performance in a very short amount of time. We believe that 
our results are of importance to the BCI community and should be taken into account for future 
design of BCI systems that are employed in real-world applications outside of laboratories.
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