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Abstract

Essential oils are employed in agriculture, medicine and food industries among others, 
due to their antimicrobial, antiviral, insecticidal and antifungal properties. In this chapter, 
we will focus on the control of fungal plant pathogens with essential oils. Fungal diseases 
in agricultural crops and forestry alter the physiology of plants, disrupting their normal 
functioning, reducing their yield and sometimes causing their death. Recent studies show 
antifungal effects of many essential oils against plant pathogenic fungi, which make them 
candidates for the development of new fungicidal agents. This chapter presents a review 
of the most recent advances in this area, as well as the future trends in this field.

Keywords: antifungal, plant pathogens, active compounds, essential oils, biotechnology

1. Introduction

Diseases caused by plant pathogens significantly contribute to annual loss in crop yield 
worldwide [1], being fungi the major pathogens with the greatest impact regarding diseases 

and crop production losses [2]. Application of chemical fungicides is the most prevalent 

and effective control method of these plant diseases, posing a serious threat to the environ-

ment and public health besides causing resistance in the pathogens [3]. Therefore, in recent 

years, there has been a clear tendency toward finding safer alternative methods for fungal 
disease control in agriculture [4]. In January 2009, The European Parliament agreed the text 
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of a Regulation on Plant Protection Products (91/414/EC) [5]. Integrated Plant Management 

(IPM) is the effort to control plant diseases with alternative methods to chemical fungicide, 
eliminating or controlling their use and implementing the application of alternative control 

methods such as natural fungicidal substances. Therefore, the industrial research aimed at the 

discovery and optimization of botanical fungicides needs to address the following aspects: (a) 

the product must overcome resistance problems to the established commercial products, (b) 

the product must have lower toxicity to nontarget species and acceptable levels of persistence 

in the environment, and (c) the product must have market and technical advantages for the 
agrochemical companies [6].

Essential oils (EOs) represent a new class of crop protectants due to their effects, short shelf-life 
and low toxicity to the environment [7]. In addition, the probabilities of creating new resistant 

strains by using essential oils as fungicidal agents are low since their constituents can act as syn-

ergists [8]. Usually, mono- and sesquiterpenes such as phenols, alcohols, ethers, carbohydrates, 

aldehydes and ketones are the major constituents of essential oils, which are responsible for 
the biological activity as well as for their fragrance [9]. In fact in recent years, researchers have 

reported many mono- and sesquiterpene hydrocarbons as inhibitors of microbial pathogens 

[10]. Compounds such as carvacrol, thymol, linalool, cymene, pinene are known to exhibit anti-
microbial activity [11–14]. These are the major components of essential oils with promising anti-

fungal applications. Many essential oils have been reported as active against animal pathogenic 

fungi with no side effects [15–17]. Currently, there are some reviews on antifungal activity of 

plant extracts, generally structured according to the botanical family of plant species source of 

the active EOs [16] or to the active compounds of plant extracts [18]. The present review is up to 

date and focused on plant essential oils with antifungal activity against plant pathogenic fungi.

2. Main forest pathogenic fungi

Forest pathology deals with the diseases of forest trees, which are mainly caused by fungal 

and oomycete pathogens, in both their fundamental and applied aspects. The development 

and dissemination of effective control measures is vital to the protection of forest health. An 
evolution has been observed over the past few decades in terms of techniques and attitudes 
toward pest control. In the early 1960s, a variety of methods were used to control forest insect 

pests and diseases including mechanical, silvicultural, chemical and biological methods, with 

chemical control the most commonly used. By the 1970s, environmental concerns were being 

increasingly raised about the use of chemicals. As a result, research into the use of biological 

control agents in conjunction with silvicultural methods or pheromones began in earnest. In 

the last decade, integrated pest management involving a combination of control measures 

began to be considered the most effective way to deal with forest pests. Applications of bio-

logical control agents and microbial insecticides have become major components of pest man-

agement programs and considerable emphasis is placed on prevention and early detection as 

a means to avoid future pest problems [19]. There is a growing trend toward adopting more 

sustainable forest management strategies to contain forest pests, particularly in developed 

countries [20]. This movement is related to changes in the perception and role of forests, 

which are increasingly valued not just for economic reasons but also for their ecological and 
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social functions. Forest insect pests, diseases and other pests are having significant impacts 
on forests worldwide. While the devastating impacts of indigenous forest pests are already 

recognized, those of introduced species are increasingly being recognized as well. Rapid 

transports, ease of travel, and free trade have facilitated the spread of pests [19]. A review 

of forest pests in both naturally regenerated forests and planted forests [19] was carried out 

from 2005 to 2008 in 25 countries, including a number of major forest countries (Brazil, China, 

Indonesia), in Africa, Asia and the Pacific, Europe, Latin America and the Caribbean, and the 
Near East. In this global review, the frequency of disease-causing pathogens was reported: 

ascomycota 59%, bacteria 3%, basidiomycota 33%, oomycota 4%, and phytoplasma 1%. In 

the Global Forest Resources Assessment 2010 [21], countries were also invited to list and rank 
up to 10 major outbreaks of insects and diseases that have occurred since 1990; the most 
prevalent fungal pathogens reported (in order of importance)are as follows: Armillaria spp., 

(Armillaria root disease), Cryphonectria parasitica (chestnut blight), Heterobasidion spp. (anno-

sum root rot), Melampsora larici-populina (poplar rust), Mycosphaerella pini, (red band needle 

blight), Sphaeropsis sapinea (diplodia tip blight), Chalara fraxinea (ash dieback), Gremmeniella sp.,  

and Melampsora allii-populina (poplar rust).

2.1. Emerging forest fungal diseases

In the last 15 years, two major changes affecting forest pathology—the world movement of 
species with trade and the rise of plantation forestry to meet growing needs of an increas-

ing human population—have led to an increasing number of emerging diseases [21–22]. 

Ghelardini et al. [23] showed seven pathways driving the emergence of diseases threaten-

ing natural and planted forest ecosystems around the world: invasions by alien pathogens, 

climate change, emergence of new virulent and aggressive strains or species, rise of hybrid 

fungal species, latent and cryptic pathogens, establishment of new associations between vec-

tors and pathogens, and the introduction of new crops and cultivation practices.

Native forests of Europe, Asia and North America have particularly suffered from inva-

sive alien pathogens, which in the last century have caused the decline of key tree species. 
Among the most striking historical examples are the destruction of chestnuts by Cryphonectria 

parasitica, the alien ascomycete responsible for chestnut blight; the devastating epidem-

ics of Dutch elm disease (DED) caused by Ophiostoma ulmi and O. novo-ulmi, two alien and 

highly aggressive fungi previously unknown to science; the huge damage inflicted to white 
pines by Cronartium ribicola, the invasive agent of white pine blister rust (WPBR); and the 
devastation of plane trees, especially obtrusive in Southern Europe, caused by the introduc-

tion of Ceratocystis platani, the agent of plane canker stain. In the last years, the number of 
described Phytophthora species has dramatically increased and it is now clear that forest soils 

host numerous and diverse resident communities of Phytophthora species [24]. Recently, the 

introduction of Fusarium circinatum in Spain [25] or, as a late and worrisome case, the fast-

spreading epidemics of European ash dieback caused by Hymenoscyphus fraxineus [26–28], an 

anamorphic fungal pathogen with putative origin in eastern Asia [29] should be added to the 

list. In relation to climate change, Phytophthora cinnamomi is forecast to benefit from warmer 
winters, possibly expanding its geographic range by kilometers and reaching unaffected 
host populations or new host species [30]. Otherwise, [31] found that in the last 15 years, 

the emerging pine shoot pathogen Diplodia sapinea spread in France probably because of a 
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climate shift to milder winters and wetter summers. Dutch elm disease (DED) is frequently 
mentioned in forest pathology reviews as the best example of a destructive disease of alien 

origin since it almost destroyed the elm populations of Europe, North America, and parts 

of Asia. DED reemerged in the 1970s in Europe as a devastating disease, which killed also 
elm genotypes that had been resistant in the first epidemic (at the beginning of the twentieth 
century). This new epidemic was caused by the emergence of the separate and highly virulent 

species Ophiostoma novo-ulmi [32] consisting of the subspecies novo-ulmi and Americana [33]. 

Also, [34] provided strong evidence that Mycosphaerella populorum, the Septoria canker of pop-

lars, has adapted to infect, colonize, and cause mortality on poplar woody stems as a result of 

horizontal transfer of the necessary gene battery from ascomycete fungi associated with wood 
decay and from prokaryotes.

In fungal pathogens of woody plants, emergence of new interspecific hybrids was described 
in Melampsora [35], Phytophthora [36], Ophiostoma [37], Cronartium [38], and Heterobasidion [39]. 

An up-to-date case of a worrisome forest pathogen that may have a latency period in asymp-

tomatic infected plants is H. fraxineus, the agent of European ash dieback, which penetrates 
into wood tissues from infected leaves and may not produce external necroses until the next 

growing season [40]. The Botryosphaeriaceae are a classical example of a very diverse group of 

fungi, which comprises well-studied endophytes and latent pathogens of woody plants that 

typically cause disease associated with some types of stress [41]. A key factor in the spread 
of Diplodia sapinea and D. scrobiculata is the latency period within host plant tissues. These 

fungi are able to live within the host without causing any visible symptoms but rapidly shift 

to a pathogenic interaction when an environmental stress factor primes the host (e.g., local or 

large-scale climate change) [31].

An example of new association between vectors and pathogens is the spread of C. parasitica on 

chestnuts by Dryocosmus kuriphilus, the oriental chestnut gall wasp, in Europe [42]. D. kuriphi-

lus is an invasive insect of Asian origin. Also, a new association was recently reported between 

D. sapinea and Leptoglossus occidentalis [43], the so-called western conifer seed bug (WCSB), 

an invasive coreid, accidentally introduced to Italy from the US in 1999 [44], and nowadays 

present in several parts of Europe [45]. This association might be beneficial for both part-
ners: the insect enables the fungus to reach a higher number and variety of host trees, either 

pines or other conifers, while the fungus stimulates the tree’s production of monoterpenes, 

signaling the status of weakness of the tree and attracting more insects [43]. Regarding the 

new silvicultural practices, commercial plantations of poplars may be severely damaged by 

emerging plant pathogens worldwide [46]. In northeastern and north-central North America, 

one of the most harmful poplar diseases is Mycosphaerella populorum (Peck). Also, the epidem-

ics of Phytophthora ramorum on Larix kaempferi (Lamb.) Carr.) in UK might have been driven by 
the intrinsic fragility of clonal monocultures on great areas due to ecosystem simplification, 
extreme mechanization, and reduced genetic diversity [47, 23]. Looking ahead, authors of 
[48] propose an evolutionary ecology perspective that could provide new directions for forest 

research or disease management: (1) fungal evolutionary diversity (species diversity of forest 

pathogens and their ecological niches), (2) pathogen evolution (how forest pathogens become 

adapted to their hosts), (3) forest resistance to disease, especially in relation to tree breeding 

(trade-offs, tolerance, emerging properties in populations), and (4) the role of hyperparasites 
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and tree microbiota in the regulation of pathogen populations and disease. In this ecosystem 

perspective, pathogens are no longer “enemies” but are key actors of the evolution and ecol-
ogy of local communities, and more generally of the ecosystem health (e.g., [49–50]).

3. Biotechnological approach: genomics-proteomics-metabolomics

Plants in nature are constantly challenged by several harmful phytopathogens including bac-

teria, fungi, nematodes, or virus, producing a high and negative impact on crop productivity 

worldwide [51]. An uncontrolled amount of synthetic and chemical pesticides used during 

past decades makes necessary to adopt new strategies allowing a sustainable plant protec-

tion in crops and forest systems. The use of natural compounds as plant biostimulators of 

growth or biotic and abiotic stress responses in plants is getting importance in the last decade 
because of legal restrictions on the use of phytosanitary products on crops [52, 53]. European 

Union policy works upon a significant reduction in pesticide use in the short future [54]. One 

alternative are natural origin compounds with priming capacities, such as the essential oils 

(EOs) [55]. This section describes examples of recent molecular approaches studying EOs and 

discusses the use of EOs as an alternative of nonpollutant primers to induce plant resistance 

for environmental-friendly plant protection.

3.1. The “priming” process

Priming is “the physiological state that enables cells to respond to very low levels of a stimu-

lus in a more rapid and robust manner than non-primed cells. In plants, priming plays a role 

in defense and development” [56, 57]. A classical priming defense strategy consists in the use 

of very well-conserved molecules into the phytopathogen structure called damage/pathogen/

microbe-associated molecular patterns (DAPMPs/PAMPs/MAMPs), such as the lipopolysac-

charides (LPS, peptidoglycan (PGN), bacterial flagellin, fungal chitin, bacterial Ax21, or elon-

gation factor Tu (EF-Tu). MAMPs are recognized by plasma-membrane receptors in plants 

called pattern recognition receptors (PRRs). PAMPs recognition activates a pattern-triggered 
immunity (PTI) associated with the increase in intracellular calcium, phosphorylation pro-

cesses mediated by MAPKinase cascades, production of reactive oxygen species (ROS), plant 
protective compounds, induction of defense-related transcription factors, and corresponding 

plant pathogenesis-related proteins (PRs) such as glucanases and chitinases, as well as proteins 

and compounds involved in plant cell wall fortification, such as callose or lignin. PTI might be 
suppressed by host-adapted phytopathogens, producing an effector-triggered susceptibility 
(ETS), and adapted plants might block those effectors, activating a robust effector-triggered 
immunity (ETI) [53, 58–60]. In parallel to the PAMP response, each pathogen specifically trig-

gers a cascade of signaling pathways mediated by phytohormone receptor and recognition 

of salicylic acid (SA), jasmonate acid (JA), or ethylene (ET). Commonly, it is well accepted 

that SA is induced by biotrophic and hemibiotrophic phytopathogens, while ET and JA are 

activated by necrotrophic ones and also by some hemibiotrophs. Those pathways are also 

interconnected, in order that the activation of one of them currently down-regulate the other 

one or vice versa [56]. A new mechanism called EMPIS (ETI-Mediating and PTI-inhibited 

Antifungal Effect of Essential Oils
http://dx.doi.org/10.5772/intechopen.78008

149



sector) inhibits unnecessary immune responses in plants, limiting the fitness cost of the robust 
ETI, when PTI is enough effective [61]. Additionally to MAMPs, hormone-mimic-related 

compounds have been used as classical biostimulators of priming on plants; some examples 
are the synthetic chemical compounds such as: benzo (1,2,3)-thiadiazole-7carbothiolic acid 

(BTH), a SA analog which activates systemic acquired resistance (SAR) in crops [62], and 

the β-aminobutyric acid (BABA), a nonprotein amino acid priming compound with a direct 
fungitoxic effect [63] or the nonprotein amino acid pipecolic acid [64]. The recent advances 

in metabolic profiling have led to the discovering of certain new plant secondary metabolites 
that play significant roles as priming molecules at nature, during biotic and abiotic plant 
stress responses and in the plant-to-plant communication; at this point, EOs might play an 
important role in future biotechnological approaches [65, 66].

3.2. Metabolic engineering improving EO yield

A line of research on EO biotechnology consists in improving EO yield in plants using meta-

bolic engineering. One of the plant species in which biotechnology approaches has been 

applied because its commercial interest is peppermint, and [67] transformed peppermint 

with various gene constructs by overexpressing genes involved in the supply of precursors 

through the 2C-methyl-D-erythritol 4-phosphate (MEP) pathway. The overexpression of the 

MEP pathway gene 1-deoxy-D-xylulose 5-phosphate reductoisomerase increased up to 78% 

of the oil yield over wild-type controls in a multiyear field trials. Current genetic manipula-

tion on EO synthesis pathway was also useful improving the EO production in the same spe-

cies [68]. The inhibition of the mevalonate pathway also enhanced the carvacrol biosynthesis 

and DXR gene expression in shoot cultures of Satureja khuzistanica Jamzad. S. khuzistanica 

shoots were treated with fosmidomycin (an inhibitor of the nonmevalonate pathway) and 

mevinolin (an inhibitor of the mevalonate pathway). The last one induced the gene expres-

sion of DXR, measured by heterologous QRT-PCR, increasing the DXR enzyme activity and 

allowing higher levels in carvacrol biosynthesis on plants compared to controls [69].

3.3. Molecular mechanism of EOs in fungi

Recent studies have been made in order to elucidate the molecular mechanisms underly-

ing the phytotoxic effect for some of those compounds on phytopathogenic fungi, but still 
are limited. The lipophilic or hydrophobic nature of many EO components allows them to 

interact directly with the fungal membrane, resulting in the alteration of membrane proper-

ties including the fluidity. An active transport via trans-membrane pumps has not been yet 
demonstrated [55]. A recent study based on RNA-Seq-transcriptomic analysis of the fungus 

Fusarium oxysporum f. sp. niveum, responding to thymol, shows that most of glycosphingolipid 

and sphingolipid metabolism-related fungal genes were downregulated upon this treatment, 

while genes involved in an antioxidant activity, chitin biosynthesis, and cell wall modification 
were up-regulated. The authors propose that the thymol acts by disrupting fungal cell wall 

and cell membranes through increasing the production of ROS on the fungal cell surface as 

well as by blocking the fungal molecular genes necessary for cell wall fortification and cell 
membrane synthesis [70]. Those molecular data are in line with the results obtained by [71], 

showing that thymol strongly inhibited conidial production and hyphal growth on Fusarium 

graminacearum via inducing lipid peroxidation and disrupting ergosterol biosynthesis, which 
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are essential for plasma membrane structure. A similar mechanism of action was observed on 

carvacrol and thymol acting against vineyard and wine spoilage yeast [72].

3.4. Plant signaling pathways and EOs

Emerging molecular studies try to elucidate the molecular effects of EOs produced by plants 
to the surrounding ones [52]. This old natural process is currently known as “allelopathy” 
or the ability of a plant to produce biomolecules, especially secondary metabolites, to affect 
another plant beneficially or vice versa [73]. In 1997, [74] demonstrated that methyl salicylate 

(MeSA), the volatile benzenoid and secondary metabolite, which is easily metabolized on the 

plant to SA, activates disease resistance and the expression of defense-related genes in neigh-

boring plants and in the healthy tissues of the infected plants. Later on, other research works 
have shown that MeSA mediates plant-plant communications during immune responses. 

MeSA, which is an important insect-attracting pollinators [75], is not induced by wounding 

but is induced by tobacco mosaic virus and Pseudomonas syringae pv. maculicola ES4326 and Pst 

DC3000 pv. tomato, where both are SA inducers [76]. The plant molecular response to MeSA 

has been studied into essential oil extracts from Gaultheria procumbent (GEO), whose meta-

bolic profile has been characterized recently [77]. GEO induced defense response against the 

hemibiotrophic fungus Colletotrichum higginsianum and was very effective in inducing SA plant 
defense-related genes similarly to the synthetic MeSA and also induced some marker genes of 
JA pathway [78]. A recent study investigated the role of volatile organic compounds inducing 

systemic acquired resistance (SAR). The headspace exposure of arabidopsis to a mixture of 

the bicyclic monoterpenes, α-pinene and β-pinene, induced the accumulation of ROS and 
the expression of SA- and SAR-related genes, including AZELAIC ACID INDUCED1 (AZI1) 
and three of its paralogs. Pinene-induced resistance was dependent on SA biosynthesis and 

signaling and on AZI1. Arabidopsis geranylgeranyl reductase1 mutants with reduced mono-

terpene biosynthesis were SAR-defective, but showed normal local resistance and MeSA-

induced defense responses, suggesting that monoterpenes act independently of SA-mediated 

pathway. The volatile emissions composed by α-pinene, β-pinene, and camphene induced 
plant defense in neighboring plants, activating SAR responses on them. The impaired SAR 

immunity lines eds1-2 and ggr-1-1 showed reduced emissions of α-pinene, β-pinene, and 
camphene [79]. Pseudomonas syringae pv. maculicola ES4326 also induced terpenoid produc-

tion of (E,E)-4,8,12 trimethyl-1,3,7,11-tridecatetraene (TMTT), β-ionone, and α-farnesene, 
depending on JA signaling and independently on SA pathway in Medicago truncatula [80]. 

Copper sulfate, which activates JA biosynthesis in plant by camalexin biosynthesis, induced 

VOs in arabidopsis wild-type plants but not in tps4 mutant showing that TMTT is induced 

by JA pathway [80]. TMTT and other VOs were also induced in lima beans by herbivory [81]. 

However, the significance on the Pst induction of TMTT in plants is still unknown.

4. EOs in the control of phytopathogenic fungi in agricultural crops

In agriculture, the losses caused by plant diseases reach an average of 12% per year. Among the 

pathogens, fungi are considered the most important. There are around 8.000 species of fungi that 

attack plants, distributed in more than 64 genera of fungi [82]. Added to the importance of plant 

diseases caused by phytopathogenic fungi, we have two other factors that must be considered. 
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The first concerns the constant need to produce food to feed the planet’s growing population. 
According to the Food and Agriculture Organization of the United (FAO), global food demand 

in 2050 is estimated to be 60% higher than in 2006. The population living in poverty could rise 

from 35 to 122 million by 2030. This increase of the poor will be higher in sub-Saharan Africa, 

largely because of the heavy dependence of the economy of these regions on agriculture. The 

second factor refers to the use of pesticides. The increase in the use of pesticides is due to the 

increase in the cultivable area and consequently the increase in the consumption of fertilizers 

and pesticides. Misuse of pesticides has led to serious public and environmental health prob-

lems. The United Nations has proposed the creation of a global treaty to regulate and stop the 

use of pesticides in agriculture. Current patterns of production and use of pesticides are very 
different in each country. According to the World Health Organization (OMS), pesticides cause 
200.000 deaths from poisoning each year. Almost all fatalities, or 99%, occur in developing coun-

tries. Exposure to pesticides is linked to the risk of cancer, Alzheimer’s and Parkinson’s disease, 
hormonal, developmental, and fertility problems. The rural community made up of farmers 

and families who live near plantations and indigenous communities is the most vulnerable. In 

Brazil, for example, data from the Impact of Agrochemicals on Health released in 2015 by the 

Brazilian Association of Collective Health (ABRASCO) show that Brazil is the largest consumer 

of pesticides in the world, with a 288% increase in pesticide use. The data also show that 64% of 

the food marketed is contaminated and that the number of poisoning by agrochemicals reaches 
34.147 cases. It is believed that these statistics should be even higher due to under-reporting, 

i.e., subacute intoxications caused by moderate or small exposure to products of high toxic-

ity, slow onset and subjective symptomatology, and chronic intoxications requiring months 

or years of exposure. Resistance of fungi to fungicides has been recorded since the 1960s. The 

first case of resistance was found with the use of Benomyl to control the mildew of cucurbits, 
caused by the fungus Sphaerotheca fuliginea [83] and later to control the fungus Botrytis cinerea 

in the culture of the cyclamen [84]. Since then, more than half of the known fungus species 
have shown some resistance to fungicides in more than 100 plant-pathogenic combinations [85].  

Over the past 55 years, it has been proposed to develop agriculture under Integrated Pest 

Management (IPM), and this has become the main global holistic strategy for phytosanitary pro-

tection. It provides for the production of food in a sustainable agroecosystem, with the manage-

ment of the soils, from the point of view of the increase in organic matter, fertility and vegetation 
cover, the adequate use of water for irrigation, the use of resistant varieties for different soil and 
climatic conditions and the use of temporal and spatial distribution of crops, the encourage-

ment of the application of agroecology to grow food, as well as the encouragement of family 

agriculture, the production and preservation of creole seeds, the diversity of plant species, and 

reduction of pesticide use for pest and disease control as opposed to increased use of biological 

control. The search for biopesticides has aroused much interest from the scientific community 
due to the expansion of organic farming, more restrictive regulations to chemical pesticides, and 

the demand for healthier and safer products. Essential oils (EOs), included within the group of 

biopesticides of botanical origin, are complex mixtures of volatiles, mainly products of plant 

secondary metabolism, which comprise terpenes (mainly mono-, sesqui-, and some diterpenes) 

and phenolic compounds phenylpropanoids), although other groups of compounds may also 

occur in relevant amounts. These volatiles have aromatic components that give odor, flavor or 
aroma, distinct from each plant, and are part of defense mechanisms of the plant to the attack 
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of microorganisms. Most plant species have 1–2% EOs, but in some plant species, this value can 

reach 10%, as in Ocimum basilicum [86].

4.1. Phytopathogenic fungi of agronomic interest

The antifungal properties of EOs and their constituents have been reported in several studies, 

most of which are due to inhibition of fungal mycelial growth in vitro. The mycelium supports 

all fungal activity, from the spore germination to the formation of the fruiting body, and thus 

represents a good indicator of fungus survival. Studies with plants of the Lamiaceae family 
showed positive results in the control of several phytopathogenic fungi. The EOs of oregano 

(Oreganum vulgare) and thyme (Thymus vulgaris) were effective against Aspergillus niger, A. 

flavus, A. ochraceus, F.oxysporum, F. solani, Penicillium sp., Phytophthora infestans, Sclerotinia 

sclerotiorum, Rhizoctonia solani, B. cinerea, Monilinia fructicola, Rhizopus stolonifer, Sclerotium rolf-

sii, Macrophomina phaseolina, and Pythium sp. [87]. R. solani, for example, represents an impor-

tant phytopathogen of agricultural crops around the world. The fungus has a host range of 

more than 500 species of plants, with a complex ecology and is difficult to control. Seema 
and Devaki [88] studied the antifungal activity of several EOs against R. solani and revealed 

that cinnamon’s EO (Cinnamomum zeylanicum Breyne) completely inhibited the growth of the 

fungus at a concentration of 500 ppm. The EOs of T. vulgaris [89], Salvia fruticosa [90], Mentha 

piperita [91–94], Monarda spp. [95], Calocedrus macrolepis var. formosana [96], Bunium persicum 

[94] were also effective in mycelial inhibition of the fungus. In [97], it was reported that the 

foliar application of Desmos chinensis reduced the intensity of the disease caused by R. solani 

in rice. Arici and Şanlı [98] studied the EO efficiency of Cuminum cyminum, Anethum graveo-

lens, Salvia officinalis, Origanum onites, Rosmarinus officinalis, and Lavandula intermedia against 

R. solani and Streptomycetes scabies on potato and found that EO of S. officinalis reduced R. 

solani infection in 4.2%, and oregano’s EO reduced the disease severity caused by S. scabies to 

1.8%. Fusarium species are also important phytopathogens. The EO of Artemisia absinthium 

showed effectiveness against Fusarium moniliforme, F. oxysporum, F. solani [99]. Other positive 

results have also been reported in field experiments. Citral, methyl anthranilate, and nerol 
tested at the concentration of 5.0 ml/L reduced 78.1 and 80% of Cercospora (Cercospora beticola) 

and Alternaria (Alternaria tenuis) in sugar beet, respectively [100]. El-Mohamedy and Abd-

El-latif [101] tested the EO of T. vulgaris applied alone or in combination with humic acid 

and observed a 92.2% reduction in tomato blight caused by P. infestans when tested at the 

concentration of 6.0 ml/L. In postharvest, treatment with EOs of basil (Ocimum basilicum L.), 
fennel (Foeniculum sativum Mill.), lavender (Lavandula officinalis Chaix), marjoram (O. majorana 

L.), oregano (O. vulgare L.), mint (Mentha piperita L.), rosemary (Rosmarinus officinalis L.), sage 
(Salvia officinalis L.), savory (Satureja montana L.), thyme (T. vulgaris L.), and wild mint (Mentha 

arvensis L.) was effective against B. cinerea and Penicillium expansum [102]. Al-Reza et al. [103] 

tested the EO of Cestrum nocturnum L. at 1000 ppm concentration and showed that EO inhib-

ited up to 80.6% growth of B. cinerea, Colletotrichum capsici, F. oxysporum, F. solani, P. capsici, R. 

solani, and S. sclerotiorum. The EO of C. nocturnum also inhibited the spore germination and 

reduced the disease by 82–100% in pepper seedlings. Muchembled et al. [104] studied some 

OEs against Venturia inaequalis strains of apples with different sensitivities to Tebuconazole 
compared to the application of copper sulfate and highlighted the effectiveness of clove EOs 
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(Syzygium aromaticum), eucalyptus (Eucalyptus citriodora), mint (Mentha spicata), and savory 

(Satureja montana) with priority components such as eugenol and carvacrol. They also found 

that each strain of the fungus reacted differently to each treatment, indicating that each strain 
of the pathogen had different survival mechanisms.

5. Industrial applications in agronomy and agrifood industry

Essential oils are employed in agriculture, medicine, and food industries among others, due 

to their antimicrobial, antiviral, insecticidal, and antifungal properties. They are specially 

employed in agriculture, against phytopathogenic fungi such as Aspergillus, Penicillium, 

Fusarium, Rhyzoctonia, and other fungi, which produce many loses in agronomic crops. Also, 

these fungi are pathogenic to many forest species, and nowadays, we are losing many trees 

due to these fungi. Essential oils and their effect as antifungal agents must be approached 
from a biotechnological point, taking in account their genomic, proteomic, and metabolomic 
functioning. Finally, industrial and commercial applications are being developed, so these 

products can reach easily their target and have the desired effect for which they are designed. 
Antimicrobial volatile substances from plants, such as essential oils (EOs) present an alter-

native to chemical fungicides and food preservatives. Their main new uses and industrial 

applications of essential oils as antifungals in agronomic crops and in the agrifood industry 

are the pre- and postharvest treatment of vegetables such as fruits and grains in order to 

prevent their decay and increase their time of storage, to protect seeds against fungal attack, 
to prevent food spoilage due to fungal attack, and to produce active containers for vegetables 
and other food.

Eos are employed to avoid pre- and postharvest fungal diseases of vegetables, but their sta-

bility, solubility, and bioavailability are limited and the use of EOs as antifungal agents is 

limited due to the degrading ability of these volatile compounds under the action of heat, 

pressure, light, and oxygen. In addition, the fact that there are not water soluble limits their 

use in certain applications, especially when a controlled release is required [105]. Also, it must 

be considered that the application of these natural products may alter the characteristics of 

food, such as aroma or taste, so this is another factor which to be taken in account. The main 
ways of application of EOs as fungicidal in the agrifood industry, from crops to preservation, 

are emulsions, encapsulation, and vapor application. All these biotechnologies allow a good 

contact of the EOs with the plant, a time controlled release, and avoid the alteration of the 

properties of vegetables. It must be also taken in account that the antifungal effect of the EOs 
depends on the application method. Suhr and Nielsen [106] have studied how larger phe-

nolic compounds such as thymol and eugenol (from thyme, cinnamon and clove) have best 

effect against rye bread spoilage when applied directly to the medium, whereas other smaller 
compounds such as allyl isothiocyanate and citral (from mustard and lemongrass) are most 

efficient when added as volatiles.

EOs can be prepared into emulsions by different techniques. Microemulsion of EOs is pre-

pared with EO, Tween 20, and ethanol, and can be unlimitedly diluted with water, being stable 

Potential of Essential Oils154



for long time. Laurus nobilis EO has been proven to be effective in cherry tomatoes applied in 
this way [107]. Nanoemulsions of thymol without carrier oil have also been studied to avoid 

the deployment of wheat due to Fusarium gramineum [108]. Double w/o/w emulsion type pre-

pared lipophilic and hydrophilic emulsifiers with xanthan gum as thickener showed stability 
and water-dilution tolerance and retained most of the electrolytes included in the internal 

aqueous phase. Antifungal activity of the EOs increased, and the absence of organic solvents 

makes these formulations environmentally safe. Also, the property of controlled electrolyte 
release makes these formulations attractive [109].

The microencapsulation in porous materials allows direct contact between the fungus and 

the microparticle in the soil, which acts more efficiently against the fungus. That is, these 
could be put directly into the crop acting as biopesticides throughout the growth of the 

vegetables. Microencapsulation can be done by simple coacervation [110–111] and it has 

been tried already in fruits such as mango with thyme and rosemary EOs [110] and to pre-

serve peanut seeds with Lippia turbinata EO [111]. Carvacrol and thymol from oregano and 

thyme have also been studied in microcapsules of mesoporous silica and B-cyclodextrin, 

together with cinnamaldehyde and eugenol from cinnamon and clove, respectively. 

Nanoencapsulation is also used to enhance antifungal activity and stability of the oils 

against fungi. Nanoencapsulation in chitosan nanoparticles (CSNPs) is done by an ionic 

gelation technique. This technique has shown a controlled and sustained release of EOs 

for 40 days in comparison with unmodified EOs [101]. Nanoparticle carriers of EOs, as 

compared to microsize carriers, show a better surface area rate, solubility, bioavailability, 
controlled release, and targeting of the ingredients [101]. Nanoencapsulation of EOs has 

been studied also for their incorporation into fruit juices to prevent fungal activity while not 

affecting on the quality attributes of the product [112].

Simple vapor application of EOs can change the sensory profile of fruits and vegetable 
[113–114]. EOs from cinnamon (Cinnamomum zeylanicum Nees.), thyme (Thymus vulgaris L.), 
oregano (Origanum vulgare L.), clove (Syzygium aromaticum L.), lemongrass (Cymbopogon citra-

tus [DC] Stapf.), and ginger (Zingiber officinale Rosc.) have shown to inhibit the growth of 

Aspergillus spp. in oats [114]. But furthermore, there are new technologies of application of 

the EOs, such as the combination with warm air flow (WAF), that can be used in the control 

of postharvest fungal pathogens of grains [115], being more effective compared to standard 
vapors in disc volatilization [113] with very low effect on their sensory profile.

EOs are a very good source of natural additives for active packaging (films & coatings), 
which refers to the incorporation of additives into the packaging material, maintaining its 
properties without adding active agents in the food product, thus reducing the use of aggres-

sive techniques and synthetic chemicals in food. Oregano is one of the EOs that has been posi-

tively tested in this way [116]. In that sense, chitosan composite films enriched with essential 

oils of cinnamon, thyme, clove, and lime alone or in combination have been tried against 

Colletotrichum gloeosporioides in papaya fruit. This coating can be an alternative to potentially 

reduce the need for cold storage during postharvest handling [117]. Edible coatings with 

oregano EO have been proved for the preservation of tomatoes against Alternaria alternata 

growth maintaining the sensorial acceptability of tomatoes [118].
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