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Abstract

The development of engine waste heat recovery (WHR) technologies attracts ever increasing 
interests due to the rising strict policy requirements and environmental concerns. Organic 
Rankine Cycle (ORC) can convert low medium grade heat into electrical or mechanical 
power and has been widely recognized as the most promising heat-driven technologies. 
A typical internal combustion engine (ICE) converts around 30% of the overall fuel energy 
into effective mechanical power and the rest of fuel energy is dumped through the engine 
exhaust system and cooling system. Integrating a well-designed ORC system to ICE 
can effectively improve the overall energy efficiency and reduce emissions with around 
2–5 years payback period through fuel saving. This book chapter is meant to provide an 
overview of the technical development and application of ORC technology to recover 
wasted thermal energy from the ICE with a particular focus on vehicle applications.

Keywords: internal combustion engine, vehicle application, organic Rankine cycle, 
engine waste heat recovery

1. Introduction

Over the last century, the internal combustion engine (ICE) as one of the main power sources 

has been widely adopted in the vehicle and marine propulsion systems such as automobiles, 

trains, trucks, boats, and ships. The increasing concerns on the environmental problems 

caused by burning fossil fuels promote the technology development of more efficient, more 
compact, and more cost-effective ICE, which can potentially improve the overall energy effi-

ciency, reduce the emissions and generate more effective engine shaft power by burning fossil 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



fuels [1]. Moreover, the increasingly strict emission legislations are focusing on the nitrogen 

oxides (NOx), particulate matter (PM), carbon monoxide (CO), and hydrocarbon (HC).

Engine manufacturers have developed and adopted the technologies such as turbocharging, 

variable valve timing [2], Miller timing strategies [3], advanced injection strategies, and engine 

friction reduction technologies in order to improve the system thermal efficiency. However, 
adopting the stated technologies the ICE is still difficult to convert more than 40% of the fuel 
energy into effective mechanical power [4, 5]. And there is around 60–70% of fuel energy is 

wasted from the exhaust system and cooling system of ICE [4, 5]. Other approaches such as 

burning alternative fuels [6] and the development of hybrid pneumatic system [7] to recover 

the engine kinetic energy were also considered. Recent research attentions are focusing on the 
development of engine bottoming technologies such as advanced after treatment systems or 
engine waste heat recovery (WHR) technologies [8]. The Organic Rankine Cycle (ORC) is one of 

the most promising heat-driven technologies converting heat into mechanical power or electric-

ity [9, 10]. ORC system can recover various heat sources such as biomass combustion heat, solar 

energy, geothermal heat, and industry wasted heat and heat from Internal Combustion Engine 

(ICE) [9]. Adopting ORC technology for engine waste heat recovery can effectively improve the 
overall system efficiency and reduce the emissions. A well-designed ORC system can potentially 
achieve around 2–5 years payback period through fuel saving [4, 5, 10]. However, Velez et al. [10]  

pointed out the market available ORC system with the power ranges of 0.2–2 MWe under the 

cost around 1and 4 × 103 € /kWe, and lower powers are in pre-commercial status because of the 
relatively long payback period using small-scale ORC system. The technical development, main 

research barriers, and potential solutions of the technology are summarized in this chapter, 

which aims to have an overview of the ORC technology and promote its applications.

1.1. Emerging applications of the technology for vehicles

The applications and extensively research interests of waste heat recovery technologies started 

in the 1970s during the oil crisis [11]. The first application of ORC for engine waste heat recovery 
was reported by Patel and Dovle in 1976 [12]. The research project conducted by Mack Trucks 

and the Thermo Electron Corporation was sponsored by US Department of Energy (DOE). The 
first prototype ORC machine was installed on a Mack 676 diesel engine to recover the exhaust 
waste heat. The system adopted Fluorinol-50 as the ORC working fluid and a three-stage axial 
flow turbine expander. The mechanical power of the expander was transferred to the power 
take-off device coupled with a speed reduction gearbox. They demonstrated the technical fea-

sibility of the system and its economic interests. The optimal performance of the system could 

achieve a 13% increase in maximum power with around 15% reduction of fuel consumption. 

Follow on progress reported by Pate et al. [13] announced a 1 year test program of an ORC 

bottoming system coupled on a Mack diesel engine in 1979 and they declared a plan of expand-

ing the ORC system on 10 trucks in 1981–1982. In 1983, the research group reported the test-

ing results of the program [14], which demonstrated 12.5% improvement of the average fuel 

consumption on high-way vehicle fuel economy tests. However, no follow on progress for the 

expanding plan can be found from the literature. The ORC systems developed nowadays can 

achieve much higher efficiency because of the broad choice of advanced working fluids and the 
development of system components, such as expansion devices and heat exchangers. However, 
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the commercial ORC system for vehicle application is still not available from the market. One 

of the possible reasons is the concern on the substantial capital cost due to the complexity of the 

system and complicated control strategies required for vehicle application.

1.2. Representative prototypes developed by vehicle manufactures

The application of steam Rankine cycle for vehicle waste hear recovery has been reported by 

BMW in 2005 [15], who later announced the proposed system can achieve 15% improvement 

for engine performance [16, 17]. Figure 1 is the schematic diagram of the BMW turbosteamer 

concept, who converts both engine coolant and exhaust energy into engine mechanical power. 

The system adopts two-stage turbine machines, which is similar as large-scale stationary 

power generation system.

In 2008, Honda has reported the project exploring the application of steam Rankine cycle for 

engine exhaust heat recovery as illustrated in Figure 2 [18]. The system adopts an axial piston 

swash plate type expander as the expansion machine under the controlled steam operational 

conditions ranging from 400 to 500°C at the pressure ranging from 7 to 9 MPa in order to opti-
mize the Rankine cycle performance in engine transient driving conditions. The expander was 

directly connected to an electric generator producing electricity to recharge the battery pack. 
The maximum thermal efficiency of the system is 13% at 23 kW and the maximum power 
from the expander is 32 kW. Results are shown in 62 miles/h constant speed driving tests; the 
overall thermal efficiency can be improved by 3.8%. However, Honda announced the system 
will not be considered for production unless higher efficiencies can be achieved [18].

Figure 1. Schematic diagram of BMW-Turbosteamer concept [16].
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Cummins has conducted a project funded by U.S. Department of Energy to study an 
advanced engine waste heat recovery system using ORC technology since 2005 [19]. Cummins 

announced the developed ORC system can potentially improve the engine total efficiency by 
5–8% [19]. The company further developed the waste heat recovery system and integrated 

with other advanced engine technologies aiming to boost the heavy-duty diesel engine to as 

high as 55% efficiency as reported in 2013 [20].

2. Organic Rankine cycle (OCR) for vehicle waste heat recovery 

(WHR)

2.1. Heat sources from ICEs

The designed temperature difference between evaporation and condensation temperature 
determines the overall efficiency of a typical ORC. For on-road vehicle application, the con-

densation temperature is controlled by the radiator and the capability of engine radiator 

determines the lowest condensation temperature. Therefore, the majority studies of Waste 

Heat Recovery (WHR) from ICE focus on the engine exhaust energy [21], because the exhaust 

temperature of ICE is various from 200 to 700°C, which is much higher than the coolant 
temperature ranging from 80 to 100°C [4, 5]. The other two heat sources are the charge air 

(50–70°C) and engine oil (80–120°C) [22]. The maximum ratio of utilization the fuel energy 

converting into engine brake power for propulsion is about 40–45%. The rest of fuel energy 
is dumped through engine exhaust, wasted because of friction losses and heat transfer loses. 

It is, therefore, necessary to study the heat sources from ICE to design and evaluate an ORC 

system for engine waste heat recovery.

Figure 2. Layout of the Honda Rankine cycle prototype [18].
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The heat sources from the engine are usually calculated under engine steady state points from 

either experimental tests or simulation results. Although it is theoretically feasible and poten-

tially worthwhile to recover the heat from charger air cooler and engine lube oil as reported 

in the literature [23], the practical applications of ORC system for engine waste heat recovery 

are mainly focusing on the exhaust energy and engine coolant energy. These two heat sources 

contain the majority of wasted heat energy from the engine. The maximizing utilization of 

these two heat sources can benefit for the overall vehicle thermal management and improve 
the cooling circuit impact.

Rather than the engine used in stationary power generation system, who usually operated under 

fixed rotational speed for an electrical generation [24], the engine used for vehicle application 

operates under variable speed and torque conditions. Therefore, the full engine operational 

map analysis method is popularly used to evaluate the heat sources from the engine for vehicle 

application. For example, Zhang et al. [25] used similar analysis methods and conducted the 

analysis of a 105 kW light-duty diesel engine. In order to conduct the parametric performance 

study of engine waste heat recovery system, the following four parameters are critical to being 

identified: the temperature and mass flow rate of exhaust and coolant energy under variable 
engine operational conditions. Another alternative method to evaluate the recoverable waste 

heat from the engine coolant and exhaust energy was introduced by Ringler et al. [17], who 

pointed out that the ratio of the recoverable heat from the coolant and exhaust energy of ICE 

ranges from 1.5 to 0.5. The results from the reported work also supported the conclusion [26–28]. 

Similar analysis method to evaluate the recoverable coolant and exhaust energy from a single 

cylinder engine was used and reported by Lu et al. as illustrated in Figure 3 [30].

Figure 3. Recoverable coolant and exhaust energy from a single cylinder ICE [29].
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2.2. Working principle of Rankine-based power generation systems

2.2.1. Rankine cycle

Steam Rankine cycle has been widely employed in large-scale power plants in the industry. 

This technology has been recognized as the most popular energy conversion systems, which 

mainly consists of four components, a pump, an evaporator, a turbine, and a condenser shown 

in Figure 4. The working principle of steam Rankine cycle can be described as follows. The liq-

uid-phase water is first compressed to high-pressure state and flows into the evaporator, where 
the heat is provided from the heat sources to change the water from the liquid phase into the gas 

phase. The high-temperature and high-pressure steam then flow through an expansion machine 
where the power can be retrieved or converted into electricity. In the final step, the condenser 
rejects the heat from the expander steam and condenses the steam into the liquid phase.

Rankine cycle applies water as the working fluid, which has the advantages of high specific 
heat capacity, broad ranges of working conditions, non-toxic, and safe to use and environmen-

tally friendly. However, steam Rankine system requires very high driven temperature in order 

to keep the steam in the gas phase at the exit of the expander. Because the exiting of liquid 

phase of fluid requires being prevented otherwise the blades of the turbine will be gradually 
damaged resulting in the reduction of lifetime and decrease of the expander efficiency [31].

2.2.2. Organic Rankine cycle (OCR)

As mentioned before, steam Rankine cycle requires very high heat source temperature. The 

Organic Rankine Cycles have been widely investigated since the 1880s. Instead of using water 

in Rankine cycle, the Organic Rankine Cycles employ organic working fluids such as refriger-

ants and hydrocarbons to recover the low-grade heat from biomass power plant, geothermal 

power and solar ponds [32]. The selection of working fluid plays a key role in ORC perfor-

mance [33–36].

The working fluids used in Organic Rankine Cycle can be classified as wet, dry and isentropic 
types, who have different slopes of the vapor saturation curves in the T-s diagram as shown 

Figure 4. Schematic diagram of steam Rankine cycle.
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in Figure 5. The wet fluids such as R717 have a negative slope of the vapor saturation curve. 
On the other hand, the dry fluids have a positive slope. The isentropic fluids have a vertical 
slope of the vapor saturation curve such as R134a.

A wrong choice of working fluid could lead to a low-efficient and expensive plant of ORC 
system. Tchanche et al. [37] assessed the thermodynamic and environmental properties of 20 

different fluids for solar Organic Rankine Cycle by comparing the system efficiency, irrevers-

ibility, flow rate, pressure ratio, toxicity, flammability, ozone depletion potential (ODP), and 
global warming potential (GWP). The influence of fluid properties on an ORC and a supercriti-
cal Rankine cycle with 35 different working fluids was assessed by Chen et al. [36] considering 

the latent heat, density, specific heat, and the effectiveness of superheating. An exergy-based 
study of fluid selection for geothermal generated ORC system was conducted by Heberle et al. 
[38]. The exergy analysis indicated in a series circuit, working fluids with high critical tem-

peratures such as isopentane are more favorable to be used. The working fluids with low criti-
cal temperatures, such as R227ea, are favored in parallel circuits and power generation under 

the heat source temperature below 450 K. The author investigated a small-scale solar-powered 
regenerative ORC system using six different refrigerants. The first and second law analysis 
suggested that R600 and R600a have the best performance under the temperature ranges from 

70to 120°C [31]. Wang et al. [33] report a study to compare the performance of 10 kW net power 

output ORC system using different working fluids for engine exhaust heat recovery. Results 
indicate R11, R141b, R113, and R123 manifest slightly higher thermodynamic performances 
than other working fluids [33]. The system performance study of a geothermal ORC system 

using 31 pure working fluids has been conducted by Saleh et al. [34]. The maximum thermal 

efficiency is 0.13 with n-butane as working fluid under 120°C heat source temperature [34]. 

There is no working fluid can be recognized as the best to be used in any ORC systems. The 
section of optimal working fluid needs to consider the system thermodynamic performance, 
the economics of the system, designed system parameters such as maximum and minimum 

temperature and pressure conditions, environmental, and safety aspects.

Figure 5. Three types of ORC working fluids: dry, isentropic, and wet.
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Figure 6. Working principle of turbine machines. (a) Axial flow turbine and (b) radial flow turbine [41].

2.3. Expander candidates

The expansion machines can be divided into two types: turbine machine using the kinetic 
energy of the working fluid to drive the expander and positive displace expander producing 
power by changing the volume of working chamber.

2.3.1. Turbines

Turbines have been widely applied as the expansion machine to replace the piston type of 

expander in steam Rankine cycle since the nineteenth century and have been acknowledged 

as the optimal expander for large-scale power plants. It consumes the internal energy of vapor 

into kinetic energy, which results the velocity of the flow are relatively high but the pressure 
and forces between the supply and exhaust point are rather small [39]. The mechanical power 

is then been obtained from the shaft of the turbine by turning the rotor blades when the high-

velocity fluid passes through the turbine. There are mainly two types of turbines: axial flow 
turbines and radial flow turbines [40]. The axial flow turbines are driven by the flow in the paral-
lel direction to the shaft, while the radial flow turbines are rotated by the flow traveling through 
the hub to the tipoff the turbine as indicated in Figure 6. However, the application of turbines 

for small-scale power generation system has not been widely accepted as the best expansion 

machine, especially in the power plants lower than 100 kW. Radial flow turbines are one of the 
exceptions, which have been recently used for small-scale application in Organic Rankine Cycle 

(ORC) [42–47]. Kang reports the design and experimental investigation of an ORC using R245fa 
as the working fluid and radial flow turbine as the expansion machine [42]. The radial turbine 
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was directly connected to a high-speed generator to produce electricity and results indicated the 

maximum cycle efficiency, the isentropic turbine efficiency, and electricity power obtained from 
the testing rig is 5.22%, 78.7%, and 32.7 kW, respectively [42]. Pei et al. [47, 48] carried out an 

experimental investigation on a 1–2 kW ORC system using a special designed and constructed 

radial flow turbine. The reported study achieves the isentropic efficiency of the radial flow tur-

bine at 65–68% with the rotational speed around 20,000–40,000 using R123 as the organic work-

ing fluid in the ORC system [46, 47]. Compared with positive displacement expander, turbines 

are easier to be designed with relatively less required parts. A single stage turbine only requires 

two bearings to be mounted to the generator on the shaft. Furthermore, there is no contact seal 

existing in the turbines, which means no lubrication oil is necessary to be adapted to the system. 

The application of turbine for small-scale application is still not successful because the turbine 

is designed under rather low-expansion ratios and high-volume flows. The rotational speed 
of conventional turbines ranges from 10,000 to 100, 000 rpm because of the physical design of 

this type of expansion machine, which results to a limited or hard sourcing of proper generator 

for electricity production. One of the solutions to adapt the turbine machine directly with the 

generator is to use a high-speed generator, which will lead to high initial cost and increase the 

overall cost of electricity generation system. The other method to obtain the mechanical work 

from the turbine and convert it into electricity is by using gear. This method can effectively solve 
the high initial cost of the system but will require larger space for the turbine unit and reduce the 

efficiency of the turbine machine due to mechanical losses in the gear. Furthermore, the avail-
ability of small-scale turbine machine is still limited. The currently used radial flow turbines in 
small-scale power generation system are either from specially designed by the researcher or 

modified from a conventional turbine from an automotive turbocharger.

2.3.2. Positive displacement expanders

Different from the working principle turbine machines, positive displacement expanders use 
the expansion power by changing the volume inside the expansion chambers, which can also 

be named volumetric expanders. The most commonly used positive displacement expanders 

include piston type expander, screw expander, and scroll expander and vane expander. The 

positive displacement expanders can be classified into two types reciprocating piston expand-

ers and rotary expanders. Screw expander, scroll expander, and vane expander are three main 

types of rotary expanders.

The piston type of machines attracts extensive intentions since it was invented and has 
been widely applied in different areas to meet various requirements such as the most com-

monly used as an Internal Combustion Engine. In the past 30 years, piston expander has 

been adopted and developed as the expander into steam Rankine system integrating with the 

internal combustion engine to recover the exhaust energy [4]. The piston type of expander can 

be designed and constructed with one valve version and two valve version in order to allow 

the expansion process starting and ending inside the piston volume chamber. The working 

principle of these two types of reciprocating piston expanders is illustrated in Figure 7. Piston 
type of expansion machine requires precisely controlled methods for the intake and exhaust 

valves, which will result to the requirement of a complex control system although this type 

of expander can potentially reach very high-expansion efficiency [50]. Moreover, piston 
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Figure 8. Working principle of screw expander [51].

expander requires a lot of bearings, a great number of moving parts, and balancing setting 
up, which results in a relatively complex and costly system.

Screw expander is composed of two meshing helical rotors a male and a female rotor, which 

requires at least four bearings for the two rotors as shown in Figure 8. This type of expan-

sion machine has been widely applied in steam Rankine cycle plants for geothermal waste 

heat recovery system [52]. Lubrication oil is commonly used in the screw machine to seal the 

expanded working fluid inside the expansion chamber, which can effectively reduce the inter-

nal leakage losses during the expansion process. Screw expander has a relatively high rotational 

speed in positive displacement expanders and the rotation speed of this machine can reach as 

high as 6000 rpm [52]. The electricity production from screw expander, therefore, requires a 

specially designed high-speed generator or adding a gearbox to convert the mechanical power 

from the screw machine into electricity. This type of expansion devices has the advantages 

such as medium internal frictions, medium leakage losses, low vibration noise, wide ranges 

of power output, and long lifetime. The power produced from this expansion machine as 

reported by previous researchers ranging from 1.5 kW to 1 MW with the expansion ratio of 2–8 

[53]. Leibowitz et al. developed an ORC power generation system using screw expander in a 
demonstration unit to cost-effectively recover the waste heat into power. Results indicated that 
screw expander is a good candidate expansion machine for the ORC system with the power 

output at 20 kW with installation cost in the range of $1500 –$2000/kWe [54]. However, there is 

Figure 7. Working principle of reciprocating piston expander. (a) Single valve piston expander and (b) two valve piston 

expander [49].
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no commercially available product under the power output lower than 10 kW from the market 

as reported by Ian et al. [55]. Because small size of screw expander needs extremely precise 

machining requirements to make the rotors and internal leakages of small size screw expander 

are relatively higher than that of the large-scale device [51, 56].

Scroll type of machine was first developed by a French inventor in 1905 and then the scroll 
machine starts to attract attention to be applied in Air condition system as a compressor to 
produce refrigeration since the mid of 1980s [57]. The most of the available scroll expand-

ers from the market are modified from scroll compressor by swapping the inlet and outlet 
ports to change the device working mode from compressor to the expander. Scroll device 

is relatively simple equipment, which mainly includes two scrolls. The scroll expander has 

the advantages of little vibration, low-noise, a limited number of moving parts, broad avail-
ability, high-reliability and low initial cost [58, 59]. Scroll device has two scrolls and one of 

the scrolls is fixed on the shell, which is called situational scroll, while the other scroll orbit-
ing eccentrically without rotating is named orbiting scroll. During the expansion process, 
high-pressure vapor enters and expands centrally of two scrolls pushing the orbiting scroll 

to start orbit as illustrated in Figure 9. The mechanical work can be continually obtained 

from the orbiting scroll through the shaft. Likewise the other positive displacement expand-

ers, scroll expander has a fixed built-in expansion ratio. The optimal performance of scroll 
expander can be obtained when the specific volume ratio of the designed system equal to the 
built-in expansion ratio. Quoilin et al. pointed out the losses appearing when scroll type of 

expansion machine is working under and over expansion processes [9]. For example, 1 kW 

Figure 9. Expansion process of the scroll device under different crank angles [60].
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oil-free scroll expander was used in an ORC system to recover the exhaust gas heat from a 

30 kW gas turbine as reported by June et al. [61]. The ORC system used a zeotropic mixture 

with 48.5% R245fa and 51.5% R365mfc as the working fluid and the experimental results 
indicated the overall efficiency of the ORC system was about 3.9% [61]. The scroll expander 

was operated in the over-expansion region, which can therefore only achieve the efficiency of 
28.4% under the tested condition. The overall ORC efficiency can be much higher than 3.9% 
if the expansion machine has been operated within the optimal conditions [61]. A prototype 

of ORC system using an open-drive oil-free scroll expander with R123 as the working fluid 
was experimentally investigated by Lemort et al. [62]. Results indicated the maximum isen-

tropic efficiency of the scroll expander could be as high as 68% [62]. Muhammad et al. [63] 

reported the experimental study of a small-scale ORC system recovering the heat from hot 

steam. An oil-free scroll expander was used in the system to produce electrical power. Results 

show the maximum electrical power from the system was 1.016 kW when the system thermal 

efficiency was 5.64% and the isentropic efficiency of the expander was 58.3% [63]. During 
the experiment, the maximum ORC thermal efficiency was achieved at 5.75% and the scroll 
expander achieved the maximum isentropic efficiency as high as 77.74% [63]. A hermetic type 

refrigerant scroll compressor with built-in volume ratio at 3.24 was modified as an expander 
and used in an ORC system as reported by Yang et al. [64]. The experimental results indicated 

the maximum shaft power was 2.64 kW when the ORC thermal efficiency was 5.92% [64]. The 

majority of scroll expanders available from the market are modified from scroll compressors, 
which are not designed to be used for expansion applications. A separate lubrication system 

is normally required to lubricate the contact seals of two scrolls and reduce the radial leakage. 

The other function of the oil is to seal the working fluid inside the expansion chambers during 
the expansion process to prevent and reduce the flank leakage of the scroll type machine.

Vane expanders have the advantages of simple construction, easy manufacture, low-cost, 

self-start under load and smooth torque production [35, 65]. The expansion process happens 

between the cylinder wall and the sliding vanes. When the high-pressure working fluid flows 
into the inlet port and fills chamber A, the spinning power from the rotor can be gathered as 
illustrated in Figure 10. The pressure differences among the chambers resulted by expansion 
process driver the rotor. Qiu et al. [56, 66] investigated a vane expander in a biomass fire 
CHP system with ORC and achieved the isentropic efficiency of 54.5% at the speed of 824 
RPM (mechanical work of 1.552 kW). The electricity generated by the vane expander was 
792 W, which lighted seventeen 50 W bulbs. The efficiencies of several vane expanders using 
different working fluids at different working temperatures and pressures were summarized 
by Aoun [67]. Results showed that the maximum efficiency of 80% was achieved by a vane 
expander using R-11 at 800 RPM. The rotational speed of vane type of expanders is relatively 
lower than other expansion machines with commonly from 1500 to 3000 rpm, which can be 

directly installed to the generator without requiring of gear box [35]. However, the average 

isentropic efficiency of vane expanders is with the range of 15–55%, which is not that competi-
tive compared with other volumetric expansion machines, as reported by Muhammad et al. 

[53]. Moreover, this type of expander requires a lubrication system to lubricate the contact 

surface of the rotor and vane. The existing of lubricate oil will contaminate the working fluid 
and flow back to the system.
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2.4. Cycle investigations

Due to the limited space, the demand of high-power to weight ratio for ORC system and com-

plicated control strategies for vehicle application, the ORC systems are still under technical 

development and testing stages. The current commercialization status of ORC technology for 

engine waste heat recovery is mainly for stationary power generation applications because of 

their desirable stable operating profiles [11]. A representative study on ORC system recover-

ing exhaust energy from a stationary compressed natural gas (CNG) engine was reported by 

Song et al. [24]. The results showed the electric efficiency of the CNG engine could be poten-

tially improved by a maximum 6.0% and the overall engine brake specific fuel consumption 
(BSFC) can be reduced by a maximum of 5.0% [24].

The two primary heat sources from ICE systems are engine cooling system and exhaust gases, 

which almost contain 60–70% of the fuel energy. Engine coolant energy is normally recog-

nized as a heat source that is not worth to recover because the coolant temperature is about 

80–100°C. However, the coolant energy contains about 30% of the fuel energy. The effective utili-
zation of engine coolant energy for ORC waste heat recovery of the ICE could potentially improve 

the overall system efficiency and reduce the pay-back period of the overall cost with a properly 
designed system [9, 10]. A typical single-loop ORC system recovering both engine coolant and 

exhaust energy can be shown in Figure 11. A recuperator can be used to recover unused heat 

at the exit of expansion machine to preheat the working. The coolant energy can either be used 

as preheating source or main heat source for ORC systems. Only part of the coolant energy can 

be recovered if it was used as preheating source. For example, a study conducted by Yu et al. 

[69] investigated the potential of using engine coolant energy as ORC preheating source. The 

simulation results indicated there is around 75% exhaust heat and 9.5% coolant energy can be 

recovered from a diesel engine [69]. Tian et al. [70] deeply investigated the effects of fluids and 
parameters of the ORC system for engine exhaust heat recovery. The performance ORC system 

using 20 working fluids (boiling point range from −51.6 to 32.05°C) was studied to evaluate the 

Figure 10. Working principle of vane-type expander [56].
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cycle parameters such as the overall thermal efficiency, expansion ratio, effective power output 
and electricity production cost [70]. R141b, R123, and R245fa were identified as the optimal work-

ing fluids. The highest thermal efficiency of these three working fluids ranges from 16.6% to 13.3% 
with the electricity production cost various from 0.30 to 0.35 €/kWh [70]. A simulation study of 

an ORC system for diesel engine exhaust heat recovery was reported by Zhao et al. [71]. Results 

indicated the BSFC reduction and the overall thermal efficiency of the engine integrated with 
ORC unit is 3.61 g/(kWh)–0.66% [71]. Shu et al. [72] recommended to use alkane-based working 

fluids for diesel engine exhaust heat recovery from the technical and economic point of view [72].

Another potential approach for engine coolant and exhaust recovery is using dual-loop ORC, 

which adopts two separately ORC systems to regenerate multi-heat sources from ICE [28, 73, 74].  

The schematic system diagram and T-s diagram of dual loop ORC system can be found in 

Figure 12. Wang et al. [28, 73] conducted the study on a dual loop ORC to evaluate the per-

formance of a gasoline engine and a light-duty diesel engine. The dual loop ORC system con-

tains a high-temperature loop recovering engine exhaust heat and a low-temperature loop for 

coolant heat recovery. The proposed concept has the potential to comprehensively reuse all 

the recoverable heat from engine coolant and exhaust sources [73]. The investigations of using 

dual loop ORC system were also conducted on a selected gasoline engine and a diesel engine. 

For the selected gasoline engine, the results showed the dual loop ORC system can effectively 
improve the overall system efficiency by 3–6% throughout the engine operating region [73]. 

When the system was used on a light-duty diesel engine, the evaluation results indicated the 

thermal efficiency can be improved by 8% compared to that of the original engine [28]. At the 

engine rated power condition, the power output of the combined system can be improved 

by 26.63% [28]. Further study of the dual-loop ORC for engine coolant and exhaust recovery 

Figure 11. Single-loop ORC for engine coolant and exhaust recovery [68].
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was reported by Shu et al. [74], who investigated the influence of using different working flu-

ids. The high-temperature loop adopted water to recovery the exhaust energy and six work-

ing fluids have been selected for the low-temperature [74]. The dual-loop ORC system can 

achieve the maximum overall exergy efficiency as high as 55.05% using R1234yf as working 
fluid [74]. The dual-loop ORC requires two sets of ORC system components and advanced 

controlling strategies to balance the different heat sources, which will increase the capital cost 
of the system and result in high payback period.

2.5. Technical barriers

The power output from the ORC system can be either mechanical or electrical. As intro-

duced in the previous section, the expansion machines can be divided into two types turbine 

machine using the kinetic energy of the working fluid to drive the expander and positively 
displace expander producing power by changing the volume of working chamber. When the 

mechanical configuration is used, the expander shaft is connected to the engine drive belt 
or a gear. Alternatively, an alternator is used to convert the mechanical work from the ORC 

expander to electricity. The generated electricity can be used to power the vehicle battery or 
supply auxiliary utilities. One of the main drawbacks of the solution is the efficiency of avail-
able vehicle alternators, which is around 50–60% [5, 9].

The designed evaporation and condensation temperature determines the overall efficiency 
of ORC system. A higher temperature difference between evaporation and condensation can 
result in a higher overall ORC efficiency. The engine front radiator is therefore required to 
reject high-load of heat in order to maintain the low condensation temperature. The limited 

space for vehicle application restricts the size of engine cooling system. An electrically driven 

cooling fan is generally not recommended to achieve low condensation temperature because 

it would sharply reduce the overall system performance.

Another main technical constraint is the dynamic/transient heat sources. In order to main-

tain the ORC system within the optimal operating region, the control of pump speed, and 

expander speed are required. Therefore, the complex control strategies are critical to being 

Figure 12. Dual-loop ORC system (a) schematic diagram and (b) T-s diagram [26, 75].
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developed or advanced ORC systems should be investigated. Using variable speed pump, 

adding control valves and integrating thermal energy storage system to manage fluctuation 
waste heat are some common strategies as reported by Manuel et al. [76].

3. Conclusions

Vehicle waste heat recovery technologies are currently under enormous interests for the pur-

pose of reducing emissions and improving overall efficiency. Organic Rankine Cycle is one 
of the best solutions to recover engine waste heat into mechanical or electrical power. Key 
conclusions of this chapter can be summarized as follows.

It is critical to characterize the recoverable heat from the engine before designing the ORC 

system. A broad range of working fluids are available to be selected but there is no work-

ing fluid can be recognized as the best to be used in any ORC systems. A high-efficiency 
alternator to be coupled with ORC expander is in high-demand in order to promote the 

application of electrical version engine waste heat recovery system. For vehicle application, 

a compact system is desirable because of the limitation of space. A well-designed engine 

thermal management system should be considered. The transient heat source performance 

is the major technical obstacle to use ORC system for engine waste heat recovery and it 

can be expected either advanced control strategies or thermal energy storage technology 

should be used to solve the problem and promote the practical application of the ORC 

system for the vehicle.
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