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Abstract

My first goal is to present the basic immunization problem (BIP) as it is understood in
finance. BIP relies on a construction of such a bond portfolio (BP), meaning a selection of
individual bonds, that the single liability to pay L dollars q years from now will be
discharged by means of BP (a patient will return to health at time q), no matter what
random shift a(t) (a particular disease) will occur in the future. What kind of a function is a
shift of interest rates is critically important because both present and future values of BP
depend solely on underlying interest rates. Having identified shifts (diseases) against
which a BP is immunized, the natural question arises how to find among such immunized
(immune) portfolios the best ones. In the context of finance, it means bond portfolios with
maximal unanticipated rate of return. My second goal is to trigger interest among medical
scientists by suggesting that certain finance notions, such as duration and convexity of a
bond portfolio, might give extra insight to medical researchers working in the immuniza-
tion area both into BIP and into similar problems in medicine. A considerable attention is
also paid to certain mathematical notions (base of a linear space, a Hilbert space, triangu-
lar functions) because of their successful applications to problem-solving occurring in
bond portfolio immunization.

Keywords: immunization, immunity, active immunity, passive immunity, best
immunization strategy, duration, convexity, barbell immunization strategy, focused
immunization strategy

1. Introduction

In this chapter, I present one of the research areas existing in finance called bond portfolio

immunization (BPI). My goal is to make it known to medical researchers dealing with immu-

nity (resistance) of human organisms to diseases. I feature not only basic notions, problems,

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
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and solutions occurring in BPI, but also selected mathematical concepts and tools which

proved to be instrumental in developing BPI. I do believe that such information has a good

chance to be useful in creation of immunity against particular diseases. Bond investors are

called immunizers if, possessing C dollars today, they must achieve an investment goal of L

dollars q years from now (a human organism or a particular human organ must achieve a

certain level of health q years from now); here L is the future value of C at time q under the

current interest rates. This investment goal must be accomplished by means of an appropri-

ately selected bond portfolio, even despite unfavorable sudden change (shift) in interest rates

(appearance of a disease), having in mind that the present and future prices of all bonds

depend solely on interest rates.

Although, as it will be demonstrated in Sections 3.1, 3.2, and 3.3, immunization against all shifts

is never possible, there are many results giving sufficient, or necessary and sufficient, conditions

for immunization against a certain classes of shifts (certain diseases). It is worth to know that in

the financial immunization, there is no such thing as acquired immunity (immunity that develops

in a human after exposure to a suitable agent) and active immunity (acquired through production

of antibodies within the organism in response to the presence of antigens).

Such types of immunization might theoretically take place on a bond market only if a bond

holder had the right to change the coupon payments, which is completely out of the question.

In other words, the immunization in financial reality has features of passive immunity, being in

fact a short-acting immunity. On the other hand, however, a BP manager can achieve the state

of a BP being all the time immune against a specific class of shifts, provided the manager

regularly (every week or so) performs (if necessary) subsequent adjustments of his/her BP

according to their expertise in the area of immunization theory.

Theorem 1 (Section 2.4.2) as well as Theorems 3 and 4 allows one to look at immunization from a

different perspective. They enable one to identify all shifts a(t) (diseases) of the term structure s(t)

of interest rates against which BP is already (fully) immunized, that is, protected against loss of

its value at time q. Finally, having identified immunized (immune) bond portfolios, the natural

question arises how to find among them the best ones. This topic is dealt with in Section 4.

Below, I shall present (i) what are bonds and bond portfolios; (ii) what is meant by standard

(and general) immunization problem; (iii) historical development of immunization theory; (iv)

overview of some recent results; (v) the concept of a Hilbert space, and a base in a linear space;

(vi) application of orthogonal polynomials to description of the class IMMU of all shifts

(diseases) against which a given bond portfolio is immunized; (vii) triangular functions as a

base for the linear space IMMU; and (viii) the crucial role of the notions of duration and

convexity in choosing the “best” immunized (immune) bond portfolios.

2. Immunization in finance

Below, we will introduce the concept of bonds, formulate the standard and general immuniza-

tion problem, and outline the development of immunization theory in finance, from the

beginning to the latest achievements.
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2.1. What are bonds?

Each bond with a face value (par value) of F dollars is a financial instrument which generates to its

buyer (holder) specified payments every 6 months (or every quarter, every year) in the form of

coupons, plus par value paid only at the termination (maturity) of the bond. The face value

represents the amount borrowed by the seller (issuer) of a bond from the bond buyer. The coupons

represent a predetermined percentage, say 3%, of face value F; if F = $10,000, then all coupons paid

per year sum up to $300. Each bond has its own life span (maturity) of n years (3, 5, 10, 20 years, etc.)

A bond portfolio (BP), by its definition, is a collection of different bonds with various matu-

rities. Thus, each BP generates a more complicated cash flow pattern than a single bond does.

A cash flow generated by a BP consists of various size payments ci, 1 ≤ i ≤m, (coupons and par

values generated by all kinds of bonds forming that portfolio) at certain dates t1, t2, t3,…, tm
from an interval t0;T½ �, where t0 is the date when BP was purchased, while T stands for the

highest maturity of all bonds tradable on a given debt market D.

The present and future value of each bond, and consequently each bond portfolio, depends

solely on current interest rates s tð Þ, which in the simplest case are identical for all maturities t,

that is, s tð Þ � s, t∈ t0;T½ �. By the term structure of interest rates, one understands a schedule of

spot interest rates s tð Þ which are estimated from the yields (returns) of all coupon-bearing

bonds. It is well known that interest rates are shaped under various random market forces.

2.2. Standard and general immunization problem

The standard immunization problem relies on a construction of such a bond portfolio with the

present value of C dollars that the single liability to pay L dollars q years from now (L is the

future value of C) by means of the cash flow generated by BP will be secured regardless of how

adverse changes in interest rates will occur in a future. This nontrivial problem is automati-

cally solved by each zero-coupon bond maturing at time q with par value of L dollars. Thus,

using medical terminology, one may say that such a zero-coupon bond possesses an innate

(natural) immunity. Unfortunately, in practice, such zero-coupon bonds rarely exist.

Besides, an investor may already possess bonds and would like to buy additional ones so that

the created, in this way, portfolio BP with the present value of C dollars would secure the

payment of L dollars q years from now. Having built such a portfolio, the investor would

immunize (hedge) their own investment against a loss of its value at time q. We assume that

the new term structure will always be of the form s*(t) = s(t) + a(t), where a(t) belongs to a

certain class of shifts (diseases).

On the other hand, the general immunization problem relies on a construction of such a bond

portfolio BP with the present value of C dollars that multiply liabilities to pay Li dollars at

specified instances of time will be secured by means of the cash flow generated by BP regard-

less of adverse changes/shifts a(t) of interest rates in a future.

2.3. Beginnings of immunization

Immunization as a concept dates back as far as to articles [1, 2]. However, not until work [3] of

Fisher and Weil was the impact of interest shifts on the design of immunization strategies
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rigorously studied. In a vast majority of publications, immunization was based on a specific

stochastic process governing interest rate shifts a(t). In [2], Redington discussed immunization

in the context of an actuarial company which had projected liability outflows L(t) at some finite

numberM of instances (dates) tk and anticipated inflows A tið Þ atN (typically) different dates ti.

It was assumed that interest rates were flat, that is, s tð Þ � s, and shocks a(t) of interest rates s(t)

meant their parallel movements, that is, a tð Þ � λ.

In such a situation, the company’s task was to choose inflows A(t) in such a manner that the

outflows L(t) would be discharged if the interest rates s tð Þ � s moved to their new constant

level s∗ tð Þ � sþ λ. To recall Redington’s main result, let us note that V ¼
Pt¼N

t¼1

A tð Þ

1þsð Þt
represents

the present value of inflows A(t) occurring at instances ti; a similar formula holds for liabilities

L(t). Redington introduced the notion of a “mean term” having in mind the weighted average

of the dates when the flows are to be received (in case of assets) or have to be discharged (in

case of liabilities). This “mean term” was nothing different than the concept of duration intro-

duced by Macaulay in [1]. These two authors understood duration as:

D ¼
Xt¼N

t¼1

twt; wt ¼
A tð Þ

V 1þ sð Þt
;
Xt¼N

t¼1

wt ¼ 1 (1)

where wt tells us what portion (weight) of the entire cash flow is represented by A(t) in terms of

today’s money. It was proved in [2] that any parallel movement (shift) of the flat term structure

s tð Þ � s of interest rates would affect the value of the assets in the same way as it would affect

the value of liabilities if duration DA of assets A(t) were equal to duration DL of liabilities L(t),

and additionally, the so-called convexity of the assets would exceed that of the liabilities.

2.4. Assumptions concerning term structure of interest rates and admissible shifts: historical

development

Twenty years later, Fisher and Weil [3] restricted themselves to a single liability at a specified

date q, but significantly weakened the adopted so far assumption that the term structure was

flat, that is, s tð Þ � s. Denoting current interest rates s(t) as h(0,t), they allowed h(0,t) to be a

function of arbitrary shape with h(0,t), 0 ≤ t ≤N, meaning annualized returns on zero-coupon

default-free bonds tradable on a debt market D. However, they upheld the strong assumption

concerning the admissible shifts a(t) by supposing that h(0,t) was subject only to a random

additive shift of the form h∗ 0; tð Þ ¼ h 0; tð Þ þ λ for 0 ≤ t ≤N appearing instantly after the acquisi-

tion of a bond portfolio.

They applied (popular already at that time) continuous compounding of cash flowsA(t) and L(t),

which in their approach represented instantaneous rate of payments per one unit of time

rather than payments themselves, so that the present value of the assets VA could be expressed

by means of an integral

VA ¼

ðN
0

A tð Þ exp �h 0; tð Þ½ �tdt (2)
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while the duration DA was given by

DA ¼

ðN

0

wttdt ¼

ðN

0

A tð Þ exp �h 0; tð Þ½ �

VA
tdt: (3)

It was stated in [3] that immunization was secured if the duration of the assets DA equaled the

duration of the single liability to be discharged at time q: DA ¼
ÐN
0 wttdt ¼ q. Clearly, duration

of any single inflow or outflow at time q equals q since all weights, except for the one at date q,

are equal to 0 (zero).

2.4.1. Further developments of immunization theory

In subsequent 20–30 years of development of immunization theory, the strong assumption

made so far that interest rates were subject to random shifts of the form h∗ 0; tð Þ ¼ h 0; tð Þ þ λ

was being dropped. Many authors began to study shifts governed by some specific stochastic

processes. For example, it was proved in [4] that some alternative stochastic processes permit-

ted immunization, and others did not. When immunization can occur, formulas for calculating

the resulting duration differ depending on the underlying stochastic process.

Few years later, it was demonstrated in [5] that these differences may be significant. For

example, when a multiplicative stochastic process λ is used, that is, h∗ 0; tð Þ ¼ λh 0; tð Þ instead

of additive stochastic process h∗ 0; tð Þ ¼ h 0; tð Þ þ λ, one would obtain the implicit formula for

the immunizing duration shown as Eq. (13) in [6] on p. 29. On the other hand, both the

multiplicative shift

h∗ 0; tð Þ ¼ 1þ
λ ln 1þ αtð Þ

αt

� �

h 0; tð Þ; (4)

and the additive one

h∗ 0; tð Þ ¼ h 0; tð Þ þ
λ ln 1þ αtð Þ

αt
, (5)

were studied in [7], where suitable implicit formulas for the respective immunizing durations

were derived.

Another approach, called contingent immunization, was developed in [8]. It consists of build-

ing a bond portfolio with a duration shorter or longer than the investor’s planning horizon,

taking into account “personal” expectations of a bond manger with regard interest rates. The

idea standing behind such approach is to take advantage of the manager’s ability to forecast

interest rate movements (diseases) as long as his/her predictions are accurate.

2.4.2. Latest developments of immunization theory

The contingent immunization was implemented in many situations for various term structures

of interest rates; see [9]. Other than mentioned in Eqs. (4) and (5), stochastic process governing

admissible shifts was analyzed in [10].
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Striving to offer a more general approach, the authors of article [11] did not confine ourselves

to a specific process governing shifts, but allowed them to belong to a certain class of functions,

such as, for example, polynomials of degree less than some specified number n (pp. 858–861).

In this way, they did not expose themselves to any model misspecification risk, similarly as

Zheng in [12].

The larger class of shifts (diseases) against which the immunization will work, the better.

Having this in mind, the interval t0;T½ � was divided in [6] into n equal nonoverlapping sub-

intervals Ik, 1 ≤ k ≤n, and set ak tð Þ ¼ 1 when t∈ Ik and ak tð Þ ¼ 0 otherwise (p. 34). The admissible

shifts were assumed to be piecewise constant functions of the form
Pk¼n

k¼1

λkak tð Þ. The authors

made a general assumption stating that a BP generates inflows

A tð Þ ¼ A0 tð Þ þ
Xk¼m

k¼1

ckδ t� tkð Þ, (6)

with A0 tð Þ representing an instantaneous rate of cash payout, while sk standing for single

payment at instances t1, t2, t3,…, tm: The expression δ t� tkð Þ, with δ tð Þ standing for a Dirac

delta function, was employed in order to make integration possible. The following result

(Theorem 3, pp. 34–35 in [6]) was then proved.

Theorem 1. If q denotes the date when the single liability of L dollars has to be discharged by

means of the cumulative value of assets A(t), then the immunization is secured against all

adverse piecewise constant shifts
Pk¼n

k¼1

λkak tð Þ of interest rates h(0,t) if and only if

ak qð Þq ¼

ðT
0

A tð Þ exp �h 0; tð Þ½ �t

VA
ak tð Þtdt, 1 ≤ k ≤n, (7)

where VA stands for the present value of the portfolio represented by assets A(t).

Remark 1. When n = 1, then Theorem 1 gives a sufficient and necessary condition

a qð Þq ¼

ðT
0

A tð Þ exp �h 0; tð Þ½ �t

VA
a tð Þtdt (8)

for immunization when the term structure h(0,t) is subject to shifts h t; 0ð Þ þ λa tð Þ. In case of

parallel shifts, (8) reduces to Fisher-Weil condition q ¼
Ð T
0

A tð Þ exp �h 0;tð Þ½ �t
VA

tdt, which is well

remembered as the following statement: Immunization is secured if the duration of the assets

DA equals the duration of the single liability.

Remark 2. Theorem 1 can also be looked at from a different perspective. Namely, one may be

interested in identification of such a set of shifts a(t) of the term structure s(t) of interest rates,
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say IMMU, against which a bond portfolio BP is already immunized, that is, protected against

loss of its value at time q. In this context, Theorem 1 offers a sufficient and necessary condition

for a shift a(t) to belong to set IMMU.

2.5. One cannot immunize against all possible shifts of interest rates development

As of today, no one was successful in building up a bond portfolio BP immunized (immune)

against all shifts of interest rates (diseases). What is more, in Section 3, we demonstrate that the

set IMMU is always a proper subset of all admissible shifts, being in fact a linear subspace of all

shifts.

3. Overview of some recent results

In a recent paper [13], the authors found a strong evidence that momentum across various

asset classes is caused by macroeconomic variables. By properly modifying their portfolio, in

response to changes in macroeconomic environment, their strategy performed particularly

well in times of economic distress. The obtained results allowed them to establish a link

between momentum and sophisticated predictive regressions.

Aiming at securing higher effectiveness of their investment in fixed income bonds, the authors

of [14] successfully used simulations of the portfolio surplus, measuring the inherent risk by

means of the value-at-risk methodology. In another very recent publication [15], the authors

studied immunization assuming that shifts were parallel or symmetric. A quite different

approach to immunization was proposed in [16]. The authors concentrated on hedging risk

inherent in bond portfolio. They divided the entire problem into two parts, by formulating a

two-step optimization problem. They focused first on immunization risk, and next maximized

the portfolio wealth.

In this section, it is proved that the set of all continuous shocks a(t) against which a bond

portfolio BP is immunized is an m-dimensional linear subspace in the (m + 1)-dimensional linear

space of all continuous shifts a(t), withm standing for the number of instances when BP promises

to pay cash (coupons or par values generated by bonds forming BP). The main mathematical

concept used below is the notion of a Hilbert space and the concept of a base in a Hilbert space.

3.1. When polynomials are admissible shifts

From now on, we assume that A0 tð Þ � 0 in Formula 6, so that inflows given by

A tð Þ ¼
Xk¼m

k¼1

ckδ t� tkð Þ, (9)

generate only payments ck at specified instances t1, t2, t3,…, tm. In such a situation, the present

value of assets A(t) is no longer given by Eq. (2), but by
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VA ¼
X

k¼m

k¼1

ci exp �c tkð Þtk½ �: (10)

One of two classes of admissible shifts studied in [14] was the class of polynomials.

a tð Þ ¼ a0 þ a1tþ a2t
2 þ at3 þ…þ atn�1 ¼

X

j¼n

j¼1

aj�1t
j�1, t∈ t0;T½ �: (11)

The new term structure was assumed to be of the form:

s∗ 0; tð Þ ¼ s tð Þ þ λa tð Þ, t∈ t0;T½ �, (12)

with a tð Þ satisfying Formula 11.

Definition 1. (see also [11], p. 859). A set S is said to be a linear space if the sum of its arbitrary

2 elements a∈ S and b∈ S belongs to S (aþ b∈S), and for any real number r the product of r

and any element a∈ S belongs to S as well.

The most well-known linear spaces are probably the set of all real numbers R, a two-

dimensional Cartesian plane R2, a three-dimensional linear space R3, and their generalizations

Rn, known as an n-dimensional linear spaces.

Definition 2. A set of k vectors v1, v2,…, vk is called linearly independent if each linear

combination of these vectors λ1v1 þ λ
2v2 þ…þ λ

kvk is a vector different from vector 0; see

Definition 2.2 (p. 860).

Definition 3. A set of linearly independent vectors from a linear space S is called a base for S if

each vector a∈ S is a linear combination of theirs, and this property does not hold any longer

after removal of any of these base vectors.

All bases have the same size and there are many of them in each linear space S. Rn is a linear

space with a natural addition xþ y ¼ x1 þ y1; x2 þ y2; ;…; xn þ yn
� �

of two vectors, and natural

multiplication r � x ¼ rx1; rx2; rx3;…; rxnð Þ∈Rn of a vector x ¼ x1; x2; ;…; xnð Þ by a real number

r. The most popular base in Rn is the set of n vectors: v1 ¼ 1; 0; 0;…; 0ð Þ, v2 ¼ 0; 1; 0;…; 0ð Þ,

v3 ¼ 0; 0; 1; 0;…; 0ð Þ, and so on until vn ¼ 0; 0; 0;…0; 1ð Þ. Each vector, for example, (2, 3, �7,

10), is the following linear combination of the above base vectors: 2(1, 0, 0, 0) + 3(0, 1, 0,

0) + (�7)(0, 0, 1, 0) + 10(0, 0, 0, 1).

Remark 3. The below Formula (13), being a counterpart of Formula 8, gives a necessary and

sufficient condition for immunization against shifts a(t) in case when a bond portfolio BP

generates payments ck at instances t1, t2, t3,…, tm:
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a qð Þq ¼
Xi¼m

i¼1

tiwia tið Þ, (13)

with weights

wk ¼
ck exp �s tkð Þtk½ �

Pi¼m

i¼1

ci exp �s tið Þti½ �

: (14)

Remark 4. The class of polynomials of the form (11), with fixed n, is a linear space. What is

more, the subset of these polynomials satisfying Eq. (13) is a linear space, too.

Proof. Assume that a(t) satisfies Eq. (13). For any real number r, Eq. (13) implies ra qð Þ½ �q ¼

Pi¼m

i¼1

tiwi ra tið Þ½ � because parameters ti and wi remain the same. Adding Eq. (13) holding for b(t) to

Eq. (13) holding for c(t), one immediately obtains the required relationship.

b qð Þ þ c qð Þ½ �q ¼
Xi¼m

i¼1

tiwi b tið Þ þ c tið Þ½ �: (15)

Theorem 2. (see [11], Theorem 2.1). Let q denote the date when the single liability of L dollars

has to be discharged by means of the cumulative value of assets (9) despite additive adverse

shifts (11) (n is fixed) of interest rates s(t) so that the new interest rates will be of the form (12).

Then, the subclass of shifts (11) for which immunization is secured is a (n�1)-dimensional

linear space, denote it by IMMU, of the space of all polynomials (11), which itself has dimen-

sion n.

How to determine IMMU is demonstrated in [11] in pp. 858–860.

3.2. Continuous functions are admissible shifts: a Hilbert space approach

The other class of admissible shifts studied in [11] was the class of all continuous functions (CF)

defined as always on interval t0;T½ �. As previously, the new interest rates (after a shift) satisfy

Eq. (12) with a(t) standing this time for any CF. As previously, assets A(t) are given by Formula

9. It is easy to notice that the class of CF is a linear space with ordinary addition of two

functions and ordinary multiplication of a function by a real number. However, it has an

infinite number of independent vectors!

We shall demonstrate that the notion of a Hilbert space is very useful in the study of immuniza-

tion theory. It was named after a German mathematician David Hilbert (1862–1943) who is

recognized as one of the most influential and universal mathematicians of the nineteenth century

and the first half of twentieth century. By definition, a Hilbert space is a linear space, say H,

which is additionally equipped with so-called scalar product (a generalization of the scalar

product of two vectors from Rn) defined for any two of its elements (vectors) h1 ∈H and h2 ∈H.
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A specific Hilbert space H* of all CF (shifts) defined on interval t1;T½ � was introduced in [11]

and it was demonstrated that H* had dimension m. However, the shifts of interest rates should

be considered on interval t0;T½ � because a random and unexpected shift a(t) might appear

instantly after the acquisition of BP. In such a case, the dimension of H* would be (m + 1),

which is really the case. So, in this chapter, we correct and simplify the definition of a scalar

product of two arbitrary continuous functions (shifts) f(t) and g(t), by letting

< f , g >¼
X

k¼m

k¼0

f tkð Þg tkð Þ: (16)

It is good to know that in each Hilbert space H, one can measure a distance between any two

elements h1 ∈H and h2 ∈H by the formula kh1 � h2k, where khk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

< h, h >
p

is said to be a

norm of vector h. In space H*, the norm is therefore defined as follows:

khk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

< h, h >

p

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

k¼m

k¼0

h tkð Þh tkð Þ

v

u

u

t : (17)

Clearly, khk ¼ 0 if and only if h tkð Þ ¼ 0, 0 ≤ k ≤m. A function h(t) belonging toH* is treated as an

element (vector) 0 (zero) if and only if khk ¼ 0. Therefore, kh1 � h2k ¼ 0 means, then the two

functions h1 tð Þ and h2 tð Þ are viewed as same on interval t0;T½ �. It holds if and only if they

coincide at all instances tk, 0 ≤ k ≤m, when bond portfolio BP is paying cash.

In Theorem 3 to follow, we identify a base for H* among polynomials. This approach is rather

complicated since it involves the use of Gram-Schmidt orthogonalization procedure to deter-

mine base polynomials. In Section 3.3, a far more straightforward and easier to implement

approach is presented where there is no need to identify base functions (shifts) because they

are already given by Formulas (20)–(23).

Theorem 3. (compare Theorem 3.1 in [11]). Suppose a bond portfolio BP has been bought, and

admissible shifts a(t) of a term structure s(t) are allowed to be continuous functions on interval

t0;T½ �. Then, the set of these shifts equipped with the scalar product (16) is an (m + 1)-dimen-

sional Hilbert space H*, where m is the number of instances when portfolio BP generates cash.

The subset of these shifts, say IMMU, against which a holder of BP is immune (will be able to

discharge the liability of L dollars to be paid at time q∈ t0;T½ � by means of the cumulative value

of assets (9)) is an m-dimensional subspace (depending to a large extent on BP) of the form

a tð Þ ¼ a0P0 tð Þ þ a1P1 tð Þ þ a2P2 tð Þ þ…þ amPm tð Þ (18)

where the m + 1 polynomials Pk tð Þ, 0 ≤ k ≤m, constitute a base of space H*. This base may be

determined by the Gram-Schmidt orthogonalization procedure, while the coefficients a0, a1,

a2,…, am can be identified as solutions to the linear equation

Immunization - Vaccine Adjuvant Delivery System and Strategies104



a0P0 qð Þ þ a1P1 qð Þ þ a2P2 qð Þ þ…þ amPm qð Þ½ � � q �
Xk¼m

k¼1

ck exp �s tkð Þtk½ � ¼ a0P0 qð Þ

�
Xk¼m

k¼1

cktk exp �s tkð Þtk½ �

(19)

It is worth to notice that after determination of polynomials Pk tð Þ, 0 ≤ k ≤m, all numbers

P0 qð Þ, P1 qð Þ, P2 qð Þ,…, Pm qð Þ are known, as well as parameters q, ck, tk, s tkð Þ, so that a0, a1,

a2,…, am remain the only unknown variables. The readers interesting in identifying subspace

IMMU are referred to Example 4.2 (pp. 863–864).

3.3. Identification of continuous shifts against which a bond portfolio is immunized: the

triangular functions approach

A strict definition of triangular functions is given by Eqs. (20)–(23) below. Roughly speaking, a

triangular function (sometimes called a tent function, or a hat function) is a function whose

graph takes the shape of a triangle. Among our (m + 1) tent functions employed in this chapter,

(m � 1) are isosceles triangles with height 1 and base 2, while the other two are perpendicular

triangles with height 1 and base 1. Triangular functions have been successfully employed in

signal processing as representations of idealized signals from which more realistic signals can

be derived, for example, in kernel density estimation.

They also have applications in pulse code modulation as a pulse shape for transmitting digital

signals, and as a matched filter for receiving the signals. Triangular functions are used to define

the so-called triangular window, also known as the Bartlett window. Since they occur in the

formula for Lagrange polynomials used in numerical analysis for polynomial interpolation,

they are also called Lagrange functions. Their other applications include the Newton-Cotes

method of numerical integration, and Shamir’s secret sharing scheme in cryptography.

In the financial context, tent functions were employed in [17] for modeling shifts of the term

structure of interest rates. The framework and assumptions made in this section are the same

as in Section 3.2. Our purpose is to characterize the subspace IMMU of the Hilbert space H* by

means of triangular functions based on results presented in [18].

In this section, t1, t2, t3,…, tm ¼ T comprise not only all instances when a given bond portfolio BP

generates payments, but also additionally the date q when the liability to pay L dollars has to be

discharged. Below, we definem + 1 triangular functions S0 tð Þ, S1 tð Þ, S2 tð Þ,…, Sm tð Þwhose graphs

are triangles with bases t0; t1½ �, t0; t2½ �, t1; t3½ �,…, tm�2; tm½ �, tm�1; tm½ �. The first one S0 tð Þ and the last

one Sm tð Þ represent perpendicular triangles, while the remaining ones are isosceles triangles.

S0 tð Þ ¼
t� t1
t0 � t1

, t∈ t0; t1½ � and S0 tð Þ ¼ 0 for t∈ t1; tm½ �, (20)

Sm tð Þ ¼
t� tm�1

tm � tm�1
, t∈ tm�1; tm½ � and Sm tð Þ ¼ 0 for t∈ t0; tm�1½ �, (21)
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Sk tð Þ ¼
t� tk�1

tk � tk�1
, t∈ tk�1; tk½ �, 1 ≤ k ≤m� 1, (22)

Sk tð Þ ¼
t� tkþ1

tk � tkþ1
, t∈ tk; tkþ1½ �; Sk tð Þ ¼ 0 elsewhere in t0;T½ �: (23)

The following result is well known.

Remark 5. Each continuous function a(t) defined on t0;T½ � attains the same values as the

function b tð Þ ¼ a 0ð Þ � S0 tð Þ þ a t1ð Þ � S1 tð Þ þ a t2ð Þ � S2 tð Þ þ…þ a tmð Þ � Sm tð Þ (built up with (m + 1)

triangular functions) at all points tk, 0 ≤ k ≤m. Therefore, a(t) may be identified in H* with the

piecewise linear function b(t) because the distance between a(t) and b(t) in H* is zero: ||b(t) – a

(t)|| = 0.

It is a nice exercise to prove the following result.

Remark 6. The Lagrange functions S0 tð Þ, S1 tð Þ, S2 tð Þ, …, Sm tð Þ given by (20)–(23) constitute a

base for Hilbert space H* of all admissible (continuous) shifts defined on t0;T½ �.

Theorem 4. The set IMMU of all shifts (continuous functions) against which a bond portfolio

BP with payouts represented by (9) and the new term structure given by (12) is immunized

constitutes an m-dimensional linear subspace in the (m + 1)-dimensional Hilbert space H*.

Two examples illustrating how to identify IMMU are worked out in detail in [18], pp. 531–537.

A special attention is given to continuity properties of subspace IMMU; see [18], pp. 534–537.

4. Maximizing the unanticipated rate of return among immunized bond

portfolios

The natural question arises of how to select the “best” portfolios among those which are (have

been) protected (immunized) against admissible shifts (movements) of interest rates? In

finance, by best portfolios are meant those which yield the highest rate of return (the highest

increase in the present value of a BP), resulting from a sudden shift of interest rates. Below, we

present the results obtained in [19]. Rewriting a sufficient and necessary condition (13) and (14)

for immunization of portfolio BP generating payouts (9), one obtains:

q ¼
Xi¼m

i¼1

tiwivi (24)

and

vi ¼
a tið Þ

a qð Þ
provided a qð Þ 6¼ 0: (25)
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For each vector v ¼ v1; v2;…; vmð Þ∈Rm, the class Kv of such continuous shifts a(t) for which

(25) holds was defined in [19]. When vector v ¼ 1; 1;…; 1ð Þ∈Rm is used, then the

corresponding class Kv comprises all parallel shifts for which a(t) = constant. We shall call

Dv ¼
P

i¼m

i¼1

tiwivi the dedicated (for class Kv) duration. For zero-coupon bearing bond Bk, matur-

ing at time tk, the dedicated duration Dv Bkð Þ ¼ tk � vk since all weights wi, except for wk, are

equal to 0.

Theorem 5. The immunization of a bond portfolio BP against shifts a(t) from class Kv is

secured if and only if q ¼ Dv BPð Þ ¼
P

i¼m

i¼1

tiwivi:

With s(t) standing for the current interest rates, PV s �ð Þ½ � ¼
P

k¼m

k¼1

ck exp �s tkð Þtk½ � is the present

value of BP. Suppose that immediately after purchasing BP, interest rates s(t) will shift to new

levels s*(t) = s(t) + a(t). Then

PV s �ð Þ þ a �ð Þ½ � ¼
X

k¼m

k¼1

ck exp �s tkð Þ � a tkð Þ½ �tk:

4.1. Convexity of a bond portfolio

Set Cv BPð Þ ¼ 1
2

P

m

k¼1

tk
2wkvk

2 and call it dedicated (for class Kv) convexity of portfolio BP; for more

details, see [19], p. 105. It is easy to notice that convexity of a zero-coupon bearing bond

maturing at tk is given by the formula Cv ¼
1
2 tk

2vk
2. It was proved in [19], p. 106, that so-called

unanticipating rate of return resulting from a shift a(t) of interest rates s �ð Þ is given by the

formula:

PV s �ð Þ þ a �ð Þ½ � � PV s �ð Þ½ �

PV s �ð Þ½ �
¼ �Dv BPð Þa qð Þ þ Cv BPð Þa2 qð Þ þ

X

k¼m

k¼1

O a tkð Þ½ �a tkð Þ2 (26)

where lim O(a) = 0 when a ! 0. Taking into account that a tkð Þ are small numbers of order

0.1% = 0.001, one concludes that the third term in (26) is really very small. Since each immu-

nized bond portfolio BP satisfies Dv BPð Þ ¼ q, the maximal unanticipating rate of return among

immunized portfolios will be achieved when dedicated convexity Cv BPð Þ will be as high as

possible.

Assumption 1. All zero-coupon bearing bonds Bk, which form a bond portfolio BP and

mature at tk, have mutually different dedicated durations, that is, Dv Bj

� �

6¼ Dv Bnð Þ if and only

if j 6¼ n, that is, tj � vj 6¼ tn � vn $ j 6¼ n.
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Definition 4. Following [20], p. 552, a bond portfolio BP is said to be a barbell strategy (barbell

portfolio) if it is built up of two bonds, say B1, B2 with significantly different dedicated

durations Dv
1 and Dv

2. On the other hand, BP is said to be a focused strategy (focused

portfolio) if it consists of several bonds whose dedicated durations Dv
j are centered around

duration of the liability (q in our context).

Theorem 6. (see [19], Theorem 1). If Assumption 1 holds then the bond portfolio BP* with the

highest unanticipated rate of return is a barbell strategy built up of zero-coupon bearing bonds

Bs, Bl with minimal and maximal dedicated durations. The weights xs and xl, expressing the

amounts of payments resulting from Bs and Bl, are given by formulas:

xs ¼
tlvl � q

tlvl � tsvs
, xl ¼

q� tsvs
tlvl � tsvs

, xk ¼ 0 for k 6¼ s, k 6¼ l: (27)

Comment 1. Suppose that instead of dedicated duration and dedicated convexity, we employ

the classic notions of duration and convexity derived for additive shifts only. Then, vl � 1 and

consequently Eq. (27) reduces to simpler, say classic, formulas xs ¼
tl�q
tl�ts

, xl ¼
q�ts
tl�ts

. The natural

question arises of how much the weights given by Eq. (27) differ from the classic ones.

Finally, another interesting question arises, to what extend does the dedicated duration of the

best immunized portfolio BP* differ from its Macaulay’s counterpart? That is, what is the

difference between Dv BP∗ð Þ ¼ tswsvs þ tlwlvl and D BP∗ð Þ ¼ tsws þ tlwl with vs ¼
a tsð Þ
a qð Þ, vl ¼

a tlð Þ
a qð Þ?

It is easy to observe that when a shift a(t) affects the current interest rates in a similar manner at

all or many points t1, t2, t3,…, tm, then there is a good chance that vs ≈ 1 ≈ vl, and consequently,

the difference between the dedicated duration Dv and the classic one will be very small.

For a specific situation, when shifts a(t) of interest rates s(t) satisfied the “proportionality”

condition a tkð Þ
1þs tkð Þ ¼ constant (for details, see [21]), the maximal convexity and formula for the

best immunizing bond portfolio was determined by means of Kuhn-Tucker conditions (pp.

139–140 in [21]). A formula for the resulting unanticipating rate of return was derived (pp.

141–142) and illustrating with an example (p. 143).

5. Concluding remarks

Let us summarize what we have said so far. Each bond portfolio BP (a human body? or a

human body organ?) generates cash at various dates t1, t2, t3,…, tm. What should (could) be

substituted for cash (payments generated by a BP) in the medical setting remains an important

open problem. Maybe, it is something related to a human body’s performance; call this

mysterious agent by Z.

In bond portfolio theory, the greater payouts generated by BP, the higher is the present value

(PV) and future value (FV) of BP. An analogous statement is therefore expected in the medical

context. Having settled what is Z, it would be probably easy to find out what is the counterpart
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in medicine of the duration concept defined for the first time by Macaulay (in 1938) and

independently by Redington (in 1952); see Formula (1).

Let us formulate the following hypothesis: the higher values (levels) of Z, the more healthy is a

human body (a human body organ).

In the financial immunization context, there is a fixed date q when BP must attain at least a

certain value L, called liability. In the medical context, one might say that there is a fixed date q

when the quality of human health must attain at least a certain level L.

In the financial theory context, when interest rates s(t) change due to a shift a(t), that is,

s tð Þ ! s tð Þ þ a tð Þ, then the FV of BP at date q may fall below L dollars. In the medical context,

the appearance of disease may cause a deterioration of health at date q.

We still do not know what should (could) be substituted for interest rates s(t), knowing that

changes (movements, shifts) in interest rates mean a disease.

Using the concept of duration (and dedicated duration), we identified the set IMMU of all shifts

(diseases) a(t) against which BP is immunized. By means of notion of duration and convexity

(dedicated convexity), we determined the best immunizing portfolios for a large class of shifts

(continuous functions). In the financial context, the best portfolios meant portfolios generating

the highest (unanticipated) rate of return. In the medical context, the best would probably

mean the fastest rate of health improvement.
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