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Abstract

In the current chapter, recent progress has been described in the field of computational
quantum chemistry for the development of corrosion inhibitors. The current chapter is
divided into several sections and subdivisions. Recently, the development of green and
sustainable technologies for corrosion prevention is highly desirable an increase in eco-
logical awareness and strict environmental regulations. In the last decade, the use of
quantum calculation based corrosion inhibitors study has attracted considerable attention.
Quantum calculation based density function theory (DFT) has been widely accepted as
“green corrosion inhibition technique” because of its theoretical based work. DFT can be
used to design corrosion inhibitors to prevent corrosion on mild steel, aluminum, copper,
zinc, and magnesium in aqueous media. DFT is the simplest way to study the molecular
structure and behavior of corrosion inhibitors. Various quantum chemical parameters
such as dipole moment (μ), energy difference (∆E), softness (σ) and global hardness (η),
highest occupied molecular orbital (EHOMO) and lowest occupied molecular orbital
(ELUMO), etc., of corrosion inhibitors has been calculated using software in order to eluci-
date the adsorption and corrosion inhibition behavior of inhibitor molecules.

Keywords: adsorption, corrosion inhibition, aqueous solution, metals, DFT

1. Introduction

The damage on the material by corrosion produces not only for the high cost inspection, repair,

and replacement, but in addition to these formation of a public risk, thus the need for the

development of the novel Substances that treat acid in particular, like corrosion inhibitors Media

[1]. The use of corrosion inhibitor molecules is one of the most practical ways to protect the

materials against corrosion, and it is becoming increasingly popular in industrial applications.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



The atmosphere is affected by various metals and their alloys strikes due to the use of acid like

H2SO4 and HCl for various industrial processes (acid pickling, oil well-acidification, chemical

clean-up, etc.) [2, 3], for these reasons the inhibitors is employed as one of the most practical ways

to conserve corrosion. Traditionally, corrosion inhibition performance is evaluated experimen-

tally, such as gravimetric analysis, potentiodynamic polarization, and electrochemical imped-

ance spectroscopy (EIS). However, these experimental methods are expensive and laborious, and

often decrease in the illuminating corrosion mechanism. With the improvements in software and

hardware, computer simulation has become a powerful tool to investigate the complex system of

corrosion resistance [4]. By checking the structure, electron distribution, and adsorption of

molecules on the metal and oxide surfaces, the corrosion mechanism is now deeply detected. In

1971, Vosta and Eliasek [5] introduced quantum chemical methods to investigate the prohibition

of corrosion and established the field of quantum corrosion electrochemistry. After this, the main

objective of quantum chemistry methods was primarily on the discovery and establishment of

relations between molecular structure and prohibition, and many valuable results have now

been reported. Quantum chemical study has proven itself very long ago useful in determining

the structure of the molecules, the reaction as well as the obvious electronic structures [6]. Thus, it

has become a common practice to calculate quantum chemical corrosion study concept of

assessment of efficiency a corrosion inhibitors with the help of computational chemistry using

chemicals to find compounds with desired properties intuition and experience in a mathematical

quantitative and a relation between the structure once computerized and activity or property are

found, any number of compounds. Those who have not been synthesized so far can be easily

tested planning of computational method [7] and a set of mathematical equations that are

capable of displaying correctly chemical incident under study [8, 9].

2. Principles of corrosion

Thermodynamic and electrochemical are two basic principles of corrosion mechanism which

describe the transformation of metals and alloys into their stable states like hydroxides, sul-

fates, oxides and chlorides, etc.

2.1. Thermodynamic principles

Thermodynamics directs the spontaneous direction of a chemical reaction and it is used to

determine whether the corrosion on metal surface is theoretically possible or not [10].

2.2. Electrochemical principles

Basically corrosion is the coupled of two half-cell electrochemical reaction, cathodic and anodic

reaction. Anodic reaction involves the leaving of free electron by metal ionization however

cathodic reaction involves the up taking of free electrons by dissolved oxygen and/or water

molecules in the solution. Previous is oxidation type reaction where free electrons are pro-

duced while later is reduction reaction in which electrons can be accepted [11]. Corrosion

behavior of metals and alloys can be easily determine using electrochemical principles.
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Two half-cell reaction can be divided in to following type as given:

2.2.1. Anodic reaction

Anodic reaction is the loss of metal cations as given in examples:

Fe sð Þ ! Fe2þ aq
� �

þ 2e� (1)

Zn sð Þ ! Zn2þ aq
� �

þ 2e� (2)

Cu sð Þ ! Cu2þ þ 2e� (3)

Each of the above reactions in Eqs. (1)–(3) is an anodic reaction because there is increase in

oxidation number and loss of electrons from metals at the anodic site.

2.2.2. Cathodic reaction

Reduction of cation(s) from free electrons of oxidation reaction is a cathodic reaction. Forma-

tion of hydrogen gas (H2) from the reduction of two hydrogen ions at metal surface is an

example of cathodic reaction (Eq. (4)):

2Hþ aq
� �

þ 2e� ! H2 gð Þ (4)

Above reactions are shown schematically in Figure 1.

2.2.3. Coupled electrochemical reactions

Figure 2 represents coupled electrochemical reactions in which anodic and cathodic reactions

exist on the metal surface at different places. There are four different types of conditions causes

to corrosion are: (i) an anodic reaction, (ii) a cathodic reaction, (iii) a metallic path between

these two reactions, and (iv) electrolyte. Electrolyte is an ionic aqueous solution in which

Figure 1. (a) Anodic reaction and (b) cathodic reaction in metal/solution interface.
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current can be flow. The coupled reaction for an iron metal dipped in neutral, acidic or basic

medium is illustrated in Figure 2.

Heterogeneous nature of a metal surface is reason for the orientation of coupled reaction on the

same metal surface. Heterogeneity on metal surface can be arise due to defects like screw,

steps, dislocation, point defects and kink sites, etc.

3. Adsorption mechanism of corrosion

Corrosion inhibition properties of metals and alloys can significantly change due to adsorption

of inhibitor molecules at metal/solution interface. Inhibition of metal corrosion is a surface

phenomenon which involves the adsorption of corrosion inhibitors over the metal surface in

electrolytic solution. In corrosive solution inhibitor molecules adsorbed on the metal surface by

replacing the H2O molecules at the metal/solution interface according to the given process

Eq. (5) [12]:

Inh solð Þ þ nH2O adsð Þ ! Inh adsð Þ þ nH2O solð Þ (5)

where Inh (ad) and Inh (sol) are inhibitor molecules in the corrosive medium and adsorbed on the

metal surface, respectively, whereas n is the number of H2Omolecules replaced by the molecules

of inhibitor. The values of surface coverage (θ) have been used to elucidate the different isotherm

to determine the adsorption process at metal/solution interface. The different adsorption iso-

therms can be characterized by the mathematical models as given in Eqs. (6)–(8) [13]:

Figure 2. Coupled reactions occurring on the metal surface at different sites for iron in a neutral or basic medium.
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ð6Þ

ð7Þ

ð8Þ

where θ is the surface coverage, Kads is adsorption constant and C is the equilibrium concen-

tration.

4. Consequences and economics of corrosion

Corrosion is a global problem, which adversely affects the development of both developed and

developed countries. According to a highly cited study conducted by the National Association

of Corrosion Engineers (NACE) in 1998, the total annual cost of corrosion in the U.S. is

estimated at US $ 276 billion, which is approximately 3.1% GDP (GDP; NACE 2002) [14]. In

2011, the total cost of corrosion in the US increased to $ 2.2 trillion. Since the cost of corrosion in

India is a matter of concern, it is about two lakh crores (US $ 45 billion) proposed by the 1st

Global Corrosion Summit held in New Delhi in 2011 [15]. However, these estimates are

outdated and recently the NACE is being closely examined at the cost of the corrosion,

according to which the annual global cost of the corrosion is approximately $ 2.5 trillion, which

is equivalent to 3.4% of the global GDP. In India, the cost of annual corrosion is more than 100

billion US dollars, whereas in South Africa, direct corrosion costs are estimated to be around

130 billion (i.e., 9.6 billion US dollars) [16, 17]. By applying the existing methods of prevention

of corrosion, this cost of the war can be reduced by 35% (US $ 875 billion) to 15% (US $ 375

billion).

Corrosion is a global problem, which adversely affects the development of both developed and

developed countries. According to a highly cited study conducted by the National Association

of Corrosion Engineers (NACE) in 1998, the total annual cost of corrosion in the U.S. is

estimated at US $ 276 billion, which is approximately 3.1% GDP (GDP; NACE 2002) [5]. In

2011, the total cost of corrosion in the US increased to $ 2.2 trillion. Since the cost of corrosion in

India is a matter of concern, it is about two lakh crores (US $ 45 billion) proposed by the 1st

Global Corrosion Summit held in New Delhi in 2011 [6]. However, these estimates are out-

dated and recently the NACE is being closely examined at the cost of the corrosion, according

to which the annual global cost of the corrosion is approximately $ 2.5 trillion, which is

equivalent to 3.4% of the global GDP [7, 8].

In India, the cost of annual corrosion is more than 100 billion US dollars, whereas in South

Africa, direct corrosion costs are estimated to be around 130 billion (i.e., 9.6 billion US dollars)

[7, 8]. By applying the existing methods of prevention of corrosion, this cost of the war can be

reduced by 35% (US $ 875 billion) to 15% (US $ 375 billion).
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5. Basics and computational aspects of density function theory (DFT)

5.1. The basics of DFT: Hohenberg-Kohn theorem

In Moscow, at the Frumkin Institute of Electrochemistry of the Russian Academy of Sciences,

the scientific school of Quantum Electrochemistry was to be started in Revaz Dogonadze in the

1960s. Generally, the ideas that are generated in the field include quantum mechanics,

electrodymamics, and electrochemistry; and likewise a very large group of different profes-

sional academics is studied. The fields of expertise include chemicals, physics, mechanical and

electrical engineering. More specifically, quantum electrochemical electrode surfaces [18] for

the study of electrochemical processes, quantum mechanical devices such as DFT are used,

including the transfer of electrons from the molecules to the metal electrode surface.

In some previous studies, the basis and importance of DFT [19, 20] has been described. The

recent impact of DFT in the development of quantum electrochemistry is significant, and can be

linked to achievements in the late 1980s when hybrid functional and gradient-corrected methods

were introduced [21]. Based on the famous Hohenberg-Kohn theorem awarded the Nobel Prize

in physics for his work on DFT in 1964. DFT concentrates on electron density r(r), itself as the

carrier of all information in form and/or molecule ground state, rather than an electron wave

function, one per electron occurs. In summary, the Hohenberg-Kohn theorem establishes that the

base of an electronic system only electronic density is functional. In principle, only need to

calculate the electron density in all the properties of the system. In DFT, the ground state total

energy for an N-electron system is expressed in terms of the external potential v(r) and the three-

dimensional ground-state electronic density r(r) in the form (Eq. (9)) [22]:

ð9Þ

where F[r] is the generalized functional of Hohenberg-Kohn given by the sum of the electronic

kinetic energy functional as given in Eq. (10):

ð10Þ

Eq. (10) pledges the proper normalization of the electron density.

A general DFT formula is given as Eq. (11) [23]:

ð11Þ

where Ene is the electron-nuclear attraction functional, Ts is the kinetic energy functional, Exc

denotes the exchange correlation functional and J is the Coulomb part of the electron-electron

repulsion functional. The dependency of each of these terms on the electron density, r, is

characterized by r in brackets following all term.

5.2. Basis sets

The base set, the mathematical description of the orbital within the system used to do theoret-

ical calculations. By putting a low restriction on the location of electrons in large base space,
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they make a more accurate orbital estimate. When molecular calculation is done, it is common

to use sophisticated finite numbers based on the atomic orbitals cantered on each atomic

nucleus within this molecule. Most molecular quantum mechanical methods begin calculating

with the choice of a set of base functions. The use of a substantial base set for the success of

calculation is a mandatory requirement. Standard basis for electronic computation calculation

uses linear combinations of geosynchronous functions of set orbit. In order to accurately

represent atomic orbitals, we should use a linear combination of several codgers. Gaussian

offers a wide range of predefined base sets, which can be categorized from those numbers and

types of works, in which they are included.

5.3. Basic parameters derived from DFT and their application to corrosion inhibition

design

5.3.1. Frontier molecular orbitals

The frontier orbitals are very important in defining the lowest unoccupied molecular orbital

(LUMO) and highest occupied molecular orbital (HOMO) of molecules. Scientist Fukui [24]

recognized the importance of the frontier orbitals of first time because the stereochemistry of

the inhibition system and the chemical reactions were key factors in the governing of ease of

reaction. A good relationship has been found between EHOMO and corrosion resistance, which

is often associated with the electron-sensitivity potential of the molecule. It is well known that

the adsorption of the inhibitor on the surface of the metal may be on the basis of donor-

acceptable interaction between the heteroatom electrons and/or π electrons and the vacant d-

orbitals of the metal surface atoms [25]. A high value of EHOMO is likely to indicate the electron

donating tendency of the molecule to the vacant orbitals of acceptor molecules whereas the

energy of the lower empty orbit shows the electron acceptor ability of the molecule(s). Regard-

ing the value of the interval energy, ΔE = ELUMO � EHOMO, the big values of energy difference

mean less reactivity of a chemical species. Good inhibition efficiency will be provided in low

values of energy difference, because to reduce the energy from the previously occupied orbital,

there is less to donate in the correct orbital of the metal [26].

5.3.2. Dipole moment

The dipole moment is a vector quality which is most extensively used for describing the

polarity of a molecule. It is a measurement of the separation of the two opposite electrical

charges (positive and negative) and represented as given in Eq. (12) [27]:

ð12Þ

Where μ is a dipole moment, R is the distance between two different charges and q is the extent

of the different charge. The dipole moment is applied to the distribution of electrons among the

two bonded atoms. The existence of dipole moment, the difference between non-polar and

polar bonds is different. With pure dipole moment, the molecule is zero or very small, bond

and molecules are considered non-polar and polar molecules with pure bipolar moment.

Atoms with similar electronegative values, they produce chemical bonds with very small

dipole moment. Total dipole moment, however, reflects only the global prohibition of polarity
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of a molecule instead of a single bond notice that the efficiency of inhibitor molecules has

decreased with decreasing efficiency. The dipole moment of inhibitors [28] therefore, positive

signals of coefficient of μ indicate that the inhibitors can be applied to the metal surface by the

physical mechanism [29]. Obot and Obi-Egbedi [30] found a high correlation (0.999) between

corrosion inhibition and dipole moment efficiency of benzimidazole and its derivatives;

namely, 2-mercaptobenzimidazole and 2-methylbenzimidazole using DFT. The obtained result

shows that 2-mercaptobenzimidazole, which has the highest value of dipole moment, exhibits

the higher inhibition efficiency. The adsorption strength increase as high value of the dipole

moment between the inhibitor molecules and the metal surface.

5.3.3. Electronegativity and the electronic chemical potential

DFT has been found to be successful in providing insight into chemical reactivity and selectiv-

ity, in terms of global molecular properties, such as chemical potential (�μ) and electronega-

tivity (χ) [31]. Thus, for an N-electron system with an external potential ν(r) and total electronic

energy (E) the chemical potential, has been defined as the first derivative of the E with respect

to N at constant ν(r) as in Eq. (13) [32]:

ð13Þ

According to Iczkowski and Margrave [33], it should be noted that, when assuming a qua-

dratic relationship between E and N and in a finite difference approximation, than it can be

written as represented in Eqs. (14) and (15):

ð14Þ

ð15Þ

where A and I have the electron affinity and ionization potential, respectively, due to which the

electronegative definition of Mulliken can be corrected [34]. In addition, a theoretical justifica-

tion was provided for the theory of Sanderson’s equation of electronegativity, which states that

when two or more atoms join together to form a molecule, then their electro negativities is the

same intermediate the value is adjusted from [35].

5.3.4. Global hardness and softness

There is total hardness (H) and softness properties, which also facilitate analysis of molecular

selectivity and reaction. Correlation between quantum chemical quantities and corrosion inhi-

bition is based on Pearson’s hard and soft acids and bases, and the Lewis theory of acid and

base [36]. Energy gap, ∆E (i.e., energy difference between ELUMO and EHOMO) also provides

information about the reaction of inhibitor molecules. A hard molecule has a high value of ∆E

denotes the hard nature of molecules, whereas a soft molecule is a small ∆E. Due to small ∆E

value electrons can be easily supplied to acceptor system from soft molecules in comparison to
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hard molecule. Hence, the reactive site of the molecule may be absorbed, where, σ has the

highest value [37]. For the calculations of quantum chemical parameters, global hardness

(Eq. (16)) and softness (Eq. (17)) the following equations can be used [38]:

ð16Þ

The reverse of the global hardness is written as the softness, σ has given in Eq. (17):

ð17Þ

5.3.5. Mulliken population analysis

To identify the adsorption centers of inhibitors, Mulliken population analysis has been widely

reported [39, 40]. All chemical interactions are either covalent or polar (electrostatic). Electric

charge in the molecule is obviously responsible for electrostatic interaction. Local electron

charge or density is important in the properties of many physical-chemical and chemical

reactions of biological molecules. Thus, charge-based parameters have been widely employed

as weak intermolecular interaction measures or as chemical reactive indices. Mulliken popula-

tion analysis [41] is mostly used to calculate the charge distribution in a molecule. These

numerical quantities are easy to obtain and provide at least a qualitative understanding of

structural reactions of blocking molecules [42]. In addition, atomic charge is used to describe

molecular polarization of molecules.

5.3.6. The fraction of electrons transferred (∆N)

The fraction of electrons transferred (∆N) has been calculated as given in Eq. (18) [43]:

ð18Þ

where χinh and χM and indicate the absolute electronegativity of the inhibitor molecule and

metal, respectively. However ηinh and ηM denote the absolute hardness of the inhibitor mole-

cule and metal. Usually, ∆N exhibits the inhibition efficiency generated from the electrons

transferred, inhibitor molecule to the iron atom. According to Lukovitt et al. [44] if the value

of ∆N is less than 3.6, then the inhibition efficiency of the inhibitor molecules increasing with

electron releasing ability on metal surface. Improve electron releasing power, was replaced by

electron-donating substance (dOCH3 group) by altering a hydrogen atom of the phenyl ring,

as in the case of MPTS, which was to improve the prohibition, but on the other hand, a

decreasing effect has been observed by electron-attracting group (dCl) in the case of CPTS.

6. Some recent studies of corrosion inhibitor using density function theory

DFT is widely used software designing new corrosion inhibitors of chemical compounds using

energy of the highest occupational molecular orbital (EHOMO) energy, the energy of the lowest
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unoccupied molecular orbital (ELUMO), ∆E (energy difference), dipole moment (μ), Mulliken

population analysis, electronegativity and electronic chemical capacity (χ), global hardness (γ)

and softness (σ), the transfer of electrons (∆N) and molecular polarization potential are most

important electronic parameters. As mentioned by some previous researchers [45–47], excel-

lent corrosion inhibitors are usually those compounds that accept electrons from the metal as

well as offer electrons in the empty orbital(s) of metal.

During the last two decades, computational methods have been developed as important tools

in the corrosion resistance, because in the calculation, large amounts of compounds can be

provided in large amounts within a reasonable time frame. The results of such studies can be

further used as an appropriate starting point for experimental studies. Computational

methods can also be important tools in the development of more suitable compounds used

for metal protection, starting with the already available compounds and by identifying deriv-

atives with better metal protection efficiencies through structural modifications. Recently, there

are many studies in literature on computational studies of useful organic materials for metal

protection. The goal of these studies is to gain insights at the molecular level on the contact of

these organic matters with metal surfaces. This important approach is particularly important

in the design of new and effective corrosion inhibitors for industrial applications in oil and gas

fields. A recent review of some of the research has been given below. They are not enough

anywhere because excellent reviews are available elsewhere [48].

6.1. Organic corrosion inhibitors studied using DFT

Using the semi-experimental AM1 method, Mahendra et al. [49], studied the inhibition effi-

ciency of benzimidazole derivatives. Quantum chemical parameters such as EHOMO, ELUMO,

∆E, the fraction of electron transferred (∆N), dipole moment (μ), and global hardness (γ) and

softness (σ) were calculated, which detected a steric hindrance effect of molecules on inhibition

efficiency, which was discussed. According to the results obtained (Table 1), EHOMO was the

most statistically significant term that influenced the inhibition efficiency. The more EHOMO,

the more prohibited efficiency was seen experimentally. Hyperchm 8.0 software was used for

the use of detailed Quantum Chemical Study program package for the Inh I, Inh II, and Inh III.

The experimental abilities of quantum chemical calculation and inhibitors were subject to

correlation analysis. Based on HOMO and LUMO energy, HOMO and LUMO coefficients,

polarizability, and Mulliken population analysis, it was concluded that considering a parame-

ter is not enough and the synthesis of better corrosion inhibition can be achieved by controlling

all the electronic properties and parameters of a selected group of molecules.

Quantum chemical calculation of commercially available drug namely grieseofulvin was cal-

culated towards the corrosion inhibition potential of mild steel using Gaussian 9.0 software

package [50]. Quantum chemical parameters has confirmed that the presence of heteroatoms

and π electrons increases resistance towards corrosion of the surface of mild steel, which

means that the inhibitor shows better inhibition efficiency against metal surface in aqueous

solution. Various quantum chemical parameters such as energy gap (ΔE), EHOMO, ELUMO,

dipole moment (μ) and hardness (γ) of drug molecule (Figure 3) has been evaluated to

determine its corrosion inhibition efficiency and corresponding values are depicted in Table 2.
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All parameters exhibited that griseofulvin acts as a good corrosion inhibitor towards mild steel

in HCl solution.

Verma et al. [51] describes the effect of ring and ring size of three 3-amino alkylated indoles

(AAIs) namely, N-((1H-indol-3-yl)(phenyl)methyl)-N-ethylethanamine (AAI-1), 3-(phenyl

(piperidin-1-yl)methyl)-1H-indole (AAI-3) and 3-(phenyl(pyrrolidin-1-yl)methyl)-1H-indole

(AAI-2) on mild steel corrosion acidic solution using experimental as well as theoretical

calculations such as quantum chemical calculations and molecular dynamics simulations

methods. Experimental results revealed that the inhibition efficiency increases with increased

concentration of the corrosion inhibitors. Maximum inhibition efficiencies of 94.34% for AAI-1,

96.08% for AAI-2 and 96.95% for AAI-3 were obtained at 0.862 mM concentrations of inhibi-

tors. Both experimental and theoretical calculations show that 3-amino alkylated indole with

cyclic amino groups exhibit high corrosion inhibition efficiency compared with open-chain

amino groups. Experimental results explains that resistance efficiency increases with increased

Inhibitors EHOMO(eV) ELUMO(eV) ∆E (eV) σ (eV) μ (D) ∆N (e) η (eV)

Inh I �8.8459 0.7865 8.0594 0.2462 3.2029 0.2709 4.0297

Inh II �8.7028 0.7392 7.9636 0.2497 3.4714 0.2896 4.1194

Inh III �8.6541 0.7069 7.9472 0.2516 5.0267 0.2918 3.9735

Table 1. Quantum chemical parameters for the benzimidazole derivatives.

Figure 3. Molecular structure of griseofulvin with the (a) the optimized structure, (b) LUMO and (c) HOMO structures.
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concentration of the inhibitors. Maximum inhibition efficiency of 94.34% for AAI-1, 96.08% for

AA-II and 96.95% for AAI-3 was obtained in 0.862 mm concentrations of inhibitor. Quantum

chemical calculations such as dipole moment (μ), EHOMO, ELUMO, ∆E, the fraction of electron

transferred (∆N), global electronegativity (χ), and global hardness (γ) and softness (σ) were

calculated. Optimized structure, EHOMO and ELUMO of inhibitors are shown in Figure 4 and

calculation values are given in Table 3.

6.2. Plant extracts based corrosion inhibitors studied using DFT

Emeka et al. [52] studied the Inhibition efficiency of green and sustainable biomass extract of

capsicum on mild steel in acidic solution. Capsaicin (Figure 5a) is the major phytoconstituents

of capsicum, whose quantum calculation has been studied extensively. Chemical computations

of Capsaicin were performed using the S-Mulliken Population Analysis through the DFT

electronic structure program DML3 [40–43]. Various quantum chemical parameters like

EHOMO, ELUMO, ∆E, dipole moment (μ), global hardness (γ), softness (σ) and Fukui functions

have been studied extensively. Investigation correlation between experimental and quantum

chemical calculations and inhibition efficiency was discussed at this work.

Anupama et al. [53] examine the Phyllanthus amarus leaf extract (PAE) as the mild steel

corrosion inhibitor in 1 M HCl. Weight loss, EIS and PDP techniques used to investigate

corrosion behavior of PAE under various exposure time and temperature and successfully

correlated with different parameters of quantum chemical analysis. Since extracting compo-

nents are adsorbed on metal surface, inhibitive efficiency increases as concentrations increased

and finally reached up to >90%. Computational calculations corresponding to phyllanthin

(Figure 5b) a major component of PAE was made in order to understand the involvement of

the component in the inhibition efficiency of the plant extract. Quantum chemical parameters;

∆E, ELUMO, EHOMO, dipole moment (μ), the fraction of electron transferred (∆N), global hard-

ness (γ) and softness (σ) and global electronegativity (χ) were calculated and stabilized the

effect of structural features on the electron donating ability of major component phyllanthin of

PAE.

Raja et al. [54] investigated Isoreserpiline (Figure 5c) as active molecule against corrosion

protection of mild steel. Isoreserpiline is the major component of leaves and bark extracts of

Ochrosia oppositifolia. Quantum calculation shows that the density (HOMO and LUMO) of ISR

is located within the vicinity of the aromatic indole moiety. This study shows that π electron

cloud of ring and lone pair on nitrogen atom of indole ring have high electron donating ability

to metal surface. This can be well correlated with FTIR analysis that shows the coordination of

ISR with the mild steel surface through electron rich moieties of indole ring. An ideal corrosion

inhibitor can be donated electrons in metal surface through HOMO, as well as obtaining

Inhibitor EHOMO (eV) ELUMO (eV) ∆E (eV) μ (eV) ϒ

Griseofulvin �0.0423 �0.0059 0.0364 3.2396 0.0182

Table 2. Quantum chemical parameters for the griseofulvin.
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Figure 4. The frontier molecular orbital (left-hand side: HOMO; and right-hand side: LUMO) of the studied inhibitor

APQDs derivatives (a) AAI-1, (b) AAI-2, and (c) AAI-3 [reprinted with permission].
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electrons via LUMO through metal surfaces (Fe through Fe2+, Fe3+ conversion) or bind mild

steel surface strongly, which states that the ISR can donate and accept electrons through

induction movement. On the other hand quantum calculation represents the energy level

EHOMO, ELUMO and ∆E (EHOMO � ELUMO) for iron and inhibitor molecule. ∆E for ISR �0.3083

EV was found, which was more (less negative) than FE2+ and Fe3+ (�1.2178 and � 2.0712 EV);

While ELUMO values were found in ISR Fe, Fe2+ and Fe3+. This result indicates that ISR can

donate electrons to MS surface but in turn, MS cannot obtain donation electron from the

surface. Quantum chemical analysis well supported the result of FTIR analysis and evidenced

the possibility of electron transfer from inhibitor molecules to mild steel.

7. Future developments

Density functional theory (DFT) has become an attractive theoretical method, because it pro-

vides accurate, basic and important parameters for at least complex and molecules cost. Apart

from this, by implementing the DFT methodology, we can understand reactionary behavior

conditions of hard and soft acid/base (HSAB) principles that provide a systematic way inter-

rupter/analysis of surface interaction and prediction. Survey of theoretical corrosion literature

Inhibitors μ EHOMO ELUMO ∆E η σ χ

AAI-1 1.6927 �8.5748 �5.1214 3.4534 1.7267 0.57913 6.8481

AAI-2 1.9680 �8.5262 �5.2214 3.4504 1.7252 0.57964 6.8376

AAI-3 2.3671 �7.8036 �5.1236 2.6800 1.3350 0.74903 6.4636

Table 3. Quantum chemical parameters of inhibitors resultant from the B3LYP/6-31+G(d,p) method.

Figure 5. Molecular structure of (A) capsicum, (B) phyllanthin, and (C) Isoreserpiline.
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presented in chapter (Sections 6.1 and 6.2) shows that density function theory (DFT) is a

powerful tool to study fundamental, molecular-level processes regarding the corrosion barrier.

However, it should be very careful with these calculations, these studies should be taken in

planning can easily lead with inaccurate or inadequate data-sets for the wrong findings. Role

of quantum chemistry in corrosion focus is likely to increase in future inhibitory studies moves

towards the investigation of complex chemical mechanisms. However, due to high computa-

tional effort restrictions calculations mean that there will be no quantum chemical methods be

able to replace experimental corrosion in the near future less expensive methods of study or

computerized procedures regarding the corrosion inhibition.

8. Conclusion

This chapter focuses on the use of modern quantum chemical methods, primarily to describe

the adsorption of corrosion-resistant molecules on a metal surface in the aqueous solution as

the functional principle of density. It is evident that DFT can be used as powerful technique

with a unique ability to make practical calculations on many complex bodies system, such as

large organic molecules, drugs, ionic liquids those are widely used as inhibitor. Hydrophobic/

hydrophilic nature of corrosion inhibitor has been identified as an important factor in deter-

mining the ability of the resistant to prevent corrosion. Finally, the idea of an important future

in the design of new and effective corrosion inhibitors using DFT will identify organic struc-

tures, which have less toxicity besides having high corrosion protection capacity.
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