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Abstract

In photovoltaic industries, the main technique of metallization is screen printing with 
silver pastes due to its simple and quick process. However, the expensive price of silver 
paste is one of the barriers to the production of low-cost solar cells. Therefore, the most 
focused target in photovoltaic research is the decreasing consumption of silver paste or 
substitute silver for other materials. As a proper candidate, copper has been researched 
by many institutes and companies since it has a similar conductivity with silver even 
though the price is inexpensive. To apply copper as a contact for solar cells, the plating 
technique has been actively researched. However, copper paste, which was mainly devel-
oped for integrated circuit applications, has been recently researched. Mostly, copper 
paste was developed for the low-temperature annealing process since copper tends to 
oxidize easily. On the other hand, firing type copper paste was also developed by coating 
copper particles with a barrier layer. This chapter discusses recent development of cop-
per paste for the application of solar cells and its appropriate annealing conditions for 
better electrical properties. Also, the light I-V characteristics of copper paste on the solar 
cells in other research papers are summarized as well.

Keywords: copper paste, oxidation barrier coating, curing, silicon heterojunction solar 
cells, passivated busbar

1. Introduction

In photovoltaic industries, screen printing is the most dominant metallization technique for 

silicon-based solar cell fabrication as it is quick and simple. As a material of front contact, 

silver is the favorable metal since it has high conductivity [1] and is chemically inactive. 

However, screen printing with silver paste is the most expensive portion in cell production 
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after the silicon material cost [2]. Therefore, reducing the amount of silver consumption per 

cell or replacing silver to other metal materials is a significant research area.

According to the international technology roadmap for photovoltaic (ITRPV) published in 
2016, silver consumption per cell will decrease until 40 mg/cell in 2026 with developments of 

pastes and screens, which is around 40% lower than now (95 mg/cell) [3]. On the other hand, 

substituting silver for copper has been actively researched since the cost of copper is cheaper 

than silver (approximately a 50 times) and has a similar conductivity (silver: 1.6 μΩ-cm, cop-

per: 1.7 μΩ-cm) [4, 5]. In order to share new information and go over the technical limitations, 

workshops for the metallization of crystalline silicon solar cells have been organized since the 

first workshop in Utrecht, Netherlands, in 2008 [6].

Researches concerning copper contact mainly have been carried out by the plating technique 

due to its various advantages, such as high aspect ratio and low contact resistance, which result 

in a high-efficiency solar cell over 21% [7–12]. Meanwhile, the application of screen-printable 

copper paste on solar cells has been studied as it can be easily applied to the established cell 

production line. In the case of the copper paste, copper particles cannot be deposited directly 

on the emitter, because the copper atoms have fast diffusion velocity and acts as a deep-level 
impurity in the crystalline silicon solar cell [13–18]. The copper atoms in the silicon produce 

generation and recombination centers and degrade the minority carrier lifetime of the crystal-

line silicon solar cells [11, 19–21]. Accordingly, most of the copper pastes on the solar cells 

were printed above the passivation layer as a busbar, which is called “passivated busbars”, 

while the silver paste fingers contacted the silicon. Figure 1 shows the fingers and a busbar of 
the solar cell that are printed by silver paste. Similar to the finger, the role of the busbar on the 
solar cell is a collection of charge carriers generated by incident light in the absorb layer. The 

busbar is also connected to the soldered ribbon to extract carriers out of the device. To connect 

a busbar with a ribbon, the busbar should be printed with similar width of the ribbon which 

is usually 1.5 mm on the commercial type of solar cells. Accordingly, researchers have tried to 

apply copper paste only for the busbar since most of the silver paste usage is for the busbar, 

while the fingers were still printed by silver paste or deposited by the plating technique.

Figure 1. Carrier collection by the screen-printed silver (a) busbar and (b) finger [26].
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Nonetheless, it is possible that the copper paste can be in direct contact with the silicon if the 
copper particles are coated with barrier layers in order to prevent copper from diffusing into 
the silicon. Another issue of copper in the application to the paste form is that copper tends to 

oxidize easily during thermal treatment [13, 22–25]. Since copper oxide shows an electrically 

nonconductive characteristic, it will increase the series resistance in the solar cells. Due to 

these reasons, copper paste has been continuously researched by several institutes and com-

panies in order to overcome such issues. Section 2 deals with research trends of the copper 

paste components and promising coating techniques of copper powder for better reliability. 
Afterwards, Section 3 discusses appropriate curing conditions of polymer-based copper paste 

and the results of copper paste application to the silicon solar cells.

2. Copper paste developments for the crystalline silicon solar cells

In the 1990s, copper paste was researched for the application of integrated circuits, such as 

print circuit boards, because copper has a high electrical conductivity, a high thermal con-

ductivity, excellent solderability, and a low electron migration [27–29]. With the increase in 

circuit density, properties of copper paste needed to be improved. The researched topics were 

mainly focused on optimizing the size of metal particles to enhance the density and print-

ability of paste [30, 31]. Recently, copper paste has been developed for the application of the 

crystalline silicon solar cells as the low-cost front contact.

2.1. Structure of metallized solar cells with screen-printed pastes

Copper paste is generally compared to silver paste since it is a dominant material for the 

front metallization of the crystalline silicon solar cell. In order to apply copper paste to the 

solar cells, the properties of copper paste, such as printability and solderability, need to have 

similar or better characteristics than silver paste. Electronic pastes are generally composed 
of conductor metal (Ag, Au, Pd, Cu, etc.), glass frits, and organic vehicle [32, 33]. One of the 

important components of the conventional silver paste for the front contact of the crystalline 

silicon solar cell is glass frits. In case of the crystalline silicon solar cells based on the silver 

paste, the dielectric layer, which is usually silicon nitride (SiN
x
), is fired-through above 600°C 

and the silver particles contact the emitter (Figure 2(a)).

On the other hand, if the copper paste has the same process as the silver paste, the diffused 
copper can adversely effect on the characteristics of the solar cell as we mentioned earlier. 
Thus, for applying copper paste to the crystalline silicon solar cell, copper particles in the paste 

need to be coated by barrier layers. In this case, the copper paste can be fired at a similar tem-

perature range as the silver paste and contact the emitter (Figure 2(b)). Otherwise, the contact 
should be formed without penetrating the SiN

x
 layer (Figure 2(c)) by applying the curing type 

copper paste which does not need the glass-frits components for the fired-through contact.

Silicon heterojunction (SHJ) solar cells have typically a low process temperature limit 
(~250°C) because high-temperature annealing processes can degrade the passivation of the 
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hydrogenated amorphous silicon (a-Si:H) due to the hydrogen effusion during the anneal-
ing [34]. For this reason, the curing-type copper paste, where low temperature is generally 

required, is beneficial to the SHJ solar cells. Also, if copper paste is printed on the indium 
tin oxide (ITO) layer of the SHJ solar cell (Figure 2(d)), ITO can act as a diffusion barrier for 
preventing copper diffusion [35]. The next section discusses detail components of the copper 

pastes for the application of the solar cells by categorizing the annealing temperature of the 

paste.

2.2. Copper paste for high-temperature annealing (firing type)

In 2011, a copper paste that is chemically and metallurgically similar to conventional silver 

paste was developed by Applied Materials, Inc. [36]. The copper paste can be fired through a 
SiN

x
 layer and the metal particles directly contact silicon (Figure 2(b)). The main components 

and possible materials of the invented copper paste are listed in Table 1. The invented tech-

nique involves copper-containing particles being encapsulated by additional layers of metal 

and alloys to restrict oxidation and diffusion of copper during the firing. For improving the 
oxidation resistance of copper, alloying copper with other metals (Ti, Mg, Al, Pd, Ag, Ni, Cr, 
and Zr) has been researched [37–40]. The Cu-Ag alloy is estimated as the best materials for 

improving oxidation resistance with only a slight reduction in electrical conductivity [41]. The 

paste of this group also uses doped copper or copper alloys rather than pure copper particles, 

Figure 2. (a) Conventional silicon solar cell contact with silver paste, (b) contact with firing-type copper paste, (c) contact 
with curing-type copper paste, and (d) contact with curing-type copper paste on the SHJ solar cell [26].
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because alloying elements in copper reduce the contact with oxygen. Generally, the polymer 

resin acts as a binder to enable printing of the encapsulated copper-containing particles and 

is typically removed during the firing by oxidation.

Figure 3 shows three levels of encapsulation for preventing copper particles from oxidation 

and diffusion. Simply, the copper-containing particle can be coated by oxidation barrier 
layers. Also, a metallization barrier layer can be used under the oxidation barrier since the 

oxidation layer can form an alloy with the inside material. Moreover, a diffusion barrier can 
directly surround the copper-containing particle for a more perfect encapsulation. The pos-

sible materials for the encapsulation layer are listed in Table 2.

2.3. Copper paste for low-temperature annealing (curing type)

In order to create a solderable surface on the ITO of the SHJ solar cells, polymer-based sil-

ver pastes were commonly used in the solar cell industry, because silver has a low contact 

resistivity on ITO and low line resistances. However, reactions between polymer and solder 

flux during the annealing result in a “solder leaching” problem. If the screen-printed paste is 
dissolved in the solder material due to the solder leaching, it leads to low adhesion and high 

contact resistivity between paste and solder material.

Using copper instead of silver, as a metal powder in the polymer-based paste, is a good solu-

tion in order to overcome the issue of solderability, because copper produces a comparable 

solderability and resistance at a much lower price [42]. For these reasons, polymer-based cop-

per paste for low-temperature annealing has been researched as a promising product in the 

future with the fact that the SHJ solar cells have become common in the PV industry [43–46]. 

From now on, the components and properties of the curing-type copper pastes from some 

groups will be discussed.

2.3.1. Dow Corning

Dow Corning reported papers and patents about a curing-type copper paste and the applicable 

solar cell structures [47–51]. The curing is referred to as the hardening of polymer materials 

Components Materials Purposes

Metal powder Doped copper (aluminum, magnesium, etc.), copper alloys 
(CuSn, CuAg, CuNi, CuZn, etc.)

To have conductive property

Polymer resin Ethylcellulose To enable printing of copper-

containing particles

Glass frits Lead oxide (PbO
x
), silicon oxide (SiO

2
), alumina (Al

2
O

3
), boron 

trioxide (B
2
O

3
), zirconia (ZrO

2
), zinc oxide (ZnO), bismuth 

oxide (Bi
2
O

3
), strontium oxide (SrO), titanium oxide (TiO

2
), 

and lanthanum oxide (La
2
O

3
)

To pass through a passivation 

layer and promotes adhesion to 

the substrate

Solvents α-Terpineol, toluene, ethanol To tune viscosity characteristics

Table 1. Components and possible materials of the copper paste for high-temperature annealing.
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by cross-linking polymer chains that can be processed by heating at a low temperature under 

300°C. The copper paste consists of metal powder, solder powder (lower melting temperature 
than that of the metal powder), a polymer, a solvent, a cross-linking agent, and additives. The 
solder powder comprises at least one of a tin-bismuth (SnBi) alloy, a tin-silver (SnAg) alloy, 
or combinations of them. The polymer and the carboxylated polymer are made of an epoxy 

resin and an acrylic polymer, respectively. The cross-linking agent (or catalyst) can be chosen 
from carboxylated polymers, dimer fatty acids, and trimer fatty acids. Among the dimer fatty 
acid, dicarboxylic acid and monocarboxylic acid are useful for fluxing the metal powder and 
cross-linking the polymer. Moreover, a solvent and an adhesion promoter can be included as 

additive components.

This copper paste is used to form a busbar of the conventional crystalline silicon solar cell 

without a fired-through process. Figure 4 shows that the printed busbar has a brown-red 

color due to the copper particles. Afterwards, the color of the busbar changes to gray after the 

curing process because the copper particles are coated by the solder. The cells with the cop-

per busbar have a higher front surface minority carrier lifetime than the cells with the silver 

fired-through busbar since the covered area under the busbar is fully passivated. The detail 
characteristics will be mentioned in Section 3.

2.3.2. National Institute of Advanced Industrial and Scientific Technology (AIST)

A research group in the AIST also reported a similar concept of the copper paste as the Dow 

Corning’s copper paste. Their copper paste, which is called “copper-alloy paste,” is composed 

Figure 3. Cross-sectional views of encapsulated copper-containing particles with single and multi-barrier layer.

Encapsulation 

layer

Oxidation barrier Metallization barrier Diffusion 
barrier

Possible materials Silver (Ag), nickel 
(Ni), and zinc (Zn)

Nickel (Ni), titanium (Ti), titanium nitride (TiN), tungsten (W), titanium-
tungsten (TiW), cobalt (Co), tungsten doped cobalt (Co:W), molybdenum 
(Mo), tantalum (Ta), and chromium (Cr)

Table 2. The possible materials of each encapsulation layer for copper-containing particles.
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of conductive metal particles, low melting point alloy (LMPA), thermosetting polymer, and 
solvent [52]. During the curing process, the molten LMPA particles form alloy with the cop-

per particles and surround the copper particles to prevent oxidation. In particular, the LMPA 

allows the curing process to set the temperature below 200°C without any reductive condi-
tions unlike the conventional silver paste. The result of the differential scanning calorimetry 
(DSC) shows that the melting point of the LMPA is 143°C. The peak of the DSC graph is very 
sharp since the LMPA had a nano-level uniformity. Moreover, the copper-alloy paste shows 

better self-leveling and resolution than the conventional silver paste after the screen-printing 
process on a textured silicon wafer.

Also, the copper paste from this group shows decent reliability after printing as a busbar 

on p-type crystalline silicon [53]. The samples were tested by the damp heat test (DHT) and 
thermal cycling test (TCT) before and after the encapsulation with the “sandwich” structure 
(glass/EVA/cell/EVA/backsheet) according to the IEC61215 standards. The results of both DHT 
and TCT show degradation less than 5% of the initial values in all parameters (V

oc
, J

sc
, FF, P

ma
x, 

etc.) before and after encapsulation. Although the surface of the copper electrode without 
encapsulation is oxidized after the DHT test, the copper oxide layer acts as a semi-passivation 

layer that postpones inner oxidation. Moreover, the copper particles in their paste do not dif-

fuse into the silicon even after an hour of annealing at 400°C due to the polymer barrier layer.

2.3.3. Samsung Electro-Mechanics Co., Ltd.

The invented copper paste was focused on the nano-particle size copper powder, especially 

for substrates (such as a transparent conductive oxide (TCO), a polymer, a glass plate, and a 
printed circuit board), which have difficulties in applying high-temperature processes [54, 55]. 

Figure 4. Dow Corning’s screen-printable copper paste: (a) after printing and (b) after curing [26].
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The average particle size of copper is around 150 nm, and the surfaces of the copper particles 

are coated with a capping material which can be fatty acid or fatty amine. The nano-size copper 
powder is used either solely as a metal powder or with different sizes of copper particles, such 
as a flake powder and a spherical powder. The flake powder has a particle size of 1–20 μm and 
the spherical powder has a 0.1–5-μm particle size. When the nano-powder is mixed with other 
types of powder, it first dissolves during the annealing and then helps to connect between the 
larger copper particles. Because of this nano-size effect, this copper paste can enhance con-

ductivity. The detailed candidates for binders and additives are also presented in the patent. 

Consequently, the copper particle at 150-nm size decreases the annealing temperature of the 

paste and makes it possible to form electrodes at a low temperature of 200°C.

2.3.4. Institute of Nuclear Energy Research (INER)

Recently, the INER reported an antioxidant copper paste [56, 57]. The antioxidant copper 

nanoparticles are synthesized by a wet chemical reduction process which requires copper 

hydroxide (Cu(OH)
2
), polyvinylpyrrolidone (PVP), and ascorbic acid. Afterwards, the anti-

oxidant copper nanoparticles are transferred to the paste form and printed onto the ITO layer 

of SHJ solar cells, followed by low-temperature annealing (<300°C). Compared to commer-

cial silver pastes as a reference, this copper paste shows a twofold increase in sheet resistance 

(~30 mΩ/sq) on the 16 μm of printed films. However, the duration of copper paste annealing 
is 1/12 of that of silver paste. Also, reserving samples for 180 days without strict oxygen 
protection shows no peaks of oxide impurities after XRD characterization, which means that 

the copper film is relatively stable against oxidation at least at an X-ray detection level.

2.4. Promising techniques for high performance of copper paste

2.4.1. Coating of copper powder with nano-silica

In order to apply copper on conductive paste, it requires high-purity crystalline non-agglom-

erated copper powder, which is free from surface oxidation [58, 59]. Using silica as a coating 
material of copper powder can enhance colloidal properties and functions by using rational 

core-shell shapes [60]. Dong et al. coated nano-copper powder with nano-silica by using a 

sol–gel process to improve the dispersion of the glass in the paste, the density of films, and 
the bonding behavior between the film and the substrate [61]. The printed films by using the 
copper paste after sintering at 910°C show no significant change in the density of the surface 
morphology and sheet resistance with the contents of silica from 0.5 to 2 wt%. However, 

the bonding between the film and the substrate improves with 2 wt% of silica contents in 
copper powder. The reason is that the proper amount of silica contents can induce the capil-

lary effects and surface sorption effects which is beneficial to bond the film closely on the 
substrate. The properties of silica-coated copper powder will be able to improve the bonding 

of the high-temperature annealing copper paste on the silicon wafers.

2.4.2. Coating of copper powder with cobalt-catalyzed carbon nanofibers

Even though the properties of polymer-based copper paste have been improved by many 
research, it is still difficult to achieve high conductivity and reliability as silver paste due to 

Recent Developments in Photovoltaic Materials and Devices30



the relatively low conductivity of the polymers [62–66]. In addition, using nanoscale cop-

per particles for decreasing curing temperature also have issues of powder production step, 

such as controlling the size of particles [67], low oxidation resistance of particles [68, 69],  

and cost-effectiveness [70]. For this reason, the development of copper particles, which 

are coated by a carbon-based material, has been interested by many researchers, because 

carbon shells can act as the shields to protect the copper particles from oxidation [71–79]. 

In addition, there have been studies for the development of copper paste or ink, which 

do not require inert atmosphere and lower temperature, but they still have challenges to 

overcome [80–83].

In order to improve oxidation resistance of copper particles and make curing process pos-

sible in air, Ohnishi et al. coated copper-cobalt alloy particles with cobalt-catalyzed carbon 

nanofibers (CNFs) which is called “hybrid copper particles (HCuP)” [84]. The paste, which 

is made by the sea urchin-shaped copper particles, shows great reliability of resistivity even 

after a DHT test. The good electrical properties of this copper paste might come from an anti-

oxidation effect of CNFs. Moreover, the cobalt nano-precipitates on the surface of the particles 
can be regarded as a conductive path. This approach possibly can improve the reliability of 

copper pastes by curing without strictly controlled inert atmosphere.

3. Application of copper paste on crystalline silicon solar cells

3.1. Curing conditions of copper paste for high electrical properties

Low-temperature annealing paste generally contains polymer as a component. Accordingly, 

the properties of these pastes highly depend on the polymerization quality during the cur-

ing process. The curing process is carried out at a lower-temperature range than the firing 
process, which is generally used for the conventional silver paste. Rehm thermal systems GmbH 

and Fraunhofer Institute for Ceramic Technologies and Systems reported the effect of curing condi-
tions on properties of the electrode which is printed with the polymer-based copper paste 

[22, 42, 62, 85]. By using an inert inline drying system, they show that curing with a high 

nitrogen atmosphere and temperature at 200°C can significantly decrease the resistance of 
copper paste electrode [42].

The main reason of the resistance reduction is that the cross-linking reactions of polymer 

chains are sensitive to the oxygen concentration, because the oxygen disturbs the linking 

process between the polymer chains. Figure 5 shows the reactions of degradation of the poly-

mer chain which frequently occurs in a high oxygen atmosphere. Oxygen easily reacts with 

most organic radicals which form “peroxidic radicals” [86]. The peroxidic radicals can suffer 
the polymerization reactions or the chain processes. As one of the most frequent reactions, 

an oxidative degradation breaks the polymer chains by initiating the decomposition of the 

peroxidic radicals. If the polymerization process is carried out in this circumstance, oxygen 

presence will decrease the cross-linking yield of polymers in the pastes. Therefore, the inert 

curing atmosphere with low concentration of the oxygen is significant in order to make an 
intensified polymerization and increase the compression of the metal particles. The restrained 
oxidation of the metal particles can also be a possible reason.
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In case of the heat transfer method, a radiation method is more beneficial for the lower resis-

tance of electrode than a convection method [62]. Moreover, the minimum resistance and 

decent adhesion can be obtained by increasing the processing time [22]. Consequently, this 

group confirmed that the polymer-based copper paste, which was annealed by the inert cur-

ing, can improve conductivity and mechanical stability of the polymer-based copper paste by 

achieving 19.96% efficiency with the SHJ solar cell, even though the fill factor (FF) is still lower 
than that of silver paste-printed cells.

3.2. Potential of copper paste on the silicon solar cells as passivated busbars

Some research groups have tried to apply their own copper paste to solar cells. The cop-

per pastes were printed as passivated busbars that required forming busbars and fingers 
separately. As Figure 4 shows, fingers only electrically contact silicon by using either fired-
through silver paste (Figure 6(b)) or the plating of Ni/Cu/Ag metal stack after the laser abla-

tion opening of SiN
x
 layer (Figure 6(a)). Afterwards, the busbar is printed on the SiN

x
 layer 

and partially contacts the fingers followed by a curing process under 250°C. Since the busbars 
do not directly contact the silicon, recombination region under the busbars is removed. Light 

I-V performances of the solar cells with copper paste busbar are summarized in Table 3. 

On the reference cells, either the screen-printed silver paste contact or the Ni/Cu/Ag-plated 
contact was wholly used for the busbars and fingers. Generally, the reduced recombination 
on the front side contributes to an increase open circuit voltage (V

oc
) compared to the cells 

without passivated busbar.

Dow Corning and IMEC evaluated characteristics of various cell structures by applying their 
own low-temperature (~250°C) copper paste for the passivated busbars. The research results 
show a slight increase of V

oc
 (0.3 mV) with an industrial level passivated emitter solar cell 

(PESC) by reducing the recombination region under the busbars. Compared to the conven-

tional silver paste solar cell, the passivated copper busbar solar cell has a lower average fill 
factor (FF) due to the higher lateral resistivity of the copper busbar. However, the busbar 
resistivity does not have an effect on the FF in the module level performance since most of 
lateral current flows through the conductive soldered tab.

This group also evaluated combinations of printable conductive copper paste with higher 

efficiency solar cell structures, such as passivated emitter and rear cell (PERC) and passivated 

Figure 5. Reactions of polymer chain decomposition by oxygen.
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emitter and rear totally diffused (PERT). By applying a copper paste busbar with the plating 
and printing process as depicted in Figure 6(a), both structures improved 6.1 mV, 4.9 mV of 
V

oc
, respectively, and the PERC structure especially had a 0.1% higher median conversion 

efficiency than the reference group. Also, the FF of the passivated busbar cells had increased 
since the laser ablation and the nickel silicide decreased the shunt resistance of entirely plated 

cells. In the case of the current density, the passivated busbar cell had a slightly lower value 

even though the series resistance of both the printed busbar and the plated busbar almost had 

no difference since the plated busbar had a higher aspect ratio (fine line width).

Nakamura et al. at the Meiji University applied copper paste on the n-type bifacial PERT cell 
and successfully obtained over 20% efficiency by preceding V

oc
 and FF of the silver-printed 

cell. Also, Yoshiba et al. at the Tokyo University compared the I-V performances on the 

Figure 6. Front metallization process flows for the passivated copper busbar: (a) plating and printing, and (b) dual 
printing [26].

Institute Year Cell type Ref. contact η [%] 

(gain)

V
oc
 

[mV] 

(gain)

J
sc
 [mA/

cm2]

FF [%] 

(gain)

Annealing 

temp.

Ref.

Dow 

Corning

2014 p-PESC (SE) SP*-Ag 18.8 
(−0.07)

640.4 

(+0.3)
37.2 78.9 

(−0.5)
~250°C [47]

Dow 

Corning

2015 p-PERC Plated-Ni/
Cu/Ag

20.4 (+0.1) 667.5 
(+6.1)

38.7 79.0 
(+0.3)

~250°C [48]

Dow 

Corning

2015 n-PERT Plated-Ni/
Cu/Ag

20.7 (0) 663.3 

(+4.9)
39.2 79.5 (0) ~250°C [48]

Meiji 

Univ.
2015 n-PERT 

(bifacial)
SP-Ag 20.5 (+0.7) 659.0 

(+3.0)
40.8 76.3 

(+2.0)
— [87]

Tokyo 

Univ.
2012 p-PESC 

(mc-Si)
SP-Ag 16.2 (+0.1) 617.0 

(−2.0)
34.3 76.3 

(+0.1)
<200°C [88]

*SP: screen printed.

Table 3. Performance of various solar cell structures with the passivated copper busbar and gains compared to their 

reference contact.
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multi-crystalline silicon solar cell by printing a low melting point alloy (LMPA) copper paste. 
Although V

oc
 was decreased, copper-printed cell had a 0.1% absolute efficiency gain due to 

the higher FF. In most of the experiments for confirming applicability of copper paste on solar 
cell fabrication, the results show the possibility of reduction of metallization cost and cell 

performance improvement by replacing the standard silver-printed electrode.

4. Summary and outlook

In this chapter, a detailed overview of the copper paste developments for the solar cell appli-

cation has been presented. The main issues of developing copper paste are prohibition of the 

oxidation of copper during annealing and the diffusion into the silicon substrate. In case of 
the glass-frit-based copper paste (firing type), the copper particles are coated with metal or 
alloy layers to prevent the diffusion and the oxidation. However, the firing-type copper paste 
still has a higher possibility of diffusion than the polymer-based copper paste (curing type) 
since the copper particle comes in direct contact with the silicon. In case of the curing-type 

copper paste, the diffusion of copper particles is well blocked since the surrounding polymer 
acted as a barrier layer. Also, the oxidation of copper can be prevented by the polymer shield 

or using antioxidant copper particles. Moreover, DHT and TCT of the copper paste confirm 
the reliability on the solar cells with a small amount of degradation (<5%).

For further improvement of the copper paste properties, recently reported coating materi-

als and techniques for the copper powder have been introduced. In case of the nano-silica 

coating on copper powder, the bonding strength of paste on the substrate was improved by 

promoting capillary effects and surface sorption effects. Also, the air-curable hybrid copper 
particles, which were coated by cobalt-catalyzed-CNFs, lead to a great resistance reliability of 
the printed copper paste.

With respect to the curing conditions, the experimental results revealed that the inert atmo-

sphere helps to form a denser copper electrode by restricting the contact between the polymers 

and the oxygen. Thereby, the compressed copper particles due to the intensified polymeriza-

tion decrease the resistivity of the printed copper film. However, the inert curing condition 
requires a great deal of nitrogen gas for purging oxygen in the furnace. At the industrial 

level, the nitrogen consumption can adversely affect the manufacturing cost of the solar cells. 
Therefore, the optimum curing process for less consumption of nitrogen gas and inexpensive 

coating technique of copper particles need to be further developed.

To date, polymer-based copper paste showed a high potential with 20.7% conversion effi-

ciency by applying it to the n-PERT structure solar cells. As well as the result of the PERT 
structure, the copper paste application to SHJ solar cells has a higher potential because the 

ITO layer acts as a diffusion barrier to prevent copper at a low curing temperature. Also, 
the use of copper paste, as the passivated busbars, requires an additional printing, and the 

annealing step after the silver fingers and aluminum rear contact are formed. Accordingly, 
the SHJ solar cells are more profitable for the application of copper paste from an economic 
point of view.
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