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Abstract

Multiple mitochondrial dysfunctions syndrome (MMDS) is a group of autosomal recessive 
mitochondrial disorders that is associated with deficiencies related to nuclear genes: ISCA2, 
ISCA1, NFU1, IBA57, and BOLA3. The syndromes are relatively new and recently discov-
ered. Individuals with MMDS have reduced function of energy production stages in mito-
chondria. The dysfunctions are mostly related to iron-sulfur (Fe-S) clustering system (ISC) 
and its biogenesis. The signs and symptoms of the patients may begin early in life, and can 
be quite severe leading to death more or less during infancy. Affected individuals have vari-
ous symptoms including brain dysfunction (encephalopathy), hypotonia, seizures, delayed 
developmental milestones, and cognition and psychomotor impairments. These individu-
als often have difficulty growing and gaining weight at the expected rate. Diagnosis of the 
disease can be challenging as in the case with most of the mitochondrial disorders. However, 
since the genetic causes of the MMDS are known, a laboratory test focusing on the causative 
genes will be helpful to determine the pathogenic mutations. This in turn would facilitate 
reducing the number of the diseases through carrier testing and genetic counseling and uti-
lization of preimplantation genetic diagnosis in populations, especially those that display 
high rate of consanguinity, which are prone to have such autosomal recessive disorders.

Keywords: BOLA3, IBA57, ISCA1, ISCA2, NFU1, iron-sulfur (Fe-S) cluster (ISC), 
multiple mitochondrial dysfunction syndromes

1. Introduction

Mitochondria are double membrane-bound cellular organelles surrounded by outer and 

inner membranes [1, 2]. The organelle is considered cell’s powerhouse generating adenosine 
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distribution, and reproduction in any medium, provided the original work is properly cited.



triphosphate (ATP) during cellular respiration; hence, facilitating energy conversion in eukary-

otes. Uniquely, each mitochondrion has its own DNA and encodes mitochondrial genes; 

hence, contributing the cell’s proteome independently. The inheritance of the mitochondrial 

genome differs from nuclear genome since the donor of mitochondrial DNA (mtDNA) is the 
egg rather than sperm whose mitochondria are marked for obliteration upon entering the 

egg [3]. Hence, the organelle’s DNA is inherited through females known as “maternal inheri-

tance.” Since these organelles generate energy, most biochemical reactions in the eukaryotic 

cells occur in the mitochondria. These reactions include pyruvate oxidation, citric acid cycle, 
electron transport, and oxidative phosphorylation (OXPHOS) all needed for energy produc-

tion. Mitochondria also have an important role in calcium signaling, regulation of cellular 

metabolism, heme synthesis, steroid synthesis, apoptosis, and the biosynthesis of iron-sulfur 

(IS) clusters (ISC). The high number of human diseases caused by the malfunction of the 

mitochondrial proteins—encoded by nuclear or mtDNA—drew attention to the importance 
of this organelle.

2. Mitochondria

Mitochondria are genetically controlled by both nuclear DNA and the mitochondrial genome 

[1, 4]. A wide range of molecular defects have been identified in the human mitochondrial 
genome [4–9]. Diseases due to mutations in the mitochondrial genome are clinically, geneti-

cally, and biochemically diverse [1, 2, 4, 6, 10]. Similarly, deficiencies in mitochondrial genes 
encoded by nuclear genome can also lead various mitochondrial disorders and a wide range 

of cellular perturbations such as undue reactive oxygen species and distracted apoptosis, 
aberrant calcium homeostasis, and deficient energy production. This in turn leads failure to 
meet the requirements of numerous organs, especially those with high energy needs. Hence, 

various pathological conditions appears due to impaired mitochondrial function in human 

body involving different cell types, tissues, and organs including heart and brain. Such multi-
organ manifestations are all mitochondria related and these diseases varies from epilepsy to 

cardiac myopathies.

3. Mitochondria and genetics of mitochondria-related diseases

The mitochondrial genome is a multicopy, double-stranded circular DNA molecule, which is 

16.6 kb in human [11]. This genome encodes 13 essential proteins for the OXPHOS system and 
24 components of the RNA machinery: 2 rRNAs and 22 tRNAs [11]. It is intronless and the only 

noncoding region is the displacement region (D-Loop), a region of 1.1 kb. It contains both the 

replication origins and the transcriptional promoters. Although mitochondria are genetically 

controlled by both mitochondrial and nuclear genomes, mtDNA is only maternally inherited 

[3]. Mitochondrial genetics differ greatly from Mendelian genetics in size, number of encoded 
genes, number of DNA molecules per cell, lack of introns, gene density, replication, transcrip-

tion, recombination, and mode of inheritance. The 13 proteins include 7 subunits of NADH 
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Dehydrogenase (complex I: ND1, ND2, ND3, ND4, ND4L, ND5 and ND6), Cytochrome b 
(subunit of complex III), 3 subunits of Cytochrome c oxidase or complex IV (COI, COII and 
COIII), and 2 subunits of F0F1 ATPase (ATPase 6 and ATPase 8). They are all encoded by 
mtDNA and synthesized in the organelle. While, complex II (Succinate Dehydrogenase) and 
the remaining subunits of complexes I, III, IV, and V are entirely encoded by the nuclear 
genome. These nuclear-encoded proteins are synthesized on cytosolic ribosomes and subse-

quently transported into the mitochondria.

4. Fe-S clusters (ISCs)

ISCs are evolutionarily ancient cofactors consisting of Fe (iron) and S (sulfur) associated to the 

cysteine sulfurs of proteins. The clusters are found in variety of organisms including archaea, 

protists, prokaryotes, and eukaryotes. In a eukaryotic cell, they can be found in the mito-

chondria, cytosol, and nucleus where they perform diverse functions [12]. ISCs play a critical 

role in many fundamental molecular processes and have roles in electron transfer, structural 

stabilization, gene regulation, enzymatic catalysis, metabolic regulation, and sensing environ-

mental signals [13]. Almost 30 proteins in the mitochondria and the cytosol are involved in 

synthesizing and assembling these clusters. ISC have two most common forms [2Fe-2S] and 

[4Fe-4S] clusters. ISC-related proteins of the electron transport chain in the mitochondrion 

are mainly located in the inner membrane. Moreover, some of these proteins are also found 

in the mitochondrial matrix in the organelles. For the cluster assembly, two machineries are 
required, the mitochondrial ISC assembly machinery and the cytosolic IS protein assembly 

machinery [12].

Eukaryotic IS proteins are located in mitochondria, cytosol, and nucleus, where they perform 

diverse functions in cellular metabolism and regulation. The mitochondrial ISC assembly 

machinery matures all organellar IS proteins, and additionally contributes to the biogenesis 

of cytosolic and nuclear IS proteins by producing an unknown sulfur-containing compound 

(X-S) that is exported to the cytosol and used by the cytosolic IS protein assembly machinery. 
Hence, mitochondria are directly responsible for the essential functions (e.g., of nuclear IS 

proteins involved in DNA metabolism and genome maintenance).

Mitochondria forms iron-sulfur clusters of significant proteins such as DNA polymerase and 
DNA helicases, and, therefore, plays a significant role in survival. There are 17 different pro-

teins forming iron-sulfur cluster machinery that places the clusters into the Apo proteins. 

The mechanism of formation of iron-sulfur clusters can be divided into three steps. First, it is 

synthesized on a scaffold protein. Second, it is bound to transfer protein after dislocation from 
scaffold protein. Third, the transfer protein, the cluster and the specific ISC targeting factor 
place the cluster into the Apo protein. The changes in the first two steps inhibit the maturation 
of extra mitochondrial Fe/S proteins and disturb the iron homeostasis [14]. Assembly of Fe-S 

cluster also takes place by NIF, SUF, and CIA machineries. Cysteine desulfurase is an enzyme 

that unites Fe-S assembly machineries. It is encoded by NFS 1 which functions to deliver 

sulfur to ISCU [15]. ISCU is an iron-sulfur cluster assembly enzyme; encodes component of 
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iron-sulfur scaffold protein. The changes in this gene result in severe myopathy and lactic 
acidosis (“ISCU Fe-S Cluster Assembly Enzyme [Homo sapiens (Human)] - Gene - NCBI”) 

Complexes 1, 2, and 3 contain Fe-S clusters. They function in electron transport by transfer of 
one electron in redox processes [16]. The assembly of the clusters is recently studied in Yeast. 

In photosynthetic organisms, the iron-sulfur clusters play role in chloroplast processes and 

are important for plastid functioning [17].

Yeast frataxin, Isu1, and Nfs1 (cysteine desulfurase) take part in de novo synthesis of ISC. Many 

genes encode ISC assembly factors such as BOLA3, NFU1, GLRX5, NUBPL, LYRM4, IBA57, 

ISCA1, and ISCA2. These molecules have significant role in mitochondria. They are essential 
cofactors in the assembly of cluster. Deficiency of these genes leads to different diseases, for 
instance, GLRX5 deficiency causes sideroblastic anemia, whereas NUBPL mutations lead to 
respiratory chain complex 1 deficiency. On the other hand, some of these deficiencies are 
classified under a unique category such as MMDS.

5. Genetic factors of mitochondrial dysfunction syndromes

As the names imply, multiple mitochondrial dysfunction syndromes are disease conditions 

affecting mitochondria and usually lead to reduced function of more than one stages of energy 
production in the organelle [18]. The genetic factors causing these disorders are associated 

with the biogenesis of cellular ISC and currently these are the following genes: ISCA2, NFU1, 

IBA57, and BOLA3. More recently, ISCA1 is also reported to lead a disease resembling MMDS 

and suggested to be a member of the group [19]. Interestingly, MMDS members appear to be 

inherited in autosomal recessive mode of inheritance (Table 1).

5.1. ISCA1

Iron-sulfur cluster assembly 1 (ISCA1) is one of the mitochondrial proteins required for the 

biogenesis and assembly of ISC [20]. This protein functions in the late stages of the ISC biogen-

esis and act as an iron binding molecule that may serve as a chaperone for biogenesis of Fe-S 

clusters [21]. It is believed that the molecule plays its pivotal role through its interaction with 

IOP1 (iron-only hydrogenase-like protein)/NARFL (nuclear prelamin A recognition factor-
like). Knockdown of Isca1 causes reduced activity of succinate dehydrogenase, mitochondrial 

aconitase, and cytosolic aconitase; hence, involving in both cytosolic and mitochondrial Fe-S 

protein biogenesis [22].

According to GenAtlas [23, 24], the gene has four exons and produces 14 kDa protein with 
129 amino acids, which is known as mitochondrial Fe-S cluster assembly 1 homolog or oth-

erwise HESB like domain containing 2. The gene is mapped to chromosome 9q21.33, and sits 

on genomic coordinates: 88.879.463–88.897.490. It is 2012 base pair long, generates four tran-

scripts (splice variants) and highly expressed heart, esophagus, bladder, uterus, and cervix. 
Moreover, ISCA1 is a member of consensus coding sequence (CCDS:35056.1) which are man-

ually checked protein annotations on the reference mouse and human genomes that ensures 
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consistent representation of the tracks of NCBI, Ensembl, and UCSC Genome Browsers. The 

gene has several synonyms such as hIsca, HBLD2, and ISA1, and localizes to mitochondria as 

well as cytoplasm.

Effect of depletion of ISC-related proteins on the maturation of cytosolic 4Fe-4S proteins 
showed that some mitochondrial Fe/S proteins such as mitochondrial aconitase, SDH, sev-

eral proteins of complex I, and Rieske Fe/S protein were decreased with the deficiency of 
ISCA1. On the other hand, cellular heme content and mitochondrial 2Fe-2S ferrochelatase 
were unaffected by the depletion. This implies that ISCA1 is crucial in the maturation of 
mitochondrial 4Fe-4S proteins [25]. In another study, ISCA1 was found to be associated with 

multiple mitochondrial dysfunctions syndrome-5. A homozygous missense mutation at a 
conserved residue in the Fe-S biogenesis domain (c.259G>A, p.Glu87Lys) was identified in 
two unrelated Indian families. This mutation destabilizes the protein subsequently causing 

the syndrome [19].

5.2. ISCA2

ISCA2 stands for iron-sulfur cluster assembly 2 protein and the gene encodes for A-type iron-

sulfur cluster protein. Fe-S clusters are inorganic cofactors, mostly found in metalloproteins. 

The gene is located on chromosome 14 and expressed from the plus strand. According to 
Ensembl, this gene generates 4 different transcripts and has 96 orthologues. ISCA2 is a regula-

tory protein found in mitochondria as well as extra mitochondrial sites such as cytosol and 
nucleus. The protein takes part in assembly of Fe-S clusters in mitochondria which further 

take part in oxidation reduction (especially in complex 1 and 2), substrate activation, iron/sul-
fur storage, regulation of gene expression, and enzyme activity. Alternative name for ISCA2 
is “HESB-like-domain-containing protein 1” for humans. First human mutation of ISCA2 

Gene Cytoband NCBI Genomic location MMDS-related 

phenotype

MIM 

PT#

IM MIM LN

NFU1 2p13.3 27247 2:69,396,112-69,438,122 Multiple mitochondrial 

dysfunctions syndrome 1

605711 AR 608100

BOLA3 2p13.1 388962 2:74,135,400-74,147,911 Multiple mitochondrial 

dysfunctions syndrome 2 

with hyperglycinemia

614299 AR 613183

IBA57 1q42.13 200205 1:228,165,807-
228,182,256

Multiple mitochondrial 

dysfunctions syndrome 3

615330 AR 615316

ISCA2 14q24.3 122961 14:74,493,719-74,495,567 Multiple mitochondrial 

dysfunctions syndrome 4

616370 AR 615317

ISCA1 9q21.33 81689 9:86,264,545-86,282,574 Multiple mitochondrial 

dysfunctions syndrome 5
617613 AR 611006

AR: autosomal recessive; IM: inheritance mode; LN: locus number; MIM: Mendelian inheritance in man; MMDS: 
mitochondrial dysfunction syndromes; PT#: phenotype number.

Table 1. Genes and related mitochondrial dysfunction syndromes.
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(c.229G>A; p.Glu77Ser) identified in the patients from five consanguineous families was a 
homozygous ancestral founder mutation that leaded to neurodegeneration, developmental, 

failure to thrive, quadriplegia, truncal hypotonia, optic atrophy, and leukoencephalopathy 

[26]. Later, additional 10 cases with the same founder mutation were also described [27]. 

Recently, two other patients with the same mutation were also studied with detailed func-

tional experiments revealing complex 2 and 4 deficiencies [28]. Interestingly these patients 

were all Arab descent. Most recently, a second mutation, a compound heterozygous variant (a 

single basepair deletion causing frameshift with a premature stop codon: mutation: c.295delT; 
p.Phe99Leufs*18 and a missense mutation c.334A>G; p.Ser112Gly) in ISCA2 was reported in 

a 2-month-old girl from Italy [29]. These mutations causes disorder of energy metabolism 

which results in respiratory failure, severe hypotonia, nystagmus, lactic acidosis, poor neu-

rologic development, hyperglycemia, leukodystrophy of the brainstem with longitudinally 

extensive spinal cord involvement, and mtDNA deficiency ultimately leading to death [26].

5.3. NFU1

NFU1 is one of the human mitochondrial components that is involved in the assembly of 

the Fe-S protein cluster. It helps in the transfer of [4Fe-4S] clusters to specific protein targets 
and facilitates their maturation [30]. NFU1 is mapped on the 2p13-p15 chromosomal region 
and codes for the NFU1 protein. During Fe-S assembly, two NFU1 monomers are needed 

to assemble one 4Fe-4S. Complex I, II, and III of oxidative phosphorylation have multiple 
Fe-S clusters. Therefore, any deficiency in these clusters causes dysfunctions of respiratory 
chain complexes [31]. Previous studies showed that the function of the NFU1 has been asso-

ciated by the fatal mitochondrial disease, multiple mitochondrial dysfunctions syndrome 1 

(MMDS1) [30]. Patients with NFU1 mutations usually manifest feeding difficulty, weakness, 
lethargy, and decreasing responsiveness within a few days after birth and a few had epileptic 

seizures [31]. It has been shown that the patients with mutations in the NFU1 gene have simi-

lar biochemical features to that seen in patients with lipoic acid defects. Thus, NFU1 mutation 

appears to have some effect on Fe-S enzyme lipoic acid synthase (LAS). In conclusion, NFU1 
is an ISC assembly protein, and there is strong evidence that LAS deficiency is important in 
NFU1 mutation-related disease [31].

5.4. IBA57

IBA57 is a member of the Fe-S cluster assembly group. It is known as putative transferase 
CAF17 and Fe-S cluster assembly factor homolog. IBA57 is located on 1q42.13 and codes 

for the IBA57 protein that is located in the mitochondrion. This protein functions in the late 
stages of the biosynthesis of mitochondrial 4Fe-4S proteins. Any deficiency in IBA57 can 

cause an autosomal recessive spastic paraplegia-74 or multiple mitochondrial dysfunctions 

syndrome 3. In a previous study, it was found that the depletion of IBA57 in cell culture 
caused striking alterations in mitochondrial morphology, including a vast enlargement of 

the organelles and a loss of cristae membranes. It is also found that the function of IBA57 
protein is conserved from bacteria to human, according to a study that provides an evidence 

for the requirement of bacterial and yeast relatives of human IBA57 for efficient maturation 
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of [4Fe-4S] proteins. Moreover, potential diseases caused by mutations in these genes are 

expected to cause defects in mitochondrial respiration and in lipoic acid-dependent pro-

teins [25]. Another study reported two siblings from consanguineous parents died with a 

condition characterized by generalized hypotonia, respiratory insufficiency, arthrogryposis, 
microcephaly, congenital brain malformations, and hyperglycinemia. Catalytic activities of 

the mitochondrial respiratory complexes I and II were deficient in skeletal muscle, a finding 
suggestive of an inborn error in mitochondrial biogenesis. Homozygosity mapping identified 
IBA57 located in the largest homozygous region on chromosome 1 as a culprit candidate 
gene. Their analysis of IBA57 revealed the homozygous mutation c.941A>C, p.Gln314Pro in 
those two patients [15].

5.5. BOLA3

BOLA3 is another essential protein in the Fe-S clusters production and involves in the normal 
maturation of lipoate-containing 2-oxoacid dehydrogenases. Another critical role of the mol-
ecule is to facilitate the assembly of the respiratory chain complexes. BOLA3 was identified in 
the year 2008 during a search for similar sequences for bacterial BolA and cloned together with 
BOL1 and BOL2 [32]. According to Ensembl, the gene has five different transcripts and two iso-

forms. The main isoform is longer and localizes to mitochondria while the shorter isoform lack-

ing exon 2 is restrained in the cytosplasm [18, 33]. The main transcript (ENST00000327428.9) 
has four exons comprising 68 variations [33]. The mRNA is nearly ubiquitously expressed in 
human tissues. The protein has seven domains including two low complexity segments. The 
main BolA domain consists of a helix-turn-helix structure close to its C terminus. The gene 
has three published mutations (c.123dupA; p.Glu42Argfs; c.200T>A, p.Ile67Asn; c.136C>T, 
p.Arg46Ter) [18, 34–36] in addition to a 5 bp deletion [37] and a single basepair insertion [18]. 

These mutations were identified in ethnically different families. The first patients were initially 
described in 2001 in a mapping study [38] that included a singleton from a consanguineous 

family as well as three siblings from a nonconsanguineous family. Since all the patients from 

two different families had similar metabolic abnormalities, a mapping strategy was employed 
to identify the genetic interval for the causative gene. This approach located the gene on 

chromosome 2. Further positional cloning studies on the subjects yielded a single significant 
interval on p arm extending ~5 centiMorgan region and excluding the region positioned on 
the q arm. Interestingly, both of these families were utilized in a follow-up study that yielded 

deficiencies of two ISC-related genes in each family. While the larger family with three siblings 
were identified to harbor splice site mutation in NFU1 (c.545G>A) [18], the singleton had a 

single nucleotide duplication leading to a frame shift and eventually a premature stop codon 

(p.Glu42Argfs*13) in BOL3 [18]. Later on, a few more follow-up studies revealed additional 

mutations in the gene. The first follow-up study focused on two patients (male and female) 
with quite similar clinical course appeared with hypotonia, severe neonatal lactic acidosis, 

and intractable cardiomyopathy [35]. A missense mutation (c.200T>A, p.Ile67Asn) was identi-
fied in the patients’ DNA using exome sequencing. The other studies [34, 37] provided two 

additional missense mutations in BOLA3. Interestingly, while c.287A>G (p.His96Arg) causes a 
lethal infantile mitochondrial disorder [37], c.136C>T (p.Arg46*), a severe truncation mutation, 
leads to nonketotic hyperglycinemia [34] in the affected individuals.
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Table 2 consists of previously published mutations in some Fe-S cluster genes.

Gene Mutation type Mutation Disease and phenotype References

BOLA3 Missense c.200T>A; p.Ile67Asn Multiple mitochondrial 

dysfunctions syndrome

Haack et al. 

[35]

BOLA3 Missense c.287A>G p.His96Arg Lethal infantile mitochondrial 

disorder

Kohda et al. 

[37]

BOLA3 Nonsense c.136C>T; p.Arg46* Nonketotic hyperglycinemia, Baker et al. 

[34]

BOLA3 Microdeletion c.225_229delGAGAA; p. Lys75* Lethal infantile mitochondrial 

disorder

Kohda et al. 

[37]

BOLA3 Microduplication c.123dupA Combined respiratory chain 

and 2-oxoacid dehydrogenase 
deficiency

Cameron et al. 

[18]

IBA57 Missense c.313C>T; p.Arg105Trp Leukodystrophy with acute 

psychomotor regression

Torraco et al. 

[39]

IBA57 Missense c.316A>G; p.Thr106Ala Leukodystrophy with acute 

psychomotor regression

Torraco et al. 

[39]

IBA57 Missense c.436C>T; p.Arg146Thr Leukodystrophy, fatal infantile Debray et al. 

[40]

IBA57 Missense c.586T>G; p.Trp196Gly Leukodystrophy, 

developmental delay, feeding 

problems and recurrent 

vomiting

Torraco et al. 

[39]

IBA57 Missense c.686C>T; p.Pro229Leu Leukodystrophy, 

developmental delay, feeding 

problems and recurrent 

vomiting

Torraco et al. 

[39]

IBA57 Missense c.706C>T; p.Pro236Ser Leukodystrophy with acute 

psychomotor regression and 

feeding difficulties

Torraco et al. 

[39]

IBA57 Missense c.757G>C; p.Val253Leu Leukodystrophy with acute 

psychomotor regression

Torraco et al. 

[39]

IBA57 Missense c.941A>C; p.Gln314Pro Myopathy and encephalopathy Ajit Bolar et al. 

[15]

IBA57 Splice IVS2 ds A-G-2; c.678A>G Spastic paraplegia Lossos et al. 

[41]

IBA57 Small insertion c.87_88ins11 Leukodystrophy with acute 

psychomotor regression

Torraco et al. 

[39]

NFU1 Missense c.62G>C; p.Arg21Pro NFU1 deficiency Ahting et al. 

[42]

NFU1 Missense c.544C>T; p.Arg182Trp NFU1 deficiency Ahting et al. 

[42]

NFU1 Missense c.565G>A; p.Gly189Arg Leukoencephalopathy with 

cysts and hyperglycinaemia

Nizon et al. 

[43–45]
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6. Conclusion

Iron-sulfur clusters are indispensable inorganic cofactors for biological function and involve 

in numerous cellular processes such as respiration and DNA repair. The cluster’s assembly is 

complex and requires sophisticated protein machinery for its maturation and insertion into 
apoproteins. Since mitochondria is the main site for ISC biogenesis in human, any defect 

disturbing the biogenesis leads to a pathological outcome mostly appears as an mitochondrial 

entity in human. Currently, genetic alterations in several genes involving in ISC assembly and 

maturation have been linked to autosomal recessive mitochondrial human diseases known as 

multiple mitochondrial dysfunction syndromes. It is expected that more genes and alterations 

Gene Mutation type Mutation Disease and phenotype References

NFU1 Missense c.568G>A; p.Gly190Arg NFU1 deficiency Ahting et al. 

[42]

NFU1 Missense c.572A>T; p.Asp191Val Multiple mitochondrial 

dysfunctions syndrome

Bai et al. [46]

NFU1 Missense c.622G>T; p.Gly208Cys Fatal infantile encephalopathy 

and/or pulmonary 
hypertension

Navarro-Sastre 

et al. [47]

NFU1 Missense c.629G>T; p.Cys210Phe Leukoencephalopathy Invernizzi 

et al. [44]

NFU1 Splice c.302+3A>G; p.Val56Glyfs* NFU1 deficiency Ahting et al. 

[42]

NFU1 Splice c.545G>A; Skipping exon 6 Deficiency of the 2-oxoacid 
dehydrogenases accompanied 

by respiratory chain defects

Cameron et al. 

[18]

NFU1 Splice c.545+5G>A; Skipping exon 6 Fatal infantile encephalopathy, 

pulmonary hypertension

Navarro-Sastre 

et al. [47]

NFU1 Microdeletion c.90delC; p. Tyr30* Multiple mitochondrial 

dysfunctions syndrome

Bai et al. [46]

NFU1 Microdeletion c.146delC; p.Pro49LeufsX8 Spastic paraplegia Tonduti et al. 

[45]

NFU1 Large deletion 55.6 kb region covering exons: 
4–8

NFU1 deficiency Ahting et al. 

[42]

ISCA1 Missense c.259G>A; p. Glu87Lys Multiple mitochondrial 

dysfunctions syndrome

Shukla et al. 

[19]

ISCA2 Missense c.229G>A; p.Glu77Ser Multiple mitochondrial 

dysfunctions syndrome

Al-Hassnan 

et al. [26] and 

others [27, 28]

ISCA2 Deletion and Missense c.295delT and c.334A>G; 
p.Phe99Leufs*18 and 
p.Ser112Gly

Multiple mitochondrial 

dysfunctions syndrome

Toldo et al. 

[29]

Table 2. Published mutations in some Fe-S cluster genes.
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will appear in the literature related to ISC pathways. Moreover, there is still need to fully 

elucidate the phenotypic consequences of these genetic alterations and alteration of ISC path-

ways during the ISC related pathogenesis in human.
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