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1. Introduction     

Under environments that the criteria to achieve a certain objective is unknown, the 
reinforcement learning is known to be effective to collect, store and utilize information 
returned from the environments. Without a supervisor, the method can construct criteria for 
evaluation of actions to achieve the objective. However, since the information received by a 
learning agent is obtained through an interaction between the agent and the environment, 
the agent must move widely around the environment and keep vast data for constructing 
criteria when complex actions are required to achieve the objective. To conqure these 
drawbacks, function approximation methods that have generalization capability have had 
the attention as one of effective methods. The challenge of this chapter is focused on 
improving learning performances of the rainforcement learning by using a function 
approximation method, a modefied version of Cerebellar Model Articulation Controller 
(CMAC) (Albus, 1975a; Albus, 1975b), used in the reinforcement learning. 
CMAC is a table look-up method that has generalization capabilities and is known as a 
function learning method without using precise mathematical models for nonlinear 
functions. Thus, CMAC is used to approximate evaluation functions in reinforcement 
learning in order to improve learning performance (Sutton & Barto, 1999; Watkins, 1989). In 
the CMAC, the numerical information is distributively stored at memory locations as 
weights. Each weight is associated with a basis function which outputs a non-zero value in a 
specified region of the input. The CMAC input is quantized by a lattice constructed by basis 
functions. In order to speed up learning and increase the information spread to adjacent 
basis functions, the CMAC updates a group of weights associated with basis functions that 
are close to a given point, and thus yields generalization capability. The concept of closeness 
stems from the assumption that similar inputs will require similar outputs for well-behaved 
systems. The structure of lattice determines how the CMAC input space is quantized and 
how the generalization works. However, the conventional CMAC has a fixed lattice and a 
fixed shape of region covered by the effects of generalization. Although the size of the 
region can be changed by adjusting the quantization intervals for lattice, the shape of the 
region is not adjustable. The required size and shape of the regions are not same for 
different cases, and thus, the CMAC has difficulties to obtain appropriate generalization for 
each case. O
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To conquer the drawback, a design method of CMAC that has a selective generalization 
capability is introduced. In this method, several CMACs are selected by extended input that 
can adjust the shape and size of region covered by the effects of CMAC generalization. The 
extended input is generated by a function obtained by using a priori knowledge of the 
addressed problem. By the proposed method, appropriate generalization can be obtained for 
cases that the conventional CMAC is not efficacious. The proposed method is applied to a 
allocation problem of a plant based on the fictitious chemical production plant as a case study. 
In chemical plants, layout of plant-elements should be determined considering at least the 
accessibility for maintenance and fire fighting, operability, and construction cost. From a 
pure safety perspective, tanks and reactors should be placed as far as possible from each 
other, in order to minimize the effect of a fire or explosion which a tank or reactor have on 
adjuscent equipment. But a larger distance between these elements of chemical plant, such 
as tanks and reactors, requires a larger pipe-length for connecting these elements and the 
efficiency of production and operation get worse. Hence in the layout of the chemical plant, 
there is a problem to minimize risk due to fires and explosions and maximize efficiency of 
production and operation simultaneously. Thus, the element allocation in a chemical plant is 
a multi-objective optimization problem. This problem was approached by using 
mathematical programming (Ceorgiadis et al, 1999; Vecchietti & Montagna, 1998). Or it may 
be considered to use Neural Network or Genetic Algorithm. But the problem has so many 
variables and freedoms to be chosen and also so many constraints among variables. Hence 
solving the problem by using those methods may take too much time and is not adequately 
efficient. Recently, a new reinforcement learning method has been proposed in order to 
solve allocation problem (Hirashima et al, 2002). The method is derived based on  Q-
learning (Watkins, 1989; Watkins, 1992) and hybrid-cordination that only a certain part of 
the plant-layout is recognized by the distance  and rotational angle of each element 
measured from a `basis element' . In this method, rotated and/or shifted plants that have the  
same layout are identically recognized (Hirashima et al, 2005). The CMAC with selective 
generalization capability is integrated to this method, and effectiveness of the new CMAC is 
shown by computer simulations. 
The remainder of this chapter is organized as follows: section 2 gives a detailed explanation 
of the CMAC that has selective generalization capabilities. Section 3 explains allocation 
problem of chemical plants. Section 4 presents a Q-learning method for plant allocation 
problem. Section 5 depicts and compares several results of computer simulations for a plant 
allocation problem. Finally, section 6 concludes the chapter.  

2. CMAC 

In this section, CMAC that has Selective Generalization capability (SG-CMAC) is explained. 
Assume the SG-CMAC has n inputs and 1 output. Define the input of SG-CMAC as 

),,( zI sss = }{ iI s=s is≤0( ,iΔ< ),0;1,,1 zzsni Δ<≤−= A  where )( Iz fs s= . 
zs  is 

quantized with m areas and a corresponding CMAC module is assigned to each quantized 
area. CMAC modules used by the proposed method are same as the conventional CMAC. In 
the next subsection, the structure of CMAC modules is explained.  

2.1 CMAC modules 
Consider a basis function whose output is 1 when the input lies in its support and 0 
otherwise. We define the size of the support as ρ for each axis. A set of k overlays is formed 

www.intechopen.com



A Q-learning with Selective Generalization Capability and its Application  
to Layout Planning of Chemical Plants 

 

133 

so that each of the module inputs is covered by k supports. The overlays are displaced by ρ 
relative to each other. Each overlay consists of the union of adjacent non-overlapping 
supports. Edges of supports generate knots, and the subset of knots constructs a square 
lattice of size ρ which quantizes the whole input space. The quantization interval ρ is 
determined by the size of the interval of neighboring knots, and it controls the degree of 
generalization. 
 

 

Fig. 1. Structure of a CMAC module 

Fig.1 shows a CMAC module for the 2-dimensional input and 1-dimensional output 
consisting of 3 overlays and 12 basis functions. The lattice cells are numbered from 1 to 16. 

Assume the input to the CMAC module as },{ 21 ssI =s  and the input space as 

,0|),{( 1121 Δ≤≤= sssS  }0 22 Δ≤≤ s . Then 
1s and 

2s are quantized quantization interval ρ in 

the lattice.  In the first overlay, 
1s is quantized into 

1a or 
2a , and 

2s is quantized into 
1b or 

2b , respectively. The pairs of ,11ba ,12ba ,21ba 22ba  express basis functions, and )( 422 wba  

implies that the basis function 
22ba has the weight 

4w . 
 

 
Fig. 2. Output of a SG-CMAC 
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2.2 Output of a SG-CMAC 
The output of a module u is formed from a linear combination of basis functions. Given an 

input ),( zI sss =  to the SG-CMAC, the input is quantized, the corresponding CMAC 

module is selected, a basis function is specified for each overlay in the selected module, and 
the weight value associated with the specified basis function is output from the overlay.  
The outputs of all the overlays are then summed up to yield the SG-CMAC output y, that is,  

 ∑
=

=
k

j

jwy
1

, . (1) 

where 
jw is the weight value associated with the basis function specified in the jth overlay.  

In Fig.2, the input ),( zI ss  is given to the SG-CMAC. Quantized value of 
zs corresponds to 

the ith CMAC module. Then, 
Is
specifies a certain lattice cell in the CMAC module, for 

example the 11th cell as shown in Fig.1. In the figure, 
Is
 specifies ,11ba

44ba  and 
66ba . Then, 

the module outputs 
1281 www ++  as the output of SG-CMAC.  

Suppose that the desired signal for the input 
Is
is d and the learning rate is g. The SG-CMAC 

is then learned by adding the following correction factor δ  to all weights corresponding 

to
Is
in the CMAC module specified by

zs : 

 yde −= . (2) 

 
k

e
g=δ . (3) 

When giving two similar inputs to the CMAC module, several basis functions are 

commonly specified. The existence of such common basis functions yields generalization 

capability. Since the weights corresponding to the input 
Is
 are only in the CMAC module 

specified by 
zs ,  the degree of generalization is adjustable by the quantization intervals for 

zs . In addition, the shape of the region covered by the effects of generalization can be 

determined by  the shape of function )( Iz sfs = .  

2.3 Numerical examples 

Effects of CMAC generalization are explained by numerical examples. An input ),( zI ss is 

given to CMACs that each module has the  2-dimensional input and 1-dimensional output 
consisting of 3 overlays and 27 basis functions. Here, 721 == ΔΔ , 1=ρ , 1.0=g , )5.3,5.3(=Is

, 

0.1=d , and 20=m . After giving sonce, generalizations of following 3 CMACs are 

compared:  
(A) Conventional CMAC. 

(B) Proposed SG-CMAC, 
012 | =−=

zSz sss  

(C) Proposed SG-CMAC, 
0

2

12 |)2(1 =−−−=
zSz sss  

After k and ρ  are determined, the shape of the region covered by the effects of 

generalization for an input is fixed in the CMAC (A) as shown in Fig.3. In this case, 3 

weights specified by 
Is
 are updated, so that the effect spreads over colored area in the right 

figure of Fig. 3. While, in CMACs (B) (C), the region that the effects of generalization spread 
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is restricted in the CMAC module specified according to the value of 
zs , as illustrated in 

Figs.4, 5. Thus, the shape and the quantization interval of 
zs  determins the degree of 

generalization in the SG-CMAC. 
 

  
 

Fig. 3. Output of a CMAC (A) 

 

Fig. 4. Output of a SG-CMAC (B) 

 

Fig. 5. Output of a SG-CMAC (C) 

2s

1s

Is

Is

www.intechopen.com



 Theory and Novel Applications of Machine Learning 

 

136 

3. Allocation problem of chemical plant  

As an application example, SG-CMAC explained above is used to solve an allocation 
problem of chemical plant. The objective of the problem is to minimize the total distance of 
the links under the constraint that the distance of two elements cannot be set smaller than a 
certain value in order to avoid influence of explosions. Precise roles of the elements included 
in the original plant are omitted in the simplified problem and every element is called 
``unit’’. Now, the allocation space is assumed to be normalized into square field, and 
quantized by square cells that have the same quantization interval. Also, assuming that the 

number of units is 
ck , the number of lattice cells is 

cm , each unit is recognized by an unique 

name 
jc (

c,1 kj A= ) and the position where a unit is placed is discriminated by discrete 

position number 
c,1 mA , then, the position of the unit 

jc is described by ,jd  

(
c,1 kj A= ,

c1 md j ≤≤ ). The state of the allocation space is determined by 

[ ]
c

,,1 kddx A= . Here, if 
jc is not allocated, 0=jd . Since units are allocated into a lattice 

cell, the maximum number of candidate positions where a units can be allocated is 
cm . The 

unit to be allocated is defined as 
Tc  (

c,1 kT A= ) and a position u that 
Tc is to be allocated 

is selected from candidate positions (
c,1 mA ).

Tc must be allocated into a position where the 

distance 
Tjl ( jTkj ≠≤≤ ,1 c

) between 
Tc and every other unit is larger than certain 

distances 
TjL ( jTkj ≠≤≤ ,1 c

). Then, the plant is described as ),,( uxfx =′ where )(⋅f  

denotes that allocation of 
Tc is processed. 

 

 

Fig. 6. Plant for allocation problem 
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Fig.6 shows an example of a plant, where 
cm =49,

ck =7. In the figure, positions of units are 

discriminated by integer .49,,1A ijp ( ;7,,1A=i Tnj ,,1A= ) denotes a length of jth intake pipe 

of ith unit, where 
Tn is the number of intake pipe to the ith unit. 

Tn is determined according 

to product process. In this example, the first unit is a mixer in which some raw materials are 

mixed before reaction in either of the two reactors (unit 2 or 3). These two reactors produce 

to intermediate products, which then react to produce the desired product in the next 

reactor (unit 4). After this reactor follows some purification steps. The first is a simple 

settler, which separates solids and liquids (unit 5). The desired product is assumed to be in 

the liquid phase, and is isolated in the crystallizers (unit 6 and 7). Two crystallization steps 

are needed to get the desired purity of the final product. 

The objective of the proposed method is to find the plant layout that can reduce the total 
length of pipe with minimized risk. 

4. A Q-Learning for plant allocation problem 

In the conventional Q-learning algorithm, Q-table has to store evaluation-values for all the 
plant state. In unit allocation problems, the state of the allocation space is described by the 

positions of all the units x and 
Tc . Since units are allocated by predetermined order, 

Tc can 

be determined by units that have already allocated. A Q-value is thus stored for each pair 

x= [ ]
c

,,1 kdd A and 
iu  (

c,1 mi A= ). In this case, the number of states and Q-value is 

∏ =
−c

0 c )(
k

i
im  that increases by the exponential rate with increase of 

ck . Moreover, in 

realistic situations, the number of lattice cells is often large, then required memory size to 
store information for all the state of the allocation space also becomes large (Baum, 1999). 

4.1 Update rules 

The proposed learning procedure consists of 3 update rules: (1) to update 
1Q for evaluation 

of the position of unit 1, (2) to update 
2Q for evaluation of the position of units 1 and 2, (3) to 

update 
TQ  for evaluation of the positions of unit T (

c,3 kT A= ). In the update rule (1), the 

input is the position of each unit 
iu  (

c,,1 mi A= ). ),(1 xuQ i
is updated by eq. (4). 

 
1 11 1 2

( , ) (1 ) ( , ) max ( , )
t t ti i

u U
Q u x Q u x Q u xα αγ

− −∈
= − + . (4) 

In the update rule (2), ),(2 xuQ i
is updated when all the units are successfully allocated to 

the space by using the following rule: 

 RxuQxuQ ii tt
αγ+α−=

−
),()1(),(

122
. (5) 

In the update rule (3), the state is redefined by using the relative position of the rth unit 

rpos  (
c,2 kr A= ) measured from the position of unit 1 and the angle 

rϑ  between the line 

that links units 1,2 and the line that link unit 1 and rth unit (
c,2 kr A= , 02 =ϑ ). That is, 

}{R rxx =  (
c,3 kr A= ) is the state of the allocation space for the update rule (3), 
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where ],[ rrr posx ϑ= . Also, 
iu is redefined as the relative position on the basis of 

Rx . Then 

),( RiT xuQ  is updated by eq. (6). 

 )1,,3(),,(max[),()1(),( RRR1
−=′++−=

∈+
kTxuQRxuQxuQ

ttt T
Uu

iTiT Aγαα . (6) 

In plant allocation problems, the objective is to reduce the total pipe length in the allocation 
space. Thus, in the proposed system, Q-values reflect the pipe length by adjusting the 
discount factor γ  according to the pipe length. In the following, 

ijL (
Tnjki ,,1;,,1 c AA == ) is defined as the minimum length of the jth intake pipe of ith 

unit, and U is defined as a set of positions that satisfy constraints
TjTj Ll >  in the allocation 

space. Then, γ  is calculated by using the following equations :  
 

1 (for update rule (1)) 

  

(for update rule (2)).   

 (7) 

  

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

=γ

 

∑∑

∑∑

= =

= =

c

c

1 1

1 1

k

i

n

j

ij

k

i

n

j

ij

T

T

l

L

 

)2,1(, c

1

1 ≠≤≤

∑

∑

=

=
iki

l

L

T

T

n

j

ij

n

j

ij

 

(for update rule (3)) 

where 
Tn is the number of pipes that link 

Tc and allocated units, and 
ijl (

Tnj ,,1A= ) is the 

length of the pipe that links cT and the allocated unit. Here, R is given only when all the 
units has been allocated. Propagating Q-values by eqs.(4)-(6) as update rules, Q-values are 
discounted according to the pipe length. In other words, by selecting a position that has the 
larger Q-value, the length of pipe can be reduced. Each ui is selected by the following 
probability  (Sutton & Barto, 1999; Watkins, 1989) : 

 

∑
∈

−

−=

Uu

1

1

C/),(exp(

C/),(exp(
),(

jt

jit

ji
xuQ

xuQ
xuP

. (8) 

where C is a thermo constant. The learning algorithm is depicted in Fig.7. 

4.2 Q-tables 
In realistic problems the number of lattice cells is large, so that huge memory size is 
required in order to store Q-values for all the states. Therefore, in the proposed method, 
only Q-values corresponding states that have been searched are stored for unit i 

(
c,3 ki A= ). Binary tree is constructed dynamically (Hirashima et al., 2005) during the 

course of the learning for storing Q-values. 
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Fig. 7. Flowchart of the learning algorithm 

Since similar layouts of the plant have similar evaluations, that is, difference of pipe lengths 

between such layouts is small, the learning performance can be improved by using 

appropriate generalization for evaluation of pipe length. By using CMAC as Q-tables for 

units 1,2, an evaluation for one input (for example, a position of unit 1) can be spread over 

adjacent inputs. However, the conventional CMAC has fixed shape of region covered by the 

generalization effects. Then, in Q-table for unit 2, the same evaluation is given to the layout 

that has longer pipe length and the one that has shorter pipe length when a similar layout is 

updated in the course of learning. Giving comparable evaluation to longer pipe length as 

compared to shorter pipe length is not appropriate, and thus, conventional CMAC can spoil 

the learning performance of the system.  

In the proposed method, the CMAC that has selective generalization (SG-CMAC) is used as 

the Q-table for unit 2. Now, define positions of units 1,2, 
21 , dd as 

),( 111 yx
ddd = , ),( 222 yx

ddd =  by the x-y coordinate. The input of the SG-CMAC is 

),( zI sss = , where =Is
x, 2

21

2

21 )()(
yyxx

ddddsz −+−= . 
zs describes the distance between 
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unit 1 and unit 2. Values of 
zs are calculated based on quantized values of 

21,ss . 

Corresponding CMAC module is assigned to each value of 
zs , so that only the positions that 

have the same pipe length as the position specified by an input are affected by the 

generalization.  

An example of generalization of SG-CMAC is illustrated in Fig.8. In the figure, 

,721 =Δ=Δ ,1.0,1 ==ρ g  d=1.0. The position of unit 1 is )3,2(),( 11 =
yx

dd  that is blue colored 

position in the right figure of Fig. 8. The result is obtained after sI=(4.0,4.0) is given once. 

Only positions that the distance from unit 1 is same as the input are updated by the 

generalization of SG-CMAC.  These positions are colored by yellow in the right figure of 

Fig. 8.   

 

 
 

Fig. 8. Generalization of SG-CMAC 

The outputs of all the weight tables are summed up to yield the output of the CMAC. For 
example, the output of the CMAC according to

iu and x is 

 ∑
=

=
k

p

tpjit wxuq
1

ref

,),( . (9) 

where ref

,tpw  ( kp ,,1A= ) are weights specified by the input  
iu  for the Q-table at time t. 

),( jit xuq  is updated by the update law of the CMAC. In other words, defining the output 

error at time t as et, the desired signal at time t as Qtand learning rate as g, weights are 

updated as follows:  

 ),(),(),( xuqxuQxue ititit −= . (10) 

 ),,1(   
),(ref

,

ref

1, kp
k

xue
gww it

tptp A=+=+
. (11) 

Then the desired signal ),( jit xuQ is calculated by the Q-learning algorithm eqs.(4)-(6). 

2s

1s

Is
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5. Computer simulations 

Computer simulations are conducted for the same plant described in Fig.6. That is, kc = 7,  

mc = 49. Minimum pipe lengths between two units are set as 

 

 
Then, learning performance of the following 3 methods are compared: 

(A) proposed method that Q-tables for 
2Q are SG-CMAC, 

(B) a method that conventional CMACs are used for Q-tables to store 
21,QQ , 

(C) a method that conventional table look-up method without generalization is used to 
construct Q-tables for 

2Q . 

In CMAC modules in method (A) and CMACs in method (B) for storing 
2Q , 3,3 ==ρ k . In 

CMACs in methods (A), (B) and (C) for
qQ , 6,8 ==ρ k . Parameters used in the proposed 

method are set as 0.1C,6.0,8.0 ===α g . Reward R=1.0 is given only when all the units has 

been allocated. A trial starts from a initial state and ends when all the units are allocated.  

Fig.8 shows examples of plant-layout obtained by method (A). For each unit 
Tc  

(
c,1 kT A= ), lengths of intake pipes 

Tjl are  

 

They are best values that satisfy constrains 
TjTj lL < , so that the total pipe length of the 

optimal layout is 37.1642453 ≈++ .  

Fig. 8 shows simulation results. The proposed method could find several optimal solutions, 

and 4 results that have shortest pipe length are shown in the figure. In the figure, results 

(I),(II),(III) and (IV) have different layouts, and thus the state x  for each solution is different 

to each other. While, the solution in result (I) is identical to solution (II) with horizontal shift. 

Also, the solution in result (II) is identical to solution (IV) with rotation, horizontal shift and 

vertical shift. Therefore, results (I) has the same 
Rx  as result (II) after unit 2 is allocated, and 

thus, the same Q-value is referred for the layout in the course of learning and input-selecting 

phase. In the same way, results (III) and (IV) are obtained by using the same Q-values. Once, 

a good layout is obtained, then, the corresponding Q-value is used for several layouts that 

are rotated/shifted from the original layout. Moreover, the information of a good layout is 

spread over adjacent positions of second unit by the generalization capabilities of SG-

CMAC. Therefore, the learning performance of the proposed method can be improved as 

compared to conventional methods that have fixed generalization capabilities. A simulation 

requires about 5 minutes as runtime and 500KBytes memory on a personal computer that 

has Pentium4 3GHz CPU. 

=TjL

)1;5,3,2( 0.2 == jT

)1;7,6( 5.1 == jT

)2,1;4( 5.2 == jT

=Tjl

)1;5,3,2( 5 == jT

)1;7,6( 0.2 == jT

)2,1;4( 22 == jT

www.intechopen.com



 Theory and Novel Applications of Machine Learning 

 

142 

Fig.9 depicts simulation results where the vertical axis shows the shortest pipe length that is 

found in the past trials and horizontal axis shows the number of trials. Each result is 

averaged over 10 independent simulations. In the figure, the proposed method (A) finds 

optimal solutions that have 16.37 as total pipe length in all simulations, whereas methods 

(B),(C) cannot. The learning performance of the conventional method (C) is better as 

compared to method (B) especially in early stages of learning. In method (B), by 

generalization of the conventional CMAC, inappropriate evaluations are spread over the 

region adjacent to inputs, so that the learning performance has been spoiled.  

6. Conclusions 

A design method for CMAC that has selective generalization (SG-CMAC) has been 

proposed. Also, a Q-learning system using SG-CMAC is proposed, and the proposed system 

is applied to allocation problem of chemical plant. In the computer simulations, the 

proposed method could obtain optimal solutions with feasible computational cost, and the 

learning performance was improved as compared to conventional methods.  

 
 

 
 
 

Fig. 8. Optimal lyaouts obtained by method (A) 
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Fig. 9. Performance comparison 
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