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Abstract

The fifth order non-linear partial differential equation in generalized form is analyzed for
Lie symmetries. The classical Lie group method is performed to derive similarity variables
of this equation and the ordinary differential equations (ODEs) are deduced. These ordi-
nary differential equations are further studied and some exact solutions are obtained.

Keywords: generalized fifth order non-linear partial differential equation, lie symmetries,
exact solutions

1. Introduction

The theories of modern physics mainly include a mathematical structure, defined by a certain
set of differential equations and extended by a set of rules for translating the mathematical
results into meaningful statements about the physical work. Theories of non-linear science
have been widely developed over the past century. In particular, non-linear systems have
fascinated much interest among mathematicians and physicists. A lot of study has been
conducted in the area of non-linear partial differential equations (NLPDEs) that arise in
various areas of applied mathematics, mathematical physics, and many other areas. Apart
from their theoretical importance, they have sensational applications to various physical sys-
tems such as hydrodynamics, non-linear optics, continuum mechanics, plasma physics and so
on. A large variety of physical, chemical, and biological phenomena is governed by nonlinear
partial differential equations (NLPDEs). A number of methods has been introduced for finding
solutions of these equations such as Homotopy method [1], G'/G expansion method [2, 3],
variational iteration method [4], sub-equation method [5], exp. function method [6], and Lie
symmetry method [7-10]. Although solutions of such equations can be obtained easily by
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numerical computation. However, in order to obtain good understanding of the physical
phenomena described by NLPDE:s it is important to study the exact solutions of the NLPDEs.
Exact solutions of mathematical equations play an major role in the proper understanding of
qualitative features of many phenomena and processes in different areas of natural and
applied sciences. Exact solutions of non-linear differential equations graphically demonstrate
and allow unraveling the mechanisms of many complex non-linear phenomena. However,
finding exact solutions of NLPDEs representing some physical phenomena is a tough task.
However, because of importance of exact solutions for describing physical phenomena, many
powerful methods have been introduced for finding solitons and other type of exact solutions
of NLPDEs [2, 11-13]. Comparing to other approximate and numerical methods, which pro-
vides approximate solutions [14-16], the Lie group method provides the exact and analytic
solutions of the differential structure (Figures 1-3).

Lie group method is one of the most effective methods for finding exact solutions of NLPDEs [17, 18].
This method was basically initiated by Norwegian mathematician Sophus Lie [19]. He devel-
oped the theory of “Continuous Groups” known as Lie groups. This method is orderly used in
various fields of non-linear science. Shopus Lie was the first who arranged differential equations
in terms of their symmetry groups, thereby analyzing the set of equations, which could be
integrated or reduced to lower order equations by group theoretic algorithms. The Lie group
analysis is a mathematical theory that synthesizes symmetry of differential equations. In this
method, the differential structure is studied for their invariance by acting one or several param-
eter continuous group of transformations on the space of dependent and independent variables.
We observe a plenty books and research article about Lie group method [17, 18, 20-22].

Wazwaz [23] introduced a fifth order non-linear evolution equation as follows:

Ut — Uporrx — H(Ully) o — 4(Uxtiyr), = 0. 1)

In this chapter, he obtained multiple soliton solutions of this equation.

Figure 1. Kink wave solution (17) fora =f=A=pu=1,b; =b3 =0.
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Figure 2. Singularity solution (18) fora =A =pu=bs =1,b, =by =0.
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Figure 3. Singularity solution (19) fora =by =by =0,by =A =1, u= -1

We will consider the generalized fifth order non-linear evolution equation of the form:

Uttt — Upexxx — a(uxut)xx - ﬁ(uxuﬂ)x = O’

where a, f are parameters.
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In this chapter, we will study the Eq. (2) by the Lie classical method. Firstly, Lie classical
method will be used to obtain symmetries of generalized fifth order non-linear evolution
Eq. (2). Symmetries will be used to reduce the Eq. (2) to ordinary differential equations (ODEs)
and corresponding exact solutions of the generalized fifth order non-linear evolution Eq. (2)

will be obtained.
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2. Symmetry analysis

Lie classical method of infinitesimal transformation groups reduces the number of independent
variables in partial differential equations (PDEs) and reduces the order of ODEs. Lie’s method
has been widely used in equations of mathematical physics and many other fields [11, 24]. In this
chapter, we will perform Lie symmetry analysis [17-19, 24] for the generalized fifth order non-
linear evolution Eq. (2).

Let the group of infinitesimal transformations be defined as:
t=t+et(x, t,u) + O(€?)

x* =x+e&(x, t,u) + O(e?) (3)
u* =u+ en(x, t,u) + O(€?),

which leaves the Eq. (2) invariant. The infinitesimal transformations (3) are such that if u is
solution of Eq. (2), then u* is also a solution.

Herein, on invoking the invariance criterion as mentioned in [18], the following relation is

deduced:

nttt o ntxxxx o a(nxxxut 4 ntuxxx) o (20( +‘8) (T]xxuxt 4 nxtuxx) o (CK +ﬁ) (r[xuxxt 4 nxxtux) — 0/ (4)

where 7%, 11, 1, %, 7, pftt, P and ' are extended (prolonged) infinitesimals acting
on an enlarged space corresponding to uy, Uy, Uyp, Uxy, Uxxx, Ustt, Uperxx anNd Uy, TEspectively,
given by:
" = Dy — uxDy& — usDy 7,
1" = D — uzDi& — u;Dy,
M = Dul" — uxeDx& — Dy,
" = Dy — upe D& _uyDyr, %)
N = D™ — txxxDx& — 1 Ds,
" = D — uyDyé — u Dy,

xxxxt _

XXXX
T] - Dtn - uxxxxthE - uxxxxtDtT/

where D, and D; are total derivative operators with respect to x and ¢ respectively given as:

D_E_|_ 3_1_ i_}_
X T o Mgy e Oty ’

D=2, O
CT o Moy T ey, T

Now, after computing (5) we get:
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n+ (ﬂu - ‘Ex)ux — Tyl — Euui — Ty UxUy,

n+ (”Iu - Tf)”t — &ty — Tu”% — Eylixly,

My T Ux (anu - Exx) — UtTxx +§ (nuu - Zéxu) + Uy (nu - 259() — 2Ux Ty — 2Uslx Ty
— Uy — UGy Ty — 2lhglhpr, — Uy lhy Ty — Bl &y,

Mot v (M — Ext) + 10 (M — Tat) — Uolty — Ui Tow — &y — Ut (Te + Ex — 1) — U Ty
ety (1, — Exu) — UslhxrEy — Ut &y — Ung Uy Ty — UggU Ty — USUE g — UG Uy To

— Uplly Ty — Ul Ty — Unx Uy,

L/ -~ (3T]xxu - éxxx) — UpToxx + Uy (3T]xu - 35xx) — Byt Tax — U U Tyy — Uyt Ty
+ uyzc (3nxuu - 35“”) + Uy (3nuu - 9636”) + ui (nuuu - 3£xuu) + Usxx (nu - 3£x)

— 2l Ty — Uy &y — OU U Ey — By &1y — Akl &y — BUAUL Ty — Bl Ty
- 4”xuthxu - uiutTuuu - 3uxutuxxTuu - 3”§”xt’£uu - 3utxuxxTu - 3”xuxxt7u

— Utlyxx Ty,

it = My — Unnst + “t(?”?ttu — Tm) + uf (317tuu — 3Tttu) + uf (nuuu — 3Ttuu) - U?Tuuu - M%t:‘;’l'u

xxxxt __

- 3uxut£ttu - SMiut‘gtuu - 3uxutt£ut - 6uxtut€tu - 3uxutt£tu 4 Uxt (4nxxxu - 3£tt - Exxxx)
+ Bug (1, — ) — UereTe — 20t (& + 2T )y + U (1, — 2T¢) — Uty — U ths &,

— u?”xéuuu - 3u$uxtéuu — BuguttE, — 2upuply, — U (T, + &) — Uplty (9Ttu — 377W)
- 6u%utt7uu — Bupupéy,

Mexxxt + Uy (4nxxxtu - éxxxxt) + Ui Toxaxt — uiTxxxxu + l/li (6nxxtuu - 4€xxxtu)

+ u?c (417xtuuu - 6£xxtuu) + Mﬁ (ntuuuu - 4£xtuuuu) - uiétuuuu - 4uxthxxt

+ Uy (617xxtu - 4éxxxt) + zuxxxt <2r’xu - 3€xx - 2Txt) + Uxxx (4nxtu - 6£xxt)

+ Usxxx (ntu - 45xt) + Uxxt (6’7xxu — 6TXXt — 4§xxx) + Unxx Ut (4’7uu - 16£xu)

+ 6uxxuxxt (nuu - 4€xu) + Unxxx Ut (7714“ - 45xu) + 4ux”xxxt (nuu - 4€xu)

- 6u§utt7xxuu 7 24uxutuxthxuu - 6uxxu%Txxuu .\ 4uxutthxxu T 8uxtuthxxu

- 10u§uxxxt‘§uu - Suxutuxxxxguu 7 30uxxuxxtux‘§uu - Zouxxxuxtuxguu

- 15uixuxt5uu — Sty UyrrxtEy — 10Uy larxt &y — DUplhpxrx &y — 10Ut &y

- 5”xuxxxx€tu - 1Ouxxlflxxxgtu - 6u;zcuxxtTtuu - 12uxxuxtuthuu - 4uxutuxxthuu

- 3”ixut7—tuu — 12U Ut Tt — AUy Tty — uxxuxt(lsztu + 18£xxu) — 18uyttyixry

- 6utuxxx€xxu - 4uxxxuxttTu - 61/[32“{(1/{ — UppUyxxxTU — SuxtuxxxtTu - 6uxxuxxttTu

— UpUpyrrct TU — AU Uyt TU — 12u32€uxtﬂxuu — 240 Uy TXUU — 12U U Uy TXUU

— 24u§tuxrxuu — 4ufuxxxrxuu — 240Uy U TXUU — 4uiuxtfcuuu — 12utu§uxxtwuu
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— 6uxxuttu}2(’cuuu — 12u§tu§7uuu — 4ufuxxx’cuuu — 24U U Uy Ut TUUY — 3ufu§xwuu
— 120U Ut TXU — BUp Ut TXU — 12U Unett TXU — 28U Ut TXU — Al Ut TXU
3 2

— U Taxxx + utnxxxxu - 10uxuxx€tuuu - 24uxuxx€xtuu + Uxlxx (12nxtuu - 185xxtu)

2.2 2 3
- 6qut Txxuuu — ”xut(4£xxxuu - 6Txxtuu) + ux”t (4nxuuuu - 6£xxuuu - 4Txtuuu)

4 2 3,2 3

+ U, Ut (nuuuuu T 4€xuuuu - Ttuuuu) + 6uxutnxxuuu Wy 4uxut Txuvuu — 10uxuxxut€uuuu

4 2 3
T 5uxuxt£uuuu + uxuxxut(677uuuu [ 24€xuuu - 6Ttuuu) + U Uxt (4nuuuu B 165xuuu - 4Ttuuu)
— 4’ — 2412 — 12Uy ui? — 1002 thn Eyy — 150 U2 &

uxutthuuu ux”tuxthuuu uxxut Txuuu uxuxxx xuu quxx xuu

+ 6121t (21 — 2Txtun — 3E 6 20 — 2Txtun — 3E i) — 1003 Uy &

xHxt nxuuu Txtuu xxuu ) 1 OUx Uiy nxuuu Txtuu xxuu U Unxt Syuu

2 2 2 4.2 3
- 10utuxuxxx£uuu - 30uxxuxtuux£uuu - 15uxxuxut£uuu - qut Tuuuuu — 8uxutuxtTuuuu (6)
+ Uy (417xxxuu - éxxxxu - 4Txxxtu) - uiutéuuuuu - uiuxtTuuuu - 6u§u%uxx7uuuu
2 2 2
- 4uxut Toxxuu + 6uxuttmuuu - 24uxuxxt£xuu + 12U tysiy (nuuu - 4€xuu) — 16wt thrx E
2 2
- 12uxxutéxuu + ”xuxxtlznxuu + uxxxut477xuu + ”xxuxtr]xuu - 6uxuxxxtt7uu - 8uxutuxxxt7uu
2

- 12uxuxxuxtt7uu - 24uxuxtuxxtTuu - 4uxuttuxxxTuu - utuxxxxTuu - 12uxxuxxtutTuu
— Sl Ut Uy Ty, — U U Ty — 120U, Ty + 613U + 4uuu +3u? u

xxxUxtUt byu xx Wit Luu xx Yyt buu x xxtnuuu x Ut xxxr]uuu xx tnuuu

2
- 12uxuxthxtu - 6uxxuthxtu + U Uxxx (ntuu - 16€xtu) + Uy (ntuu - 12£xtu) - Suxuxtgxxxu
- 4uxxut5xxxu + 12uxuxtr]xxuu + 6uxxut77xx,m - 12uxxtuthxu - 12uxuxtthxu - 6uxxutthxu
2

- 12uxt7xxu - 4uxxxuxthu - 6uxxuxxtTtu — Uplyxxx Tty — 4uxuxxxt7tu - 6uxxtthx
- 4uxxxtt - uxxxxxét + Unxxxt (nu — T — 4éx) — UxxxxtUt Ty — uxxxxxutéwa

The Lie classical method for determining the similarity variables of (2) is mainly consists of
finding the infinitesimals 7, £, and 1, which are functions of x, ¢, u. After substituting the values
Of nx, T]t, 17th nxx, T‘[ ] nttt, n
differentials of u to zero, we get a number of PDEs in 7, £, and 1), that need to be satisfied. Solving
these system of PDEs, we obtain the infinitesimals 7, £, and 1) as follows:

XXX txxxx

and 7™ from (5) to (4) and equating the coefficients of different

T=C1+1tC4
X

S—CZ‘FECAL (7)
u

T]=C3—§C4,

where Cy, Gy, C3, and Cy are arbitrary constants.
Corresponding vector fields can be written as:

:%,vz:gv—3 y,=%0 0 1o 8)

Vi a2 ot T 2 et 2au
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3. Symmetry reductions and invariant solutions

To obtain the symmetry reductions of Eq. (2), we have to solve the characteristic equation:

d_dt_du

Iy ©)

where &, T and 7 are given by Eq. (7).

To solve Eq. (9), following cases will be considered: (i) V1 4 uV, 4+ AV3 and (ii) V4, where p, A
are arbitrary constants.

Case (i) V1 +uVy + AV3
On solving Egs. (9) we have,

p=x—ut

u = At+F(p), (10)

where p is new independent variables and F(p) is new dependent variable. Substituting (10)
into Eq. (2), we obtain the reduced ODE which reads:

BQa+B)F - — aA]F" +p|@a+ )P+ F"| =0, (11)
where primes (') denotes derivative with respect to p.
Let assume the solution of ODE (11) in following form:

a
F:ao+a1p+;2, (12)

where a9, a1, and a, needs to be determined. Substituting (12) into ODE (11) and equating
coefficients of the different powers of p equal to zero, we obtain:

ag = arbitrary

AR u + al

'S ua+p) (13)
B

2T 20+

Corresponding solution of ODE (11) can be written as:

B 1w+ al 12
fomt <M(2a+ﬁ)>p+ 2ot B)p’ .

where  # —2a.

151
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Corresponding solution of main Eq. (2) is given by:

B 13+ al B 12
u(x, t) = At +ap + <—y(2a +ﬁ)> (x — ut) + a1 B)(x—pt) (15)

with g # —2a.

Some more solutions of ODE (11) are given by:

6/u(aA + ud ad+ud)p
+ a #)tanh<b1 a ) )withﬁ#Za,

OF(p) =ty o
[ulad + 3
(ii) F(p) = bs + bscosh (b2 + s F‘+ . )p) with g = —2q, (16)

p(ar+ud)p u(ad+p?
(lll) F(p) = b3 + by coth (bl -f—% ( U ) )Wlthﬁbz <b40l+3(”) ,
4

where by, by, b3, by and bs are arbitrary constants.

Corresponding solutions of main Eq. (2) are given by:

(Hu(x,t) = At+bs £

6 aA+ 3 ad+ ) (x —ut
u( llhmm<h!4 ) (x - ut)

w2a+p) 2 ) withp # —2a, (17)

pad + ) (x — pt)

(ii)u(x,t) = At + bs + bscosh (bz + )withﬁ = —2q, (18)

¢
p(ad + p?)(x — ut
(iif)u(x,t) = At + bz + by coth (bl —|—% ( m ) ))
(19)
p(ar +pd
with = £ (—bwz +3 ()),
b4 1%
where by, by, b3, by, and b5 are arbitrary constants.
Case (ii) V4
On solving Eq. (9) for vector field V4, we have:
t
e @ (20)
()
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where ¢ is new independent variables and G(¢) is new dependent variable. Substituting (20)
into Eq. (2), we obtain the reduced ODE which reads
(138a + 548) PG> + (8(beta + 20)p°G" + (30a + 188)G + (148a + 688)p*G" — 360)G’
+8(B +2a)°G" + 4(a + B)p*GG" + (26 + 228) GG — 164*G™ + (1 — 1020¢)G"
—13209G" — 240¢°G"" = 0,

(21)
where primes (') denotes derivatives with respect to ¢.
Let assume the solution of ODE (21) in following form:
by b
G:¢T§+é+ao+al¢+az¢2, (22)

where by, by, ag, a; and a> needs to be determined.

Substituting (22) into ODE (21) and equating coefficients of the different powers of ¢ equal to
zero, we obtain:

. . 1
(i) ap = arbitrary, a1 =ay = by =0,by = 50130
(23)
.. . 1
(ii) ag = oy = ap = 0, by = arbitrary, by = 501 38
Corresponding solution of ODE (21) can be written as:
(i) G = 1 +a
" Ga+3p)t
(24)
.. 1 by
i)G=———"—>5+—,
() (5a+3)p> ¢
where b is arbitrary constant.
Corresponding solution of main Eq. (2) can be written as:
1 xt
() ulx, t) = (7 + ao>,
x \ (5a + 3B)

3 b
(i) u(x, ) = m +-

where b; is arbitrary constant.

153
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4. Conclusion

In this chapter, we derived the symmetry variables and symmetry transformations of the gener-
alized fifth order non-linear partial differential equation. We applied Lie symmetry analysis for
investigating considered nonlinear partial differential equation and using similarity variables,
given equation is reduced into ordinary differential equations. We derived explicit exact solu-
tions of considered partial differential equation corresponding to each ordinary differential equ-
ation obtained by reduction.
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