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Brazil 

1. Introduction 

The idea of using agents that can learn to solve problems became popular in the artificial 
intelligence field, specifically, in machine learning technics. Reinforcement learning (RL) is 
part of a kind of algorithms called Reward based learning. The idea of these algorithms is not 
to say to the agent what the best response or strategy, but, indicate what the expected result 
is, thus, the agent must discover what is the best strategy for obtaining the desired result. 
Reinforcement learning algorithms calculate a value function for state predicates or for 
state-action pairs, having as goal the definition of a policy that best take advantage of these 
values. 
Q-learning (Watkins, 1989) is one of the most used reinforcement learning algorithms. It was 
widely applied  in several problems like learning in robotics (Suh et al., 1997; Gu & Hu, 
2005), channel assignment in mobile communication systems (Junhong & Haykin, 1999), in 
the block-pushing problem (Laurent & Piat, 2001), creation of electricity supplier bidding 
strategies (Xiong et al. 2002), design of intelligent stock trading agents (Lee et al., 2004), 
design of a dynamic path guidance system based on electronic maps (Zou et al., 2005),  
mobile robots navigation (Barrios-Aranibar & Alsina, 2004; Tanaka et al., 2007), energy 
conservation and comfort in buildings (Dalamagkidis et al., 2007), resource allocation 
(Usaha & Barria, 2007; Vengerov, 2007), and others. 
In the other hand, the use of multi-agent systems became popular in the solution of 

computacional problems like e-commerce  (Chen et al., 2008), scheduling in transportation 

problems (Mes et al., 2007), estimation of energy demand (Toksari, 2007), content based 

image retrieval (Dimitriadis et al., 2007), between others; and in the solution of problems 

involving robots like mail sending using robots (Carrascosa et al., 2008), rescue missions 

(Rooker & Birk, 2005), mapping of structured environments (Rocha et al., 2005), and others. 

Also, Q-learning and derived algorithms were applied in multi-agent problems too. For 
example a fuzzy Q-learning was applied to a multi-player non-cooperative repeated game 
(Ishibuchi et al., 1997), a hierarchical version of Q-learning (HQL) was applied to learn both 
the elementary swing and stance movements of individual legs as well as the overall 
coordination scheme to perform forward movements on a six legged walking machine 
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(Kirchner, 1997), a modular Q-learning was applied to multi-agent cooperation in robot 
soccer (Park et al., 2001), Q-learning was independently applied in a group of agents making 
economic decisions (Tesauro & Kephart, 2002),  and others. 
However, when applying Q-Learning to a multi-agent system (MAS), it is important to note 

that this algorithm was developed for single agent problems. Thus, application of it in MAS 

problems can be made in several forms. They can be grouped in four paradigms: Team 

learning, independent learning, joint action learning and influence value learning. The last 

proposed by authors in previous works (Barrios-Aranibar & Gonçalves, 2007a; Barrios-

Aranibar & Gonçalves, 2007b; Barrios-Aranibar & Gonçalves, 2007c). 

In this work authors explain the so called IVQ-learning algorithm, which is an extension of 

the Q-learning algorithm using the concepts of the influence value learning paradigm. In 

this sense, this chapter is organized as follows: In section 2 we explain the Q-learning 

algorithm and analyse some extension to it, in section 3  we discuss the four paradigms of 

application of reinforcement learning in MAS, specially focused in the extensions to Q-

learning algorithm,  in section 4 we present our algorithm called IVQ-learning and, in 

section 5 all results of using this algorithm obtained until now are resumed. Finally, 

conclusions and trends for future works are discussed in section 6. 

2. Q-learning 

Q-learning is a temporal difference algorithm, where the agent learn independently the 

action selection policy it is executing. It is important to note that the policy still has an effect 

in that it determines which state-action pairs are visited and updated. However, all that is 

required for correct convergence is that all pairs continue to be updated. (Sutton and Barto, 

1998). The basic form of the equation for modifying state-action pair value is given by 

equation 1. 

 
( ( ), ( )) ( ( ), ( )) ( ( 1)

max[ ( ( 1), )] ( ( ), ( )))
a A

Q s t a t Q s t a t r t

Q s t a Q s t a t

α
γ

∈

← + + +
+ −  (1) 

where Q(s(t),a(t)) is the value of action a(t) executed by the agent, α is the learning rate 

(0≤α≤1), γ is the discount rate (0≤γ≤1), r(t+1) is the instantaneous reward obtained by the 

agent and A is the set of actions agent can execute. 

In equation 1 can be observed that algorithm updates states action pairs using the maximum 

of the values of actions of possible next state. The last can be verified in the backup diagram 

showed in figure 1. Q-learning algorithm is showed in algorithm 1. 
 

 

Fig. 1. Backup Diagram of the Q-Learning Algorithm (Source: Sutton & Barto, 1998) 
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Algorithm 1. Q-learning algorithm  

Require: Initialize Q(s,a) with arbitrary values 

for all episodes do 

       Initialize s(0) 

       t ←0 

       repeat 

              Choose action a(t) in state s(t), using a policy derived from Q 

              Execute action a(t), observe r(t +1) and s(t +1) 

              
( ( ), ( )) ( ( ), ( )) ( ( 1)

max[ ( ( 1), )] ( ( ), ( )))
a A

Q s t a t Q s t a t r t

Q s t a Q s t a t

α
γ

∈

← + + +
+ −  

              t ←t +1 

       until s(t) being a terminal state 

end for 
 

Watkins and Dayan proved the convergence of this algorithm when the sequence of 

episodes that forms the basis of learning include an infinite number of episodes for each 

starting state and action (Watkins & Dayan, 1992). Also, Tsitsiklis proved its convergence 

over more general conditions (Tsitsiklis, 1994). 

Several extensions of this algorithm were proposed. Extensions generally aim to overpass 

some drawbacks that appear when Q-learning algorithms are applied to specific fields or 

kind of problems. Some of this extensions include, but are not limited to: 

1. The FQ-Learning (Berenji, 1994), which is a Fuzzy Q-Learning algorithm for decision 
processes in which the goals and/or the constraints, but not necessarily the system 
under control, are fuzzy in nature.  

2. The QLASS algorithm (Murao & Kitamura, 1997), which is a Q-learning algorithm with 
adaptive state segmentation specially created for learning robots that need to construct 
a suitable state space without knowledge of the sensor space. 

3. The  Region-based Q-learning (Suh et al., 1997), which was developed for using in 
continuous state space applications. the method incorporates a region-based reward 
assignment being used to solve a structural credit assignment problem and a convex 
clustering approach to find a region with the same reward attribution property. 

4. The Bayesian Q-learning (Dearden et al., 1998), which is a learning algorithm for 
complex environments that aims to balance exploration of untested actions against 
exploitation of actions that are known to be good. 

5. The kd-Q-learning (Vollbrecht, 2000), which is an algorithm for problems with 
continuous state space. It approximates the quality function with a hierarchic 
discretization structure called kd-tree. 

6. The SQ-learning (Kamaya et al., 2000), which is memoryless approach for reinforcement 
learning in partially observable environments.  

7. The Continuous-Action Q-Learning (Millán et al., 2002), a Q-learning method that 

works in continuous domains. It uses an incremental topology preserving map (ITPM) 

to partition the input space, and incorporates a bias to initialize the learning process. 

8. The SA-Q-learning (Maozu et al. 2004), where the Metropolis criterion of simulated 

annealing algorithm is introduced in order to balance exploration and exploitation of Q-

learning. 
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3. Q-learning in multi agent systems 

As explained in section 2, sometimes it is necessary to extend the Q-learning algorithm in 
order to overpass some problemas that appear when developers try to apply it in some 
fields. When applying it in multi-agent systems the same occurs. 
Specifically, two problems appear, the size of the state space and the convergence capacity 
of the algorithm. The first problem is related to the fact that agents position in the 
environment must be part of the state in the system. Thus, when the number of agents 
increase, the size of the state space increase too and the problem can became 
computationally intractable. The second problem is related to the fact that Q-learning 
algorithm and almost all traditional reinforcement learning algorithms were created for 
problems with one agent, thus, convergence is not assured when these algorithms are 
applied to MAS problems. 
For solving the first problem, three general approaches could be identified: State abstraction, 
function approximation and hierarchic decomposition (Morales & Sammut, 2004). One 
example of these efforts for solving this problem is the work of Ono et al., which developed 
an architecture for modular Q-learning agents, which was designed for reducing each 
agent’s intractably enormous state space caused by the existence of its partners jointly 
working in the same environment (Ono et al., 1996). 
However, the second problem can be considered a critical one. For this reason, this chapter 
is devoted to it. Two trends can be distinguished: The first one relies in the construction of 
hybrid algorithms by combining Q-learning or other RL algorithms with other technics like 
k-neighbours algorithm (Ribeiro et al., 2006) or by combining it with concepts or other fields 
like pheromone concept from swarm intelligence (Monekosso & Remagnino, 2004). 
The pheromone-Q-learning algorithm (phe-Q) deserves especial attention because in this 
algorithm agents “influence”, in certain way, behaviour of other agents. This algorithm was 
developed to allow agents to communicate and jointly learn to solve a problem (Monekosso 
and Remagnino, 2004). Equation for modifying state-action pair value for an i agent using 
this algorithm is given by equation 2. 

 
( ( ), ( )) ( ( ), ( )) ( ( 1)

max[ ( ( 1), ) ( ( 1), )] ( ( ), ( )))
i i

i i

i i i
a A

Q s t a t Q s t a t r t

Q s t a B s t a Q s t a t

α
γ ξ

∈

← + + +
+ + + −  (2) 

where Q(s(t),ai(t)) is the value of action ai(t) executed by agent i, α is the learning rate 

(0≤α≤1), γ is the discount rate (0≤γ≤1), r(t+1) is the instantaneous reward obtained by agent i, 

ξ is a sigmoid function of time epochs, and B(s(t),ai(t)) is defined by equation 3  

 
max

( )

( ( ), ( ))
( )

s Na

i

Na

s

B s t a t

σ
σ

∈

∈

Φ
=

Φ

∑
∑

 (3) 

where Φ(s) is the pheromone concentration at a point,  s in the environment and Na is the set 
of neighbouring states for a chosen action a. The belief factor is a function of the synthetic 

pheromone Φ(s), a scalar value that integrates the basic dynamic nature of the pheromone, 
namely aggregation, evaporation and diffusion. 
The second trend of application of RL algorithms relies in the application of algorithms 
without combining it with any other technic or concept. Thus, agents will use only the 
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information existing in the traditional algorithms. As an example, if developers use Q-
learning, agents will trust only in Q values and immediate rewards. 
In  this sense, there exist four paradigms for applying algorithms like Q-learning in multi-
agent systems: Team learning, independent learning, joint action learning and influence 
value reinforcement learning. 
The paradigm where agents learn as a team is based in the idea of modelling the team as a 

single agent. The great advantage of this paradigm is that the algorithms do not need to be 

modified (For Q-learning implementations, the algorithm 1 is used). But, in robotics and 

distributed applications, it can be difficult to implement because we need to have a 

centralized learning process and sensor information processing. 

An example of this paradigm using reinforcement learning is the work of Kok and Vlasis 

(2004) that model the problem of collaboration in multi-agent systems as a Markov Decision 

Process. The main problem in their work and other similar works is that the applicability 

becomes impossible when the number of players increases because the number of states and 

actions increases exponentially. 

The problems reported in learning as a team can be solved by implementing the learning 

algorithms independently in each agent. Thus, in the case of Q-learning, each agent will 

implement the algorithm 1 without modifications. Several papers show promising results 

when applying this paradigm (Sen et al., 1994; Kapetanakis & Kudenko, 2002; Tumer et al., 

2002). However, Claus and Boutilier (1998) explored the use of independent learners in 

repetitive games, empirically showing that the proposal is able to achieve only sub-optimal 

results. The above results are important when analyzed regarding the nature of the used 

algorithms. It may be noted that the reinforcement learning algorithms aim to take the agent 

to perform a set of actions that will provide the greatest utility (greater rewards). Below that, 

in problems involving several agents, it is possible that the combination of optimal 

individual strategies not necessarily represents an optimal team strategy. In an attempt to 

solve this problem, many studies have been developed. An example is the one of 

Kapetanakis & Kudenko (2002) which proposes a new heuristic for computing the reward 

values for actions based on the frequency that each action has maximum reward.  They have 

shown empirically that their approach converges to an optimal strategy in repetitive games 

of two agents. Also, they test it in repetitive games with four agents, where, only one agent 

uses the proposed heuristic, showing that the probability of convergence to optimal 

strategies increases but is not guaranteed (2004). Another study (Tumer et al., 2002) explores 

modifications for choosing rewards. The problem of giving correct rewards in independent 

learning is studied. The proposed algorithm uses collective intelligence concepts for 

obtaining better results than by applying algorithms without any modification and learning 

as a team. Even achieving good results in simple problems such as repetitive games or 

stochastic games with few agents, another problem in this paradigm, which occurs as the 

number of agents increase, is that traditional algorithms are designed for problems where the 

environment does not change, that is, the reward is static. However, in multi-agents systems, 

the rewards may change over time, as the actions of other agents will influence them. 

In the current work, although independent learning uses the algorithm 1 without 
modifications, we will call this algorithm as IQ-Learning. 
One way for solving the problem of the independent learning model is learn the best 

response to the actions of other agents. In this context, the joint action learning paradigm 
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appears. Each agent should learn what the value of executing their actions in combination 

with the actions of others (joint action) is. By intuits a model for other agents, it must 

calculate the best action for actions supposed to be executed by colleagues and/or 

adversaries (Kapetanakis et al., 2003; Guo et al., 2007). Claus & Bouitilier (1998) explored the 

use of this paradigm in repetitive games  showing that the basic form of this paradigm does 

not guarantee convergence to optimal solutions. However, the authors indicate that, unlike 

the independent learning algorithms, this paradigm can be improved if models of other 

agents are improved. 

Other examples include the work of Suematsu and Hayashi that guarantee convergence to 

optimal solutions (Suematsu & Hayashi, 2002).  The work of Banerjee and Sen (Banerjee & 

Sen, 2007) that proposes a conditional  algorithm for learning joint actions, where agents 

learn the conditional probability of an action be executed by an opponent be optimal. Then, 

agents use these probabilities for choosing  their future actions. The main problem with this 

paradigm is the number of combinations of states and actions that grows exponentially as 

the number of states, actions and/or agents grows. 

A modified version of the traditional Q-Learning, for joint action learning, the so called 

JAQ-Learning algorithm (algorithm 2), is defined by the equation 4. 

 
1,...,

( ( ), 1( ),..., ( )) ( ( ), 1( ),..., ( ))

( ( 1) max ( ( 1), 1,..., ) ( ( ), 1( ),..., ( )))

i i

i i
a aN

Q s t a t aN t Q s t a t aN t

r t Q s t a aN Q s t a t aN tα γ
← +

+ + + −  (4) 

where ait is the action performed by the agent i at time t; N is number of agents, 

Qi(s(t),a1(t),...,aN(t)) is the value of the joint action (a1(t),...,aN(t)) for agent i in the state s(t). 

r(t+1) is the reward obtained by agent i as it executes action ai(t) and as other agents execute 

actions a1(t),...,ai-1(t),ai+1(t),...,aN(t) respectively, α is the learning rate (0≤α≤1), γ is the 

discount rate (0≤γ≤1). 

An agent has to decide between its actions and not between joint actions. For this decision, it 

uses the expected value of its actions. The expected value includes information about the 

joint actions and the current beliefs about other agent that is given by (Equation 5): 

 ( (t), ) ( (t), )* Pr ( )
i i

i t i
a A j i

EV s ai Q s a ai a j
− −

− −
∈ ≠

← ∪∑ ∏  (5) 

where ai is an action of agent i, EV(s(t),ai) is the expected value of action ai in state s(t), a-i is a 
joint action formed only by actions of other agents, A-i is the set of joint actions of other 

agents excluding agent i, Q(s(t),a-i∪ai) is the value of a joint action formed by the union of 
the joint action a-i of all agents excluding i with action ai of agent i in state s(t) and Prt(a-ij) is 
the probability of agent j performs action aj that is part of joint action a-i in state st. 
Finally, the learning by influence value paradigm proposed by authors in previous work 
(Barrios-Aranibar & Gonçalves, 2007a; Barrios-Aranibar & Gonçalves, 2007b) is based on the 
idea of influencing the behaviour of each agent according to the opinion of others. The value 
of state-action pairs will be a function of the reward of each agent and the opinion that the 
other players have on the action that the agent execute individually. This opinion should be 
a function of reward obtained by the agents. That is, if an agent affects the other players 
pushing their reward below than the previously received, they have a negative opinion for 
the actions done by the first agent. 
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Algorithm 2. JAQ-learning algorithm for an agent i 

Require: Initialize Qi(s,a1,...,aN) with arbitrary values 
for all episodes do 
       Initialize s(0) (the same initial state for all agents) 
       t ←0 
       repeat 

              ( (t), ) ( (t), )* Pr ( )
i i

i i i t i
a A j i

EV s ai Q s a ai a j
− −

− −
∈ ≠

← ∪∑ ∏  

              Choose action ai(t) in state s(t), using a policy derived from EVi 
              Execute action ai(t), observe r(t +1) and s(t +1) 
              Observe actions of all agents in the system (a1(t),...,ai-1(t),ai+1(t),...,aN(t)) 

              
1,...,

( ( ), 1( ),..., ( )) ( ( ), 1( ),..., ( ))

( ( 1) max ( ( 1), 1,..., ) ( ( ), 1( ),..., ( )))

i i

i i
a aN

Q s t a t aN t Q s t a t aN t

r t Q s t a aN Q s t a t aN tα γ
← +

+ + + −  

              t ←t +1 
       until s(t) being a terminal state 
end for 

 

From the theoretical point of view, the model proposed does not have the problems related 
to the paradigms of team learning and joint action learning about the number of actors, 
actions and states. Finally, when talking about possible changes of rewards during the 
learning process and that the agent must be aware that the rewards may change because of 
the existence of other agents, authors conjecture that this does not represent a problem for 
this paradigm, based on experiments conducted until now. 
This paradigm is based on social interactions of people. Some theories about the social 
interaction can be seen in theoretical work in the area of education and psychology, such as 
the work of Levi Vygotsky (Oliveira & Bazzan, 2006; Jars et al., 2004).  
Based on these preliminary studies on the influence of social interactions in learning, we 
conjecture that when people interact, they communicate each other what they think about 
the actions of the other, either through direct criticism or praise. This means that if person A 
does not like the action executed by the person B, then A will protest against B. If the person 
B continue to perform the same action, then A can become angry and protest angrily. We 
abstract this phenomenon and determined that the strength of protests may be proportional 
to the number of times the bad action is repeated. 
Moreover, if person A likes the action executed by the person B, then A must praise B. Even 
if the action performed is considered as very good, then A must praise B vehemently. But if 
B continues to perform the same action, then A will get accustomed, and over time it will 
cease to praise B. The former can be abstracted by making the power of praise to be 
inversely proportional to the number of times the good action is repeated. 
More importantly, we observe that protests and praises of others can influence the behaviour 
of a person. Therefore, when other people protest, a person tries to avoid actions that caused 
these protests and when other people praise, a person tries to repeat actions more times. 

4. IVQ-learning 

Inspired in the facts explained before, in influence value paradigm, agents estimate the 
values of their actions based on the reward obtained and a numerical value called influence 
value. The influence value for an agent i in a group of N agents is defined by equation 6. 
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(1: ),

( )* ( )
i i j

j N j i

IV j OP iβ
∈ ≠

← ∑  (6) 

Where βi(j) is the influence rate of agent j over agent i, OPj(i) is the opinion of agent j about 
the action executed by agent i. 

The influence rate β determine whether or not an agent will be influenced by opinions of 
other agents. OP is a numerical value which is calculated on the basis of the rewards that an 
agent has been received. Because in reinforcement learning the value of states or state-action 
pairs is directly related to rewards obtained in the past, then the opinion of an agent will be 
calculated according to this value and reward obtained at the time of evaluation (Equation 7). 

 
* ( ( ), ( )) 0

( )
*(1 ( ( ), ( )))

j i j

j

j i

RV Pe s t a t If RV
OP i

RV Pe s t a t In other case

≤⎧
← ⎨ −⎩

 (7) 

Where  

 max ( ( 1), ) ( ( ), ( ))
j j

j j j j
a A

RV r Q s t a Q s t a t
∈

← + + −  (8) 

For the case to be learning the values of state-action pairs. Pe(s(t),ai(t)) is the occurrence 
index (times action ai is executed by agent i in state s(t) over times agent i have been in state 
s(t)). Q(s(t),aj(t)) is the value of the state-action pair of the agent j at time t. And, Aj is the set 
of all actions agent j can execute. Thus, in the IVQ-learning algorithm based on Q-Learning, 
the state-action pair value for an agent i is modified using the equation 9. 

 
( ( ), ( )) ( ( ), ( )) ( ( 1)

max ( ( 1), ) ( ( ), ( )) )
i i

i i

i i i
a A

Q s t a t Q s t a t r t

Q s t a Q s t a t IV

α
γ

∈

← + + +
+ − +  (9) 

where Q(s(t),ai(t)) is the value of action ai(t) executed by agent i, α is the learning rate 
(0≤α≤1), γ is the discount rate (0≤γ≤1).And, r(t+1) is the instantaneous reward obtained by 
agent i. 
In this sense, the IVQ-Learning algorithm that extends the Q-learning algorithm by using 
equations 6 to 9 is presented in algorithm 3. 
 

Algorithm 3. IVQ-learning algorithm for an agent i 

Require: Initialize Q(s,ai) with arbitrary values 
for all episodes do 
       Initialize s(0) (the same initial state for all agents) 
       t ←0 
       repeat 

              Choose action ai(t) in state s(t), using a policy derived from Q 
              Execute action ai(t), observe r(t +1) and s(t +1) 

              max ( ( 1), ) ( ( ), ( ))
i i

i i i i
a A

RV r Q s t a Q s t a t
∈

← + + −  

              Observe actions of all agents in the system (a1(t),...,ai-1(t),ai+1(t),...,aN(t)) 
              for j  = all agents except i do 

                     
* ( ( ), ( )) 0

( )
*(1 ( ( ), ( )))

i j i

i

i j

RV Pe s t a t If RV
OP j

RV Pe s t a t In other case

≤⎧
← ⎨ −⎩
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              end for 

              Observe opinions of all agents in the system (OP1(i),..., OPi-1(i), OPi+1(i),..., OPN(i)) 

              
(1: ),

( )* ( )
i i j

j N j i

IV j OP iβ
∈ ≠

← ∑  

              
( ( ), ( )) ( ( ), ( )) ( ( 1)

max ( ( 1), ) ( ( ), ( )) )
i i

i i

i i i
a A

Q s t a t Q s t a t r t

Q s t a Q s t a t IV

α
γ

∈

← + + +
+ − +  

              t ←t +1 
       until s(t) being a terminal state 
End for 

5. Experimental results 

This section summarizes results obtained by using IVQ-learning algorithm in comparison 
with the IQ-learning ang JAQ-Learning algorithms (Barrios-Aranibar & Gonçalves, 2007a; 
Barrios-Aranibar & Gonçalves, 2007b; Barrios-Aranibar & Gonçalves, 2007c).  
Before talking about our results, it is important to know that when talking about cooperative 
agents or robots, it is necessary that agents cooperate on equality and that all agents receive 
equitable rewards for solving the task. Is in this context that a different concept from the 
games theory appears in multi-agent systems. This is the concept of the Nash equilibrium. 

Let be a multi-agent system formed by N agents. σ*i is defined as the strategy chosen by the 

agent i, σi  as any strategy of the agent i, and Σi  as the set of all possible strategies of i. It is 

said that the strategies σ*i,..., σ*N constitute a Nash equilibrium, if inequality 10 is true for all 

σi ∈Σi  and for all agents i. 

 * * * * * * * * *

1 1 1 1 1 1
( ,..., , , ,..., ) ( ,..., , , ,..., )
i i i i N i i i i N
r rσ σ σ σ σ σ σ σ σ σ− + − +≤  (10) 

Where ri is the reward obtained by agent i. 
The idea of Nash equilibrium, is that the strategy of each agent is the best response to the 
strategies of their colleagues and/or opponents (Kononen, 2004). Then, it is expected that 
learning algorithms can converge to a Nash equilibrium, and it is desired that can converge 
to the optimal Nash equilibrium, that is the one where the reward for all agents is the best. 
We test and compare all paradigms using two repetitive games (The penalty problem and 
the climbing problem) (Barrios-Aranibar & Gonçalves, 2007a) and one stochastic game for 
two agents (Barrios-Aranibar & Gonçalves, 2007b). The penalty problem, in which IQ-
Learning, JAQ-Learning and IVQ-Learning can converge to the optimal equilibrium over 
certain conditions, is used for testing capability of those algorithms to converge to optimal 
equilibrium. And, the climbing problem, in which IQ-Learning, JAQ-Learning can not 
converge to optimal equilibrium was used to test if IVQ-Learning can do it. Also, a game 
called the grid world game was created for testing coordination between two agents. Here, 
both agents have to coordinate their actions in order to obtain positive rewards. Lack of 
coordination causes penalties. Figure 2 shows the three games used until now. 
In penalty game, k < 0 is a penalty. In this game, there exist three Nash equilibriums 
((a0,b0), (a1,b1) and (a2,b2)), but only two of them are optimal Nash equilibrums ((a0, b0) 
and (a3, b3)). When k = 0 (no penalty for any action in the game), the three algorithms (IQ-
Learning, JAQ-Learning and IVQ-Learning) converge to the optimal equilibrium with 
probability one. However, as k decrease, this probability also decrease. 
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 a0 a1 a2 

b0 10 0 k 

b1 0 2 0 

b2 k 0 10 

 
(a) 

 

 a0 a1 a2 

b0 11 -30 0 

b1 -30 7 6 

b2 0 0 5 

 
(b) 

 
(c) 

Fig. 2. Games used for testing performance of paradigms for applying reinforcement 
learning in multi-agent systems: (a) Penalty game, (b) Climbing game, (c) Grid world game. 

Figure 3 compiles results obtained by these three algorithms in the penalty game, all of them 
was executed with the same conditions: A Boltzman action selection strategy with initial 
temperature T = 16, λ = 0.1 and in the case of IVQ-Learning β = 0.05. Also, a varying 
decaying rate for T was defined and each algorithm was executed 100 times for each 
decaying rate. 
 

(a) 
 

(b) 

 
(c) 

Fig. 3. Probability of convergence to optimal equilibrium in the penalty game for λ = 0.1, β = 
0.05 and (a) T = 0.998t * 16, (b) T = 0.999t * 16, and (c) T = 0.9999t * 16. 

In this problem JAQ-Learning has the best perform. But, it is important to note also that for 
values of k near to zero, IVQ-Learning and IQ-Learning performs better than the JAQ-
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Learning, and for those values the IVQ-Learning algorithm has the best probability to 
converge to the optimal equilibrium. 
The climbing game problem is specially difficult for reinforcement learning algorithms 

because action a2 has the maximum total reward for agent A and action b1 has the 

maximum total reward for agent B. Independent learning approaches and joint action 

learning was showed to converge in the best case only to the (a1, b1) action pair (Claus and 

Boutilier, 1998). Again, each algorithm was executed 100 times in the same conditions: A 

Boltzman action selection strategy with initial temperature T = 16, λ = 0.1 and in the case of 

IVQ-Learning β = 0.1 and a varying temperature decaying rate. 

In relation to the IQ-Learning and the JAQ-Learning, obtained results confirm that these 

two algorithms can not converge to optimal equilibrium. IVQ-Learning is the unique 

algorithm that has a probability different to zero for converging to the optimal Nash 

equilibrium, but this probability depends on the temperature decaying rate of the 

Boltzman action selection strategy (figure 4). In experiments, the best temperature 

decaying rate founded was 0.9997 on which probability to convergence to optimal 

equilibrium (a0, b0) is near to 0.7.  

The grid world game starts with the agent one (A1) in position (5; 1) and agent two (A2) in 

position (5; 5). The idea is to reach positions (1; 3) and (3; 3) at the same time in order to 

finish the game. If they reach these final positions at the same time, they obtain a positive 

reward (5 and 10 points respectively). However, if only one of them reaches the position (3; 

3) they are punished with a penalty value k. In the other hand, if only one of them reaches 

position (1; 3) they are not punished. 

This game has several Nash equilibrium solutions, the policies that lead agents to obtain 5 

points and 10 points, however, optimal Nash equilibrium solutions are those that lead 

agents to obtain 10 points in four steps.  
 

 

Fig. 4. Probability of Convergence in Climbing Game with λ = 0.1, β = 0.1 and Variable 
Temperature Decaying Rate 
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The first tested algorithm (Independent Learning A) considers that the state for each agent is 
the position of the agent, thus, the state space does not consider the position of the other 
agent. The second version of this algorithm (Independent Learning B) considers that the 
state space is the position of both agents. The third one is the JAQ-Learning algorithm and 
the last one is the IVQ-Learning. 
In the tests, each learning algorithm was executed three times for each value of penalty k 

(0≤k≤15) and using five different decreasing rates of temperature T for the softmax policy 

(0:99t; 0:995t; 0:999t; 0:9995t; 0:9999t). Each resulting policy (960 policies, 3 for each 

algorithm with penalty k and a certain decreasing rate of T) was tested 1000 of times. 

Figure 5 shows the probability of reaching the position (3; 3) with α=1, λ=0.1, β=0:1 and T = 

0:99t. In this figure, was observed that in this problem the joint action learning algorithm has 

the smaller probability of convergence to the (3; 3) position. This behavior is repeated for the 

other temperature decreasing rates. From the experiments, we note that the Independent 

Learning B and our approach have had almost the same behavior. But, when the exploration 

rate increases, the probability of convergence to the optimal equilibrium decreases for the 

Independent Learners and increase for our paradigm.  
 

(a) 
 

(b) 

Fig. 5. Probability of reaching (3,3) position for (a) T = 0.99t and (b) T = 0.9999t 

(a) 
 

(b) 

Fig. 6. Size of path for reaching (3,3) position for (a) T = 0.99t and (b) T = 0.9999t 
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As shown in figure 6, as more exploratory the action selection policy is, smaller is the size of 

the path for reaching (3; 3) position. Then, it can concluded that when exploration increases, 

the probability of the algorithms to reach the optimal equilibrium increases too. It is 

important to note that our paradigm has the best probability of convergence to the optimal 

equilibrium. It can be concluded by joining the probability of convergence to the position (3; 

3) and the mean size of the path for reaching this position. 

In order to test collaboration and self organization (automatic task assignment) in a group of 

reinforcement learning agents, authors created the foraging game showed in figure 7 

(Barrios-Aranibar and Gonçalves, 2007c). In this game, a team of agents have to find food in 

the environment and eat it. When food in the environment no more exists, then, the game 

finishes. Initially, agents do not know that by reaching food they are going to win the game, 

then, they have to learn that eat food is good for them and also they have to learn to find it 

in the environment in order to win the game.  

IQ-Learning, JAQ-Learning and IVQ-Learning were implemented in this problem with 

20000 learning epochs. Also each algorithm was trained 10 times, and 3 different values of 

parameter α (0.05, 0.1, 0.15) were used. Because our approach (IVQ-Learning) has an extra 

parameter (β), it was trained with six different values: β={0.05, 0.1, 0.15, 0.2, 0.25, 0.3}. Thus, 

we constructed 8 algorithms and trained it 10 times each one. For all algorithms, the 

parameter γ was chosen to be 0.05. 

 
 

 
 

Fig. 7. Foraging game for testing collaboration between agents. 

In figure 8.a,  a comparison of these eight algorithms is showed. This comparison is based 

on the number of steps needed by the two agents to solve the problem. This value is 

calculated considering the mean of 100 tests for each algorithm and parameter α. In the 

optimal strategy the number of steps must be four. In this context, it was observed that our 

approach with parameters β=0.15 and α=0.15 had the best performance. 

Figure 8.a shows the mean of number of steps need for each algorithm to solve the problem. 

But, in certain tests, the algorithms could converge to the optimal strategy (four steps). Then 

it is important to analyze the number of times each algorithm converge to  this strategy. This 

analysis is showed in figure 8.b. In this figure, the percentage of times each algorithm 

converge to the optimal solution is showed. Again, it could be observed that our approach 

performs better. Also, the best IVQ-Learning was the one with parameters β=0.15 and 

α=0.15. 
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(a)                                                                            (b) 

Fig. 8. Comparison between three paradigms when applyied to the foraging game. 

6. Conclusion and future works 

In this work, we explain the extension made to the Q-learning algorithm by using the 

influence value reinforcement learning paradigm. Also, we present a summary of all results 

obtained by comparing our approach with the IQ-learning and JAQ-learning algorithms. 

After analyse these results it is possible to note that our approach had advantages over the 

traditional paradigms and encourage authors to continue researching in this paradigm. 

Also, our paradigm is an intend to solve the problem of convergence generated when 

applying Q-learning in multi-agent systems but in future works it is necessary to explore 

solutions for the problem related to the size of the state space.  
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