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Abstract

Adequate water provision to roots is essential to warrant sustainable harvests of agri-
cultural crops globally. However, water applied in excess or in deficit may result in the 
development of many fungal and bacterial plant diseases, which compromise produce 
yield and quality. Leaf wetness duration, soil water tension and related water variables 
impact several aspects of different plant disease cycles, such as the sporulation, sur-
vival of pathogen propagules, their dispersal to new hosts, germination and infection. 
Irrigation is thus arguably the most important cultural practice in the management of 
plant diseases, especially in the context of the quest of a more sustainable, less chemi-
cally dependent agriculture. The technology of water application and method of irriga-
tion have been profusely studied as to their direct relation to plant diseases. Irrigation 
management has a strong impact on the disease severity and epidemic progress rates of 
many plant pathosystems, ranging from leaf blights to vascular wilts. In addition, plant 
virus vector population levels and vector dispersal are also affected by the method of 
irrigation. This chapter reviews experimental data on the effect of different irrigation 
configurations and management systems on some representative plant diseases.

Keywords: bacteria, nematode, oomycetes, fungi, virus, leaf wetness, pathogen 
propagule, dispersion, water

1. Introduction

Plant diseases are one of the main constraints for agricultural production, leading to great loses 
annually all around the globe [1]. Plant pathology evolved along with agriculture, starting with 

the earliest farmers competing against plant pathogens with religious, supernatural or other 
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practices [2] to come to the modern era, where science is used to track the conditions which 
favors pathogens and consequently allows growers to how to avoid them on a rational basis.

The irrigation efficiency not only ensures the most efficient crop growth, but it is also essential 
for high-quality production of seeds, food, textiles and other produce with increasing percep-

tion of the economical and environmental impacts. It is estimated that 30–40% of the world 
food production is from irrigated agriculture [3, 4]. Its importance can be exemplified by 
reports on potato production which indicate that variations as low as 10% of the potato water 
need result in significant yield losses, either from water deficiency, leading to deformation 
and reduced tuber size, or excess, which increases the intensity of many diseases [5].

Choice of the irrigation system in itself, regardless of the volume of the water supply, affects 
plant development as well as disease onset, pathogen dispersal and rates of disease prog-

ress. For example, furrow irrigation which requires large amounts of water, usually demands 
higher rates of nitrogen fertilization which can predispose the plant to many diseases; in addi-
tion, soil borne pathogens easily spread in the irrigation furrows following water flow [6]. 

In areas infested with Ralstonia solanacearum, the furrow and some drip irrigation systems 
increased tomato wilt incidence and reduced yield, while conventional overhead sprinkler 
irrigation had much lower disease levels and higher yields [7, 8].

Drip irrigation, in addition to a more efficient water use, is usually recommended to avoid 
wetting of aerial plant parts and generally results in less foliar diseases [9]. On the other hand, 

the direct (mechanical) and indirect (environmental) effects of delivering irrigation water 
droplets onto the leaf surfaces have been demonstrated to significantly reduce powdery mil-
dews on Cucurbitaceae [10], Fabaceae [11] and Solanaceae [12] while also depressing virus 

vector movement [13]. These two situations indicate that diseases vary as to their response to 

irrigation. Therefore, a precise determination of the disease frequency and intensity in a given 
area must be done before choosing the most adequate irrigation method.

The sprinkle irrigation systems usually allow for better water distribution to the crop, at rea-

sonable economic costs. It is generally more efficient than furrow irrigation, but it promotes 
foliar wetting, required for many pathosystems, and is favorable to propagule dispersion, 
especially of bacterial and most fungal spores.

In addition to the choice of the irrigation method, other factors must be taken into consider-

ation, such as irrigation timing. Most fungal plant pathogens produce spores during night-
time, being dispersed after dawn. Consequently, morning irrigations are prone to dislodge 
and disperse spores, also offering humidity and free water for germination at the leaf surface. 
Some fungal pathogens may form spores or propagules later in the day and are thus favored 
by afternoon irrigations, while night irrigation will reduce spore dispersion, as reported for 

Phytophthora infestans [14].

With exception of the members of the Erysiphales (Ascomycota), fungi and bacteria need free 
water on the leaf surface to initiate infectious processes. In fact, the leaf wetness duration has 

been considered the most determinant microclimatic variable for disease establishment and 
progress, and it is one of the main variables monitored in disease prediction systems [15].
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The pathogen success in establishing itself in the aerial plant parts is highly dependent on the 

duration of foliar wetting, which is directly affected by irrigation timing and other factors [16]. 

If the moisture provided by irrigation is enough to retain free water in the plant surface for 
the minimum time required for infection, it will lead to more intense disease epidemics. For 
many years, we have observed that processing tomato in Central Brazil display significantly 
lower incidence of diseases caused by Phytophthora infestans, Septoria solani, Xanthomonas spp. 

and Alternaria spp. under drip when compared to sprinkle irrigation.

In addition to water availability, the evaporation process must be considered. Evaporation 
is affected directly by relative humidity, air temperature, wind speed, air vapor pressure 
[4] and plant tissue position. For example, within Israeli climatic conditions, sprinkler-
irrigated tomato leaves take from 5 min (external leaves, strong wind, 36°C, 16% RH) to 4 h 
(internal leaves, no wind, no direct sun, 17°C, 16% RH) to dry. In the latter climatic condi-
tions, the leaves may remain wet until dew formation at nighttime, completing a total 20 h 
of total humidity [17]. A similar phenomenon occurs in the dry season (April–September) 
in Central Brazil, when almost all processing tomato and potato crops are grown. Both 
crops are hosts of late blight (caused by the oomycete Phytophthora infestans) and early 
blight (caused by the true fungus, Alternaria solani). These pathogens have different resis-

tance levels to dryness and widely different temperature requirements, serving as illustra-

tive models for the discussion on infection and the influence of the leaf microenvironment 
on disease severity.

The way plant pathogens relate to irrigation and water availability depends on a diverse 

number of characteristics intrinsic of each group of microorganisms. In the present review, 
diseases and their respective causal agents were grouped according to their primary niche in 
the plant, either diseases of aerial plant parts or as crown and root diseases. Other divisions 

were made below for clarifying the effect of the water on each plant part or phase of the 
disease cycle. Oomycetes, for example, are very well adapted to the availability of free water, 
while other fungi, as the Erysiphaceae, (the powdery mildews) have a negative interaction 
resulting in damage of conidia when overhead irrigation is used. Bacteria are also highly 
dependent on water to prevent desiccation (which usually causes sharp decrease on their 

populations) and then to allow multiplication until they reach the threshold numbers neces-

sary for invasion and infection. Fungi with a gelatinous matrix also respond differently when 
compared to other fungal groups: For instance, aerial transport by wind does not play an 
essential role for these organisms, whereas sprinkler irrigation typically  provides the main 
dispersal method.

2. Diseases of the aerial plant parts

Fungi, oomycetes, virus and bacteria infect aerial parts of susceptible host plant (leaves, stem, 
flowers and fruits) resulting in diseases responsible for losses due to direct damage to the 
commercial produce or to yield reduction as a consequence of impaired photosynthesis and 
loss of photoassimilates.
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These pathogens, different from the soil-habitant ones, must be resilient to adverse environ-

mental conditions such as dehydration, large temperature fluctuations, nutrient scarcity in an 
epiphytic phase, incidence of UV light, among other physical, chemical or biological harmful 
factors [18].

While wind plays a critical role on the dispersion of plant pathogens, irrigation water and 

rain, provide conditions for spore germination, avoiding desiccation of fungal and bacterial 
cells or, in some instances, damaging propagules sensible to water.

Many reports have indicated that more frequent sprinkle irrigations increase disease inci-
dence of several foliar diseases [6, 14]. The understanding of the dynamics of each patho-

system is therefore mandatory for choosing the method of irrigation to be implemented in a 
given situation.

While oomycetes, fungi, bacteria and viruses all infect aerial parts of plants and are affected 
by irrigation, the latter is indirectly influenced because water affects insects and other vectors 
which transmit them.

2.1. Oomycetes

The oomycetes, long treated as fungi and studied by mycologists due to their morphologi-
cal, functional and ecological similarities with the Fungi Kingdom actually belong to the 
Chromista Kingdom and are more closely related to algae than to fungi [19]. They include 

Phytophthora wilts and blights, the downy mildews caused by the Peronosporales, the white 
rusts (genus Albugo) and root, crown and fruit rots by the genus Pythium and Phytophthora.

In general, oomycetes are greatly dependent on high humidity levels for all stages of the life 
cycle, including sporangia formation [20], and especially so for the indirect germination of 
sporangia in the form of zoospores, a process of great epidemiological consequence which 
requires not only high humidity levels, but actual free water [21]. High relative humidity (RH) 
can be achieved in several ways, including the method of application of irrigation water, high 
plant density and reduced plant spacing [22]. Shtienberg [23] also warned about the use of 

polyethylene mulch as a means to increase irrigation efficiency by reducing water evaporation.

Irrigation may also be responsible for the short or long-distance introduction of oomycete 
inoculum into new growing areas, which was reported for the first time in 1921 [24]. Ranging 
from 6 to 45 days, the survival of plant pathogen propagules on irrigation water varies accord-

ingly to the pathogen species, other abiotic conditions (temperature, pH, etc.) and especially 
with the propagule type [25, 26].

Free water on leaves, generally reported as leaf wetness duration, is a combined consequence 
of rains, irrigation events and microclimatic conditions prevailing in the plant canopy. Due 
to the strong dependence of oomycetes to leaf wetness, the ones infecting aerial plant parts 
can be controlled by the choice of irrigation method in favor of the systems that reduce leaf 
wetness. This has been shown for Peronospora sparsa, the causal agent of the blackberry downy 
mildew [22]. Mildew severities of 97% were recorded in the sprinkler overhead irrigation, 
compared to less than 10% in the drip system. Greater severity was associated with larger 
periods of time of leaf wetness durations, in the sprinkler irrigated treatment.
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Other oomycetes can be controlled by drip irrigation, as for Phytophthora infestans infecting 

greenhouse-grown tomatoes [27], or even in tomato field crops, planted in the dry season in 
the Brazilian Midwest (unpublished). P. infestans requires 2 to 6 h of leaf wetness (depending 

on temperature); nevertheless, high humidity levels inside the greenhouse (due evaporation) 
may favor disease development, stimulating spore germination [23, 28].

2.2. Gelatinous matrix fungi

Fungus is one of the most diverse Kingdoms, with many species pathogenic to plants. Most 
fungi do not require water for spore dispersion, being easily dispersed in the dry air. However, 

numerous fungi, including important plant pathogens, are dependent on water splash for 
the dissemination. Commonly, this kind of fungi produces conidia associated to a gelatinous 
matrix in asexual sporulation structures such as picnidium (Ascochyta, Phoma, Septoria) or 
acervulus (Colletotrichum).

If one fungus species requires water splash for dispersion, again the type of irrigation has a 

strong effect on such group of pathogens. The size and amount of the water drops may alter 
its capacity of spore dispersion, since smaller drops are unlikely to dislocate and disseminate 
spore from one spot to another [29].

An example of the effect of irrigation method on fungi dissemination are the high severities 
of gummy stem blight (Didymella bryoniae) and anthracnose (Colletotrichum gloeosporioides f. 

sp. cucurbitae) of watermelon irrigated by overhead sprinkler, which presented reduced pro-

ductivity and fruit quality. When shifting overhead to furrow irrigation, both diseases were 

drastically reduced [6]. These changes were associated with strong reductions of the foliar 

and fruit wetness periods, resulting in less dispersion and germination of spores. The same 
pattern was seen for anthracnose (Colletotrichum acutatum) in strawberry, when drip irriga-

tion leads to very low disease incidence, postponing disease onset, and, therefore, reduc-

ing loses [30]. The same pattern has been observed for sweet pepper anthracnose, caused by 
Colletotrichum spp. (unpublished) and Septoria lycopersici on tomato [31]. For the septoria leaf 

spot, disease progress rates varied widely in the sprinkler, microsprinkler, drip and furrow 
irrigated plots, and severity increased most in treatments that kept leaves wet the longest.

The concept of leaf wetness is also an issue for Glomerella cingulata in apple. This pathogen 

requires high RH (>99%) and foliar wetness duration of 2.76 h, for significant germination of 
conidia. Additionally, the spore release from the acervuli and subsequent dispersal need rain 
or irrigation water for the splash-dispersal effect. Therefore, in the absence of these condi-
tions, lesions are sparse and do not spread, even within a single host plant [15].

2.3. Dry propagule fungi

Several species in the Fungi Kingdom reproduce asexually by producing dry conidia, with no 
gelatinous matrix, and may or may not be affected by irrigation management.

Powdery mildew, for example, caused by a number of species on the Erysiphaceae (Ascomycota), 
can infect several hosts, and is characterized by the presence of a whitish growth (mycelium, 
conidiophores and conidia), mainly in the adaxial leaf surface. Still fairly dependent on 
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humidity as several other pathogens, its development may increase until a maximum of 80% 
RH as reported for Uncinula necator in grapevine [32]. Nonetheless, different from other fungal 
diseases, sprinkler irrigation is harmful for powdery mildews disease progress. The mechani-
cal impact of water droplets harms the fungal structures, hindering disease progress. This phe-

nomenon was previously found by Ruppel et al. [33] who observed lower disease incidence 

on sprinkler-irrigated sugar beet fields when compared to furrow irrigated ones. The effect of 
free water in powdery mildew conidia was analyzed by Shomari and Kennedy [34] in conidia 

of Oidium anacardii, a pathogen of cashew, by immersion of infected leaves in water, exhibiting 
a significant reduction on spore germination after an immersion period of 4 h. This interaction 
with conidia is only seen before germination: after that phase, leaf wetness does not influence 
any further on the host tissue colonization.

Other examples of the irrigation effects over powdery mildew may be seen with Leveillula tau-

rica in tomato, which displays a critical increase of incidence when the crop is drip-irrigated, 
due to the absence of free water on leaves [27]. On pumpkin, powdery mildew is progres-

sively reduced with increasing water volumes applied by the conventional overhead sprin-

kler irrigation system [10].

Conversely, Alternaria solani, the causal agent of tomato and potato early blight, does not 
suffer any negative effects of sprinkler irrigation. In fact, A. solani, as the great majority of 
plant pathogens that form dry propagules, benefits from the increased leaf wetness duration 
delivered by irrigation systems that wet aerial plant parts. Processes such as spore production 
and germination rates are favored. Reduced amounts of water may not markedly affect the 
development of Alternaria diseases, since its dark, thick-walled, multicellular spores are resil-
ient to desiccation. In addition, germination of A. solani can take place with the only source of 
moisture deriving from nighttime dew, without need for irrigations [6].

Fusarium head blights (Fusarium graminearum, F. culmorum, F. avenaceum) of maize, wheat 
and other Poaceae, are economically devastating diseases not only for the direct losses of 
reduced grain yield but also for the accumulation of mycotoxins in the produce. Timing of 
irrigation is determinant for avoiding the occurrence of these diseases, and water should 
be avoided before anthesis and early grain fill periods [35]. Irrigation or rain water stimu-

lates spore production, dispersion and germination of the Fusarium and of its sexual form 
(Gibberella zeae). High humidity levels (>94%) are also a requirement for most of the disease 
cycle phases [36, 37].

2.4. Bacteria

Bacteria, single-celled prokaryotes (1–2 μm in size) which reproduce by binary fission, are 
natural inhabitants on the rhizosphere or plant surfaces where they are mostly harmless as 
residents or epiphytes. The plant pathogenic ones will cause problems to a susceptible host 
only when conditions are favorable for their establishment, infection and multiplication. 
These conditions include high humidity and poor air circulation around plants. A film of 
free water on the leaf surface is the right condition for bacterial multiplication. Since they 
are microscopic, their presence is noticed only in large quantities, such as colonies in labora-

tory culture media or as viscous substances oozing from plant vessels and biofilms, or upon 
manifestation of symptoms of the diseases they induce.
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As for the diseases caused by oomycetes and true fungi, bacterial diseases in plants may occur 
in the aerial plant parts, including leaves and fruits, causing several symptoms such as can-

kers, pustules, blights, spots and specks. The symptomatology may vary with plant variety, 
host age and climatic conditions [38].

Bacterial diseases are strongly affected by irrigation. Water, because it is necessary for the 
epidemiological processes of dispersal, infection and colonization, is considered one of the 
most, if not the most, important inputs that move bacterial disease expression on most crops.

Leaf wetness is essential for bacterial infection and colonization of aerial parts of the plants. 

Bacteria penetrate through wounds or natural openings such as stomata and hydathodes. 
From diseased plants, bacterial cells are dispersed within and among fields through aerosols, 
insects, windblown soil and sand particles, movement of plant propagules and water flow.

For instance, bacterial spot (Xanthomonas euvesicatoria) is a recurrent disease that can dev-

astate pepper fields whenever warm, wet weather is present. The pathogen is seed borne 
and is responsible for the formation of leaf spots that harbors large number of bacterial cells. 
Upon impacting on lesions, droplets from rain or overhead irrigation disperse bacterial cells 
through many micro-droplets from infected plants to neighboring healthy plants, especially 
under windy conditions. In addition, when foliage is wet, farm operations allow bacterial 
cells from infected plants to be carried to healthy plants within or between field areas [39].

In this example, which applies to many other bacterial spot diseases, switching from over-

head to drip irrigation will warrant necessary moisture accessible to the roots while keeping 
the foliage dry. It is necessary to keep in mind that, as discussed elsewhere in this chapter, 
other diseases and pests might be favored by one particular kind of irrigation. An overall 
analysis of the crop management is necessary for the decision-making process, in a way to 
cope with different diseases and obtain desirable yields.

2.5. Viruses

Viruses are intracellular pathogens not capable of reproducing outside a living cell but pos-

sessing the genetic means for the manipulation of the host replication machinery for such 
action.

Vectors of plant viruses have a major role on the epidemics of plant virus because they are 
needed for the transportation and introduction of the virus particles into the host plant cell 

[40]. Most plant viruses can be transmitted by one of several groups of insects. A minority 
may also be vectored by other organisms such as mites, nematodes and pseudofungi (as those 
from kingdom Protozoa) [41, 42]. Nematodes that disseminate plant viruses will be addressed 
below. In some cases, diseases of complex etiology combine damages from the nematode with 
the virus, compounding losses.

Irrigation water does not affect the several viral pre-infection stages that are found within the 
fungi and bacteria life cycles. When lacking or in excess, water and irrigation may cause phys-

iological host changes, which may accentuate or attenuate symptoms or alter the relationship 
of the vector with the virus and the host plant [43]. In some cases, the virus may protect its 
host from severe drought by avoiding irreversible wilt, as reported by Xu et al. [44]. Another 
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similar example is during the infection of wheat by the Barley yellow dwarf virus; when the host 
is stressed from severe drought, the survival of the infected plant is increased, and it offers a 
more favorable growth for the aphid vector, Rhopalosiphum padi [45]. Turnip plants suffering 
from water deficiency stress can increase the transmission of Cauliflower mosaic virus (CaMV) 
by 34%, while the transmission of the Turnip mosaic virus may be increased by 100%. The 
increase in transmission was not related to higher virus tittering but for a rapid response by 
CaMV in producing transmissible morphs [43].

The main effect of irrigation on plant virus diseases concerns its effects on the vectors. 
Irrigation may affect the vectors, by altering its feeding habits, the efficiency of virus acquisi-
tion from an infected host, and, especially, by physically removing or disturbing the feeding 
of the insect. This latter effect is most noticeable by the application of water by sprinkler 
irrigation, which can reduce the population when compared to other irrigation methods in 
experimental plots [46]. These findings were confirmed not only for whiteflies (Bemisia tabaci) 
[27, 47] but also for Myzus persicae [48], each of which are important vectors of numerous plant 
viruses worldwide.

3. Crown and root diseases

Crown and root diseases are caused by soilborne pathogens and usually result in great losses 

since control measures are more difficult because the “enemy” is protected by the soil layers. 
Frequently, soilborne pathogens lead to the abandonment of an infested field or make the 
whole farm improper for the cultivation of particular crops. These soil pathogens belong to 
different taxa in the fungi, oomycetes, bacteria and nematodes, and infect roots and crowns. 
They spend most of their life cycle in soil, with high resilience to changes in the physical 
environment and enhanced competitive skills. They are generally facultative pathogens, with 
good saprophytic activity. The dispersal of these pathogens is mostly associated to soil move-

ment, adhered to implements and machines, even though spores of some may be dispersed 
by wind and water [49]. In tropical and subtropical conditions, these pathogens are favored, 

given the lesser oscillations in the soil physical parameters [50]. Soil is considered an environ-

ment that favors organisms which use water for movement, as the flagellate zoospores from 
oomycetes, flagellate bacterial cells, and nematodes that move in water films. Evidently, all 
these organisms may be passively transported even faster, and further, in flows of water.

The way irrigation methods affect crown and root diseases, and their causal agents vary 
accordingly to the group of microorganisms and other characteristics, such as the capacity 
for facultative anaerobiosis (in flooded or water-logged soil), which is conducive to soft rots 
caused by pectolytic bacteria.

Nematodes, mostly soilborne pathogens, are highly affected by water availability, typically 
by the aid of water for active movement in the root zone. Also, water allows for the passive 
movement following the water flow on soil, as when furrow irrigation is used.

In the following sections, the same group of pathogens addressed previously is discussed for 
the development root and crown diseases.
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3.1. Oomycetes in soil

Many of the previously addressed factors in topic 2.1 can be applied for oomycetes causing 
disease in lower plant parts. The dependence on water still exists, although, different from the 
aerial organs, soil tends to be more stable for physical factors in general, and for temperature 
and humidity in particular, while it is a generally more competitive environment.

As for various pathogens, the epidemiology of a given oomycete is bound to irrigation or 
rainfall intensity and frequency. Phytophthora capsici, for example, during seasons of intense 
rainfall, causes much faster epidemics than when in conditions of moderate rainfall or irriga-

tion [51].

Soil oomycetes are in general highly adapted to survive in soil, with varying times of survival 
accordingly to temperature and a few other abiotic factors. Irrigation water plays an espe-

cially important role on the dispersal of oomycetes, due to their flagellate zoospores. “True 
fungi” (those in the Kingdom Fungi) do not have flagellate spores, and so are less efficiently 
dispersed by soil water.

As discussed earlier, irrigation water and free soil water aid pathogens that are immovable, 
as non-flagellate bacteria which go with the water flux, but also for zoospores of oomycetes, 
flagellate spores that may dislocate in water [50]. Zoospores are also capable of host plant 

detection, allowing chemotaxis to the host and a quick attachment to the host tissue and the 
initiation of the infection process. Phytophthora parasitica, a pathogen of citrus, is one of those 

organisms that uses water for dispersal: irrigation spreads this pathogen not only within one 
field, but to an entire region, affecting growers that use the same water source [52]. The same 
pattern is found for Phytophthora capsici, in bell pepper, tomato and squash fields: for this 
pathogen, furrow irrigation has been shown to carry sporangia and zoospores to long dis-

tances. The number of infected plants along an irrigation line is attributed to the collection 
of secondary inoculum produced by the first infected plants [53]. Phytophthora capsici and P. 

parasitica were readily dispersed in furrow irrigation water up to 70 m from the point sources 
of inoculum in Solanaceae and Cucurbitaceae [54], and the mere reduction of furrow irriga-

tion frequencies drastically reduced Phytophthora wilt on squash [53] and sweet pepper [55].

Frequent irrigations saturate soils and keep humidity for long periods of time, favoring prop-

agule dispersal. Bowers et al. [56] and Ansani and Matsuoka [57] showed that in warm condi-
tions (15–25°C), P. capsici resists for several days, even buried at several depths in the soil. In 

addition, soil moisture may render some hosts more predisposed to oomycete infection [58]. 

However, this has not been confirmed for all oomycete pathosystems, as for P. capsici in bell 

pepper [59]. Constant soil moisture at saturation or low saturation levels is not as positive for 
disease development as fluctuations of soil moisture [60]. Therefore, a lesser number of irriga-

tion events are usually a form of disease control. For Pythium aphanidermatum in petunia, low 

and constant irrigation reduced plant infection, in contrast with constantly saturated soils or 

soils submitted to a cycling of wetting and drying [61].

Different irrigation methods may increase or reduce diseases caused by oomycetes in soil. 
Gencoglan et al. [62] showed that drip irrigation was the most efficient system to avoid  
P. capsici, with only 1.7% of incidence, versus 3.1% and 3.2% for furrow and sprinkler 
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irrigations, respectively, and lastly and most prejudicial, basin irrigation, which caused 93.9% 
dead plants. Several authors have confirmed that drip irrigation is the most efficient irrigation 
method for oomycete control [63, 64].

3.2. Fungi in soil

True fungi in soil must not only survive humidity and temperature fluctuations but also the 
competitive environment that prevails in the rhizosphere. The effect of irrigation is different 
from what is commonly seen on above soil plant organs, and here, diseases may be favored by 
drip irrigation due to the large availability of water next to the host roots and crowns.

Some plant pathogenic soil fungi have a complex relationship with the host, and infection 
may be hampered at low soil moisture, while high soil moisture may reduce symptom expres-

sion and improve yields. For example, the most effective management strategy to reduce 
Verticillium wilt, without decrease of dry matter production, is to irrigate at water deficit 
levels to the host during the vegetative stage and at 90% of soil capacity during the production 
phase (unpublished).

Accumulation of water in soil due to irrigation is increased when field soil is compacted 
(e.g., as a consequence of intensive agrotechnical operations) and/or native pedosphere 
properties (e.g., texture heavier soils). Several pathogenic soil fungi are favored by this 
condition of reduced aeration, such as Fusarium oxysporum pv. solani, F. oxysporum pv. 

phaseoli, Rhizoctonia spp. and S. sclerotiorum [65]. For Rhizoctonia infections causing root 

dieback in Pinus nurseries, excessive water interacts negatively with the host due to lack of 
root aeration, reducing growth and favoring the fungal infection. The ensuing root decay 

and water accumulation further stimulates the development of other secondary plant 
pathogens [66].

Irrigation may also aid on the propagule dispersion and disease development. For example, 
Fusarium root rot (Fusarium solani f. sp. phaseoli) in beans is greatly reduced when sprin-

kler irrigation is used, contrarily to the negative effects of furrow or drip irrigations on 
the disease [67]. For Sclerotinia minor, the causal agent of lettuce drop, drip irrigation has 
a suppressive effect on the pathogen, while furrow increases substantially the sclerotial 
population. Irrigation not only provided humidity but also lowered the soil temperature, 
with furrow irrigation allowing the establishment of a more suitable temperature (18°C) for 
the fungus [68].

As several other group of pathogens, fungi can also enter a new area by means of irrigation 
water. Previous studies on V. dahliae in irrigated olives showed a great dispersion of propa-

gules [69] while its survival is also remarkable, with reports of up to 15,000 propagules of per 
liter of water in ponds used for irrigation [70].

3.3. Bacteria in soil

Soil-associated bacteria are highly influenced by soil moisture. For most plant pathogenic 
bacteria, high humidity favors disease onset and development. Incidentally, bacterial wilt 
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(Ralstonia solanacearum) was first known as the “moisture disease” of potatoes, before the 
causal agent was identified [71]. In fact, the disease is prevalent during the wet summers, 
when high temperatures and high humidity are combined in a perfect condition for bacterial 
multiplication.

When comparing irrigation methods on bacterial wilt, Marouelli et al. [7] found that disease 

was significantly higher when processing tomato in Central Brazil was drip-irrigated, with 
an average of 42.5% wilted plants, 65 days after seedling transplant, in comparison with 5.0% 
incidence with sprinkle irrigation. Frequency of drip irrigation did not affect bacterial wilt 
incidence. It is believed that drip irrigation maintains the plant rhizosphere close to field 
capacity, thus favoring the disease, contrasting with the sprinkle irrigation, which provides 
periods of dry and wet conditions. Furrow irrigation was not studied, but it would most 
probably have an effect similar to the drip irrigation, or even more pronounced, if dispersion 
of the pathogen in the furrow is taken into account.

Contrasting with bacterial wilt, potatoes are affected by common scab, induced by Streptomyces 

spp. In this case, however, low soil humidity during tuber growth phase favors scab forma-

tion, what makes irrigation management recognized as one of the most efficient scab control 
measures. According to Wharton et al. [72], keeping soil moisture near field capacity for a few 
weeks at the beginning of tuberization substantially inhibits pathogen infection and disease 
development. The most likely explanation for this phenomenon is that the maintenance of 
high soil moisture is a condition that favors a more varied and competitive microbiota in the 
host rhizosphere, to the detriment of Streptomyces species.

Overall, because plant pathogenic bacteria may be viable in water for long periods of time, 
irrigation deserves special attention for two important epidemiological processes: survival 
and dispersal [73].

3.4. Nematodes

Nematodes infect root systems of a great number of plants species and are one of the most dif-
ficult plant pathogens to control. Some parasitize upper plant organs, causing galls or lesions 
on leaves and seeds. However, most nematodes are root pathogens that not only act as plant 
parasites, but also facilitate infections by other soil pathogens, that penetrate through lesions 

caused by the nematodes on the root systems.

Nematode populations usually keep a steady growth if a susceptible host is available, soil 
texture is ideal and irrigation is not excessive (reducing oxygen availability), or restricted 
(preventing movement), as reported for Meloidogyne enterolobii in guava [74].

The influence of water in this group of plant pathogens is mostly related to dissemination 
and movement in soil. Soil moisture, depending on the nematode species is essential to 
allow movement of juveniles and adults from colloid to colloid on water films around soil 
particles.

In addition to active movement, eggs, juveniles and adult nematodes can be carried passively 
by irrigation water to short or long distances. Nematode spreads through large field areas, if 
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water is collected from the same infested source [75]. Also, intensive irrigation is conducive 

to high nematode population levels, due to its effect on soil texture remodeling, altering abi-
otic conditions as aeration and particle arrangement creating new niches for protection [76]. 

Nematode locomotion depends on water, as studied for the J2 of Meloidogyne incognita, which 

could not travel against the water flow, limiting itself to resist the flow, trying to remain static. 
In sand substrate tests, when water percolated, the nematode moved with the water flow, 
resulting in the distribution of the nematode along irrigated areas [77].

Nematodes are already plant parasites per se but can also act as vectors for viruses as Xiphinema 

index (and other species) capable of transmitting Grapevine fanleaf virus into grapes [78]. Two 

nematode orders are known as vectors of plant viruses, Dorylaimida and Triplonchida [79]. 

For these nematode vectors, and several other species, soil is not required to be saturated, 
if humidity is kept at “normal levels” the parasite can survive and still act as a vector even 
4 years in the absence of its hosts [80]. Also, X. index can be disseminated by contaminated 
irrigation water [81]. In some cases, these parasites are highly resistant to dehydration, in a 
survival strategy termed anhydrobiosis. Anhydrobiosis has been observed in many nema-

todes, such as among Pratylenchus (the lesion nematodes), one of the most important plant 
pathogenic nematode genera [82].

Differences among irrigation methods have not been very well explored for this group of 
plant pathogens. However, taking into consideration the effect of water flow and irrigation on 
the nematode’s movement and displacement, drip irrigation could result in lesser dispersal 
and consequently, less infected plants in the fields.

4. Conclusion

The response of plant pathogens (fungi, oomycetes, bacteria, nematodes, viruses) to the range of 
irrigations methods and management configurations varies widely and must be addressed for 
each particular plant-pathogen system (Figure 1). Among furrow, overhead sprinkler, micro-

sprinkler, and drip irrigation, there are a variety of management choices that may strongly affect 
propagule dispersion, induction of germination, biofilm formation, penetration and survival 
of each specific group of pathogens. For the oomycetes and bacteria associated to aerial plant 
organs, due to their strong dependency on free water and high humidity, drip irrigation might 
be the appropriate choice. Among the true fungi, the effects of the irrigation system and man-

agement differ, and species of dry and wet spores respond distinctly to each individual method. 
In some groups, such as the Erysiphales, free water may hamper disease progress. Nematodes 
and oomycetes need free water in the soil to be actively distributed in the crop. Viruses, accom-

panying their vectors, can be controlled by sprinkle irrigation water, which disrupts the contact 
of the insect with the plant. The knowledge of the causal agent and of the disease epidemiologi-
cal components is essential when deciding the type of irrigation, frequency and water volume 
to be applied to manage one particular plant disease and is key to achieve good yields and high 
product quality.
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Figure 1. Schematic representation of irrigation methods which benefit disease development according to the plant 
pathogen group and affected plant organ. Furrow irrigation is conducive for oomycetes when aerial plant parts are in 
contact to the ground, as in processing tomato fields. Exceptions may exist for all groups.
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