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Abstract

The last few decades have seen a rapid increase in corn production, making corn the most 
important cereal in the world. This evolution is due in large part to rapid productivity 
growth for corn. Both improved genetics and improved farm management have contrib-
uted to large increases in corn yield. The paper reviews how genetics, biotechnology and 
management have interacted to increase agricultural productivity and reduce farm risk 
exposure. It documents the stellar performance of corn in terms of productivity growth. 
It also discusses the recent evolution of corn markets and evaluates the prospects for the 
future.

Keywords: corn, productivity, biotechnology, risk, management

1. Introduction

Corn (Zea mays), also called maize or field corn, is the most important cereal in the world, 
with annual global production exceeding that of wheat and rice. In 2017, corn production 

accounted for 41% of total grain production in the world [1]. While corn is a staple food 

in parts of the world, it has many uses, including animal feed, biofuel and sweetener. This 

chapter provides an overview of the evolving role of corn in agriculture.

Corn was first domesticated in southern Mexico about 9000 years ago [2, 3]. Its closest wild 

relative is teosinte, a wild grass of Mexico, Guatemala and Honduras. A major puzzle is the 
great genetic differences between teosinte and corn, indicating how key mutations and human 
selection contributed to genetic evolution [4]. After the Columbian exchange, corn production 
spread throughout the world. Corn is a highly productive crop with the ability to exploit 
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available soil nutrients. As a C4 plant, corn has some photosynthetic advantages in capturing 
solar energy in warm weather compared to C3 crops such as wheat, rice and soybean. Due to 

its high productivity under various climate conditions, corn is now the largest grain crop in 

the world [1]. Favorable agro-climatic conditions in the US “Corn Belt” have made the US the 

largest corn producer. In 2017, corn production in the US accounted for 35% of world corn 

production [1].

The rise of corn as the most important cereal in the world has been associated with impor-

tant improvements in its productivity [5]. Figure 1 illustrates the evolution of the average 

corn yield on US farms from 1870 to 2017 [6]. Figure 1 shows that corn productivity was 

basically stagnant before 1940: during the period 1870–1940, US average corn yields stayed 
within a narrow range between 20 and 30 bu/acre. (between 1200 and 1900 kg/ha)1 Starting 

in 1940, a period of fast and steady rise in corn productivity began and continues to this 
time. US average corn yield increased from 28.9 bu/acre (1.81 metric tons/ha) in 1940 to 176.6 
bu/acre (11.1 metric tons/ha) in 2017 [6]. This amazing achievement means that a given area 

of land can produce 6.1 times more corn in 2017 than in 1940, which corresponds to an aver-

age annual growth rate of 2.35%, reflecting the rapid technological progress sustained over 
the last seven decades. This achievement raises two questions. First, what are the sources 

of this growth in corn productivity? Second, is it likely to continue in the future? Below, 

we discuss the role played by two key drivers of corn productivity: improved genetics and 
improved management. We also consider the corn market and its evolving prices. Finally, 

11 bushel of corn equals 25.40 kg and 1 acre of land equals 0.4047 hectare. Thus, 1 bu/acre = 62.77 kg/hectare.

Figure 1. Historical corn yield, US. Source: The corn yield is measured in dollar per bushel, as reported by USDA-NASS [6].
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we reflect on what may come next. Some evidence suggests that agricultural productivity 
growth may be slowing down, raising concerns about our ability to feed a growing world 

population (e.g., [7]). We ponder these prospects as they apply to corn production.

2. Corn productivity

Genetic selection has been a very important driver of agricultural productivity. The process 
started some 9000 years ago in Mexico when corn was first “selected” and evolved from its 
wild ancestor [2]. Over the centuries, accidental mutations and some intentional selections 

contributed to beneficial changes [3]. But as Figure 1 indicates, the rate of genetic improvement 

was very slow before 1940. Genetic selection was then based mostly on traditional breeding 
methods trying to combine desirable characteristics of each parent into the progeny. Applied 
to crops, farmers used selective breeding to pass on desirable traits while omitting undesir-

able ones. The desirable traits included higher yield and better quality as well as improved 
adaptation to local agro-climatic and ecological conditions. When applied by farmers, the 

selection intensity was low, generating slow genetic changes.

The early part of the twentieth century saw the rise of modern genetics and its applications to 

plant breeding. The discovery of hybrid vigor led to the development of hybrid seed corn and 

rapid improvements in corn productivity [5, 8]. The higher corn yields stimulated the rapid 

adoption of hybrid seed corn among US farmers [8, 9]. The new corn hybrids also contributed 

to the development of a seed corn industry that focused on refined genetic selection [10]. The 

increased intensity of genetic selection contributed to the development of improved varieties that 

were better at capturing soil nutrients and more resistant to diseases [5]. As Figure 1 shows, the 

result has been decades of genetic improvements and rapid and sustained growth in corn yields.

Starting in the 1980s, progress in biotechnology revolutionized genetic selection. The identifica-

tion of genes and the refinements in gene transfer2 technologies opened new opportunities for 

genetic selection. Eventually, this process led to the development of genetically engineered (GE) 
corn hybrids that, along with the patenting of GE seeds, stimulated the growth of biotechnology 
in agriculture. The first GE corn hybrids became commercially available in the US in 1996, with 
US farmers rapidly adopting the technology. In 2017, more than 90% of all corn planted in the 
US was GE [12]. The rapid adoption of GE corn in the US led to significant productivity improve-

ments [13]. Over the last two decades, the adoption of GE seed in agriculture has proceeded 
around the world, though at different rates depending on each country’s regulations [14].

Two major types of GE traits are currently available in the hybrid seed corn market: those 
providing insect resistance (IR) (commercially available in corn in 1996) and those providing 
herbicide tolerance (HT) (commercially available for corn in 1998). Hybrid seed corn contains 
these traits either singly or combined as stacks or pyramids, so that a single hybrid is both IR 

to multiple pests and HT to more than one herbicide.

2We now know that horizontal gene transfers across species are not uncommon and that they played an important role 

in the evolution of life (e.g., [11]).
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In the US, currently available IR traits involve gene transfers from the soil bacterium Bacillus 

thuringiensis (Bt) so that hybrids express insecticidal proteins in their tissues that help control 

specific insect pests. Bt corn hybrids in the US focus on two pests that have had significant 
adverse effects on corn yield: European corn borer (Ostrinia nubilalis) and corn rootworm, a 

complex of four closely related species (Diabrotica spp.). European corn borer larvae feed on 

corn plant tissues, including tunneling through corn stalks and ear shanks, which not only 

disrupts plant functions and so causes direct yield loss, but also causes plant lodging and ear 

drops, causing additional yield loss. Corn rootworm larvae feed on corn roots, which disrupts 

water and nutrient uptake by the plant and so causes direct yield loss, and also causes plant 

lodging. Both pests have historically caused significant damage to corn plants, reduced corn 
yield and are somewhat difficult to control using conventional insecticides [15].

Bt corn has proven more effective in controlling European corn borer and corn rootworm than 
conventional insecticides, thus increasing harvested yields. In addition, farmer adoption in 

the US of Bt corn has reduced the aggregate use of insecticides [16]. The rapid adoption of IR 

Bt corn in the US reflects that US farmers have obtained significant productivity benefits from 
this technology [12, 13].

HT corn hybrids simplify herbicide-based weed management by allowing application of her-

bicides on the crop without causing crop damage. Weed management without HT hybrids 
is managerially more complicated since several weed species look similar when they are 

small at the time when farmers must make herbicide decisions, but different species com-

monly require different herbicides for effective control. The earliest and still most popular 
HT hybrid is tolerant of the herbicide glyphosate, though other types of HT hybrids have 
been available. As a broad-spectrum herbicide, glyphosate controls a wide range of weed spe-

cies, so that farmers do not need to know the specific weed species in their fields and which 
herbicides provide effective control. As a result, farmers rapidly adopted glyphosate tolerant 
corn hybrids and glyphosate quickly become the most commonly used corn herbicide, with 

glyphosate used on approximately 75% of US corn acres since 2008 [17]. In US, farmer adop-

tion of HT hybrids has reduced the aggregate use of herbicides [16]. In addition, HT varieties 
facilitate farmer adoption of reduced tillage and no-till systems, which not only reduces soil 

erosion, but also lowers labor and fuel requirements [18]. Features such as these have made 

GE corn attractive to US farmers, contributing to their rapid adoption [12, 13].

3. The role of management

While improved genetics have contributed greatly to increasing corn productivity over the 

last 70 years, other factors also played a role. Duvick [5] has noted that corn productivity 

per plant has not changed much over the last few decades, suggesting that, under favorable 

conditions, the efficiency of photosynthesis for corn (as a C4 plan) has not improved. If so, 
what is the source of corn productivity growth? Duvick [5] argued that most of the historical 

increases in US corn yields are due to increases in plant density. Thus, corn productivity gains 

have come from the interactions between the plant and its environment, along with improve-

ments in farm management and cultural practices. Over the years, new corn hybrids have 
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been selected to be more resistant to lodging and more tolerant of biotic stress (pest damage, 

weed competition, disease) and abiotic stress (adverse weather, poor soil conditions). These 

genetic changes have interacted with improved management practices, including fertilizer 

use, irrigation, tillage system, weed control, pest management and crop rotation. Fertilizer 

applications remedy soil nutrient scarcity, as corn yield is very responsive to nitrogen [5]. 

When available, irrigation alleviates soil water scarcity and drought. Pest and weed popula-

tions can be (at least partially) controlled and suppressed by tillage, crop rotations and by the 

use of pesticides (insecticides and herbicides). Crop rotation had been used by farmers for 

centuries to reduce pest and weed infestation and to restore soil fertility [19–21].

The hypothesis that management and genetic biotechnology interacted in generating recent 

corn productivity gains have been investigated by Chavas and Shi [22] and Chavas et al. [23]. 

They found evidence of the important role of management and of interaction effects between 
technology and management. First, they documented how biotechnology has been a major 
driver of improved corn productivity over the last decade. They also explored how the benefit 
of GE traits can vary with agro-climatic conditions. Second, they showed how GE hybrids 
provide enhanced control of pest damages, thus reducing exposure to both risk and downside 

risk (the provability of facing low yields). Reducing risk exposure is a major part of the ben-

efits of GE technology [24]. Importantly these GE benefits can go beyond the farm if the sup-

pression of pest population is regional [25]. Third, Chavas and Shi [22] and Chavas et al. [23] 

showed how crop rotation and GE technology provide alternative ways to control pest popu-

lations, indicating that they behave as substitutes in the corn production process. Fourth, they 

reported the presence of synergy between biotechnology and plant density as they affect corn 
productivity. By improving pest control, GE hybrids make it possible to obtain greater pro-

ductivity from higher plant density, evidence that the observed growth in corn productivity 

has been the outcome of important synergies between genetics and improved management.

4. Corn markets

In a market economy, technological progress affects producers, consumers and prices. 
Figure 2 presents the evolution of US corn prices ($/bu) over the period 1947–2017, reporting 
both nominal prices and real prices [6]. Real prices are nominal prices adjusted for inflation 
by dividing by the US Consumer Price Index (CPI), in this case with 1983 normalized to 1. 
Figure 2 shows that the nominal price of corn has gone from $1.52/bu ($59.8/metric ton) in 
1950 to $3.36/bu ($132.3/metric ton) in 2017, corresponding to an average increase of +1.19% 
per year. It also shows that the real price of corn has gone from $6.30 to $1.37/bu, correspond-

ing to an average decline of −2.25% per year.3 This sharp decline in real price means that, 

holding purchasing power constant, an individual can buy 4.6 times more corn in 2017 than in 

1950. This dramatic change mostly arises from productivity gains. Indeed, the rate of change 
in the real corn price (−2.25% per year) almost perfectly matches the rate of change in yield 
reported earlier (+2.35% per year).

3The difference is due to inflation, the average US inflation rate between 1950 and 2017 being +3.44% per year.
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In general, technological progress improves the aggregate welfare of society by allowing the 

production of greater outputs at lower cost (less resource use). But productivity growth can 

also have important distributional effects. In the corn sector, rapid technological progress 
has reduced cost and stimulated supply, which in turn has pushed market prices down. As 
just noted, the observed decrease in real prices reported in Figure 2 can be attributed in large 
part to technological progress in the corn industry. It indicates that most of the benefits of 
productivity gains are actually captured by consumers in the form of expanded quantities 

produced and lower market prices. As most corn is not directly consumed by people, but 
used for livestock feed and more recently fuel, these consumer gains arise from lower prices 

for meat, dairy products, eggs and fuel. But these lower (real) market prices contribute to 

declining farm revenue.

Interestingly, technological progress in agriculture may not benefit farmers at the aggregate—
if the lower output price due to increased productivity generates a decline in revenue that 

exceeds the reduction in production cost.4 This process is called the technology treadmill or 

Cochrane’s treadmill after the originator of the theory [27]. Early adopters of new productive 

technologies benefit by reducing their cost of production, but later adopters will lose if, as 
supply expands, the output price declines more than the decrease in production costs. The 

4This can take place when the demand is highly price-inelastic, i.e., when the output price decline is “large enough” to 

imply a substantial decline in revenue that swamps the decrease in cost. This scenario is relevant as the demand for food 

in general and for corn in particular tends to be highly price-inelastic (e.g., [26]).

Figure 2. Historical price of corn, US. Source: The nominal corn price is the price received by farmers ($/bu) as reported 
by USDA-NASS [6]. The real price of corn is the nominal price divided by the consumer price index ( CPI ) as reported 

by BLS, with  CP I  1983   = 1 .
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treadmill occurs because, even if farmers in aggregate are made worse off by the new technol-
ogy, farmers individually still have an incentive to adopt the new technology to reduce their 

cost of production in a race to outrun the decline in real prices [28, 29].

Globally, about 5% of the calories consumed per person come directly from corn, but this 
demand varies across countries. In much of Latin America, corn is mostly used for direct 
human consumption. For example, 33% of the calories consumed per person in Mexico come 
directly from corn.5 In the US (and many other countries), corn is used mainly as livestock 

feed, an important input in the production of meat (beef, pork, and poultry), dairy and eggs. 

As a result, the demand for corn is a derived demand, with meat, dairy and eggs being the 
final consumer good.

Corn also has other uses such as for making sweeteners and ethanol. Derived demands for 

these corn products depend in part on government policy. For example, the US has a protec-

tionist policy toward sugar, so sugar import restrictions have increased the domestic price of 

sugar [30]. The higher US sugar price has stimulated the search for sugar substitutes in the US, 

including corn sweeteners. This policy increases demand for corn, with more than 5% of US 

corn production used for sweeteners, and contributes to a higher corn price, which benefits 
US farmers but costs US consumers [30].

The US ethanol policy has an even larger impact. The rapid development of the US ethanol 

industry after 2000 is closely associated with government policies supporting the production 

of biofuel [31]. Ethanol subsidies, restrictions on ethanol imports and mandates for blending 

ethanol with gasoline have greatly stimulated the production of corn-based ethanol, leading 

the US ethanol industry to consume almost one third of US corn production. Over the last 

15 years, US biofuel policy has greatly stimulated the demand for corn and affected agri-
cultural markets. Roberts and Schlenker [26] estimated that US ethanol policy has increased 

world food prices by about 30%. This large effect is due to a price-inelastic demand for food 
and a diversion of land away from producing feed/food toward producing biofuel. In general, 

farmers have benefited from higher food prices, but the policy has significant distributional 
consequences, as consumers pay significantly more for food. Using “consumer surplus” as a 
measure of consumer welfare, Roberts and Schlenker [26] estimated that US ethanol policy 

contributed to a loss in world consumer welfare of $180 billion per year. The debate about the 

economics and policy of corn-based biofuel continues [32, 33].

5. Prospects for the future

Over the last several decades, productivity growth in the corn sector has been stellar, which 

is good news in a world where feeding a growing world population is challenging. There are 

current concerns that agricultural productivity growth may be slowing down (e.g., [7, 34]). 

So far, such concerns do not seem to apply to corn, since US average corn yields continue to 

climb at a steady rate, and Chavas et al. [13] provide evidence that biotechnology has helped 

5These estimates from https://www.nationalgeographic.com/what-the-world-eats/ based on UN FAOSTAT data for 2011.
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increase corn productivity growth over the last two decades. Despite these continual produc-

tivity gains, challenges still exist, chief among them are resistance and climate change.

The stellar productivity gains from commercially applying biotechnology in corn have 

focused on improving insect and weed management, which has created selection pressure on 

many pest species to evolve resistance to control. Even if farmers follow resistance manage-

ment practices, pests have and will continue to evolve resistance—these practices only slow 
the rate of resistance evolution, they do not stop it.

Western corn rootworm (Diabrotica virgifera virgifera) evolved resistance to rootworm Bt corn within 

a few years of commercial release [35]. Rootworm Bt hybrids still have value to farmers, but their 

continued use requires that companies pyramid multiple rootworm traits together and that farm-

ers use additional management practices such as crop rotation and conventional insecticides [36]. 

Companies have also responded by developing alternative GE traits to manage corn rootworm. 
Potentially the most promising is RNA interference (RNAi), which uses biotechnology so that 
crops create double-stranded RNA segments that interfere with transcription of specific segments 
of RNA found in only the target species [37–39]. The first US commercialization of RNAi in corn 
received EPA approval in 2017.6 Also, corn has been genetically engineered to express insecticidal 
proteins from non-Bt bacteria and shows excellent activity for control of corn rootworm larvae [40].

Weed control in corn (as with many crops) is important, with potential yield losses without 

control exceeding 50% [41]. Over the last few decades, herbicide resistant weed populations 

have continued to develop and spread globally [42]. HT seeds do not directly cause the devel-
opment of herbicide resistant weeds, as herbicide resistant weeds have evolved in regions 

such as Western Australia where HT crops are not used [42]. Rather, HT crops contribute by 
encouraging farmers to rely on fewer herbicides modes of action and less tillage, which accel-

erate the development and spread of resistant weed populations [43, 44]. Problems with her-

bicide resistant weeds continue to develop and spread globally, which is worrisome because 

no new herbicide modes of action have become commercially available since the early 1990s 
and weed populations resistant to multiple modes of action having been documented [45, 46]. 

How weed control in corn and other crops will evolve over the next few decades to address 
herbicide resistant weeds and the possible role that GE hybrids and biotechnology will play 
is unclear. The race between insects and weeds and our ability to develop technologies and 

management schemes will continue to impact agricultural productivity. Maintaining our lead 
in this race will require R&D investments and continued innovations in the future.

Climate change presents another challenge for agricultural productivity, with studies documenting 

impacts on corn yields [47]. Adaptation to climate change is a rising concern [48, 49]. Some regions 

will gain and some will lose productivity as climate patterns evolve and crop production shifts 
among regions. US farmers generally see agricultural adaptation to climate change as a private 

problem. They expect to respond with managerial changes, such as adjusting crops, using irrigation, 
modifying leases and using crop insurance, while seed companies will breed varieties and hybrids 

adapted to new climates [50, 51]. Breeding will certainly be important for corn, since hybrids must 

be adapted to new photoperiods when changing latitudes. Also, seed companies have commercial-
ized drought-resistant corn hybrids, but these and other traits providing yield gains under extreme 

conditions tend to be quantitative or polygenic and can imply productivity tradeoffs [52–54].

6Official US EPA news release: https://www.epa.gov/newsreleases/epa-registers-innovative-tool-control-corn-rootworm.
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Despite these and other emerging challenges, several promising opportunities exist to con-

tinue the productivity gains for corn and agriculture more broadly, among them microbial 

seed treatments and gene editing techniques. Seed treatments have been used in crop pro-

duction for some time, fungicides to protect seeds during storage, so that in the US all corn 

seed (both GE and conventional) uses fungicide seed treatments. More recently, insecticidal 
seed treatments became widely used in corn production, particularly neonicotinoid seed 

treatments, to control below-ground and early season insect pests. In the US, more than 90% 
of corn planted area uses neonicotinoid seed treatment [17, 55]. In addition to insecticidal 

properties, neonicotinoids have demonstrated plant grower regulator effects in the laboratory 
and are associated with increased early season vigor in the field [56].

These chemical seed treatments have contributed to observed corn yield productivity, but 

significant research focus has moved to microbial seed treatments, soil microbes and fungi 
that increase yields. These seed treatments improve the rhizosphere around crop seedlings 

and plants through a variety of mechanisms, such as increasing nutrient availability, control-

ling diseases or nematodes, or supplying plant growth hormones [57]. Though some microbial 

seed treatments have been commercialized, including for corn, research needs still exist before 

widespread commercialization and achievement of their potential can occur [58]. An interest-
ing possibility is to engineer microbes or fungi to enhance soil microbes for agricultural use.

A variety of gene editing techniques have recently been developed (e.g., CRISPR/Cas9, 
TALENs, ZFNs) with agricultural applications only beginning to be realized. The cost of 
using gene editing techniques is relatively low compared to gene-transfer technology. Also, 
gene editing is likely to face lower regulatory burden, as it does not require gene transfer 

across species. Public acceptance exists for therapeutic human health applications and some 

agricultural applications as well [59, 60]. Applications to crops could include pest and patho-

gen control, as well as improved tolerance to abiotic stresses such as extreme heat or cold and 

drought, helping crop production adapt to climate change and increases in extreme weather 

events. Furthermore, gene editing could include the possibility of increasing the efficiency of 
photosynthesis in crops. Besides applications to crops directly, gene editing could be applied 

to other key organisms, such as to engineer soil microbes to develop new or more effective 
microbial seed treatments. Similarly, gene editing can be used to engineer gene drives in order 

to introgress select genes into populations in order to suppress or eliminate pest populations 

or to make herbicide-resistant weed populations susceptible to herbicides [61, 62]. Given the 
economic importance of corn and its existing research and commercial infrastructure, corn 

seems likely to be at the frontier of the next wave of such innovations in agriculture.
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