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Abstract

In this chapter, the latest developments in graphene oxide-based biosensors are presented. 
These biosensors are complexes of graphene oxide and biomacromolecules, including 
enzymes such as glucose oxidase, horseradish peroxidase, laccase, and nucleic acids 
such as DNA and RNA. The structure, design and preparation process (immobilization 
process) of the above graphene oxide-biomacromolecule composites were summarized. 
Some typical examples of immobilization of biological macromolecules are described. 
The immobilization efficiency and electrochemical performance of immobilized bio-
molecules based on graphene oxide were discussed, which may guide designing better 
graphene oxide-based biosensors.

Keywords: graphene oxide, biosensor, enzyme, nucleic acid

1. Introduction

Graphene is a new kind of two-dimensional single-atom carbon sheet with a single atom thick 

[1]. Nowadays, this so-called “thinnest in our universe” material [2] has attracted more and 
more attention, because of its unique properties such as unique electronic properties [3].

Graphene oxide (GO), one of the nanomaterials from graphene family, contains many reactive 

oxygen functional groups, such as hydroxyl group, a carboxyl group, an epoxy group [4]. It 

has been extensively used for biosensor research and application. In order to enhance the elec-

trochemical properties of the GO-based biosensor, GO can be modified with other materials, 
such as macromolecules, small mass organic molecules, metallic oxide, and metallic/nonmetal-

lic simple substances. In this chapter, we describe GO-based biosensors containing various 

composites of these materials with references such as GO-chitosan nanocomposites, GO-based 
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glucose oxidase, chitosan-ferrocene/graphene oxide/glucose oxidase, metal oxides, HRP, multi 

nanomaterials, quantum dots, multiwall carbon nanotubes, DNA, miRNA, etc. We not only 
describe the relevant preparation process of the above biosensors but also introduce their elec-

trochemical properties to provide more guidance for designing suitable GO-based biosensors.

2. Enzyme/graphene oxide based biosensor

2.1. GOD/graphene oxide (GO) based biosensor

Glucose oxidase (GOD) is an oxidoreductase, which can oxidize glucose to D-glucono-δ-
lactone and form hydrogen peroxide. GOD has shown great potential in glucose biosensor, 

forage, medicine [5] and biocatalysis [6].

Improving the dispersion of GO ensures the efficient use of the GO-based biosensors. Chitosan 
is a biopolymer with unique physical/chemical properties and can be well soluble in aqueous 
acidic solution [7]. Kang et al. [7] firstly mixed graphene with chitosan solution to form a 
hybrid nanocomposite of graphene-chitosan. Then, this hybrid nanocomposite was coated 

onto the surface of a glassy carbon electrode (GCE). Finally, this electrode was incubated with 
GOD solution to form a GOD/graphene/chitosan sensor (Figure 1). The result showed that 

chitosan could improve the dispersion of the graphene and GOD enzyme molecules. The as-

prepared GOD/graphene/chitosan sensor exhibited excellent sensitivity (37.93 AmM−1 cm−2) 

and a much higher enzyme loading (1.12 × 10−9 mol cm−2). Also, this biosensor could retain 

more than 95% of the enzyme activity after store of 7 days at 4°C.

Chitosan can be used not only as a stabilizing agent but also as reducing agent. Sun et al. [8] 

designed a graphene platelet-glucose oxidase (GP-GOD) biosensor (Figure 2). GO was dis-

persed in H
2
O and mixed with 0.5 M chitosan solution. After stirring for 30 min at room tem-

perature, this mixture was heated at 90°C for 2 h to form a graphene platelet composite (GP) 

Figure 1. The scheme of GO-chitosan/GOD bioelectrode [7].
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dispersion. Then, the GP dispersion was mixed with GOD solution under ultrasonic treatment 

and kept at 4°C for 12 h to obtain a large amount solid-state GP-GOD product. The glucose 
biosensor was constructed by deposition of the as-prepared GP-GOD product on a glassy car-

bon electrode. The linear relation against the concentration of glucose ranged from 2 to 22 mM 

(R = 0.9987) with an estimated detection limit to be 20 M at a signal-to-noise ratio (S/N) of 3.

Luo et al. [9] developed a GO-based glucose biosensor by a direct electro-deposition process. 

The graphene oxide, chitosan, and GOD are directly electrodeposited onto a glassy carbon 

electrode (GCE) by using electrochemical reduction under controlled direct electrical poten-

tial. This direct electro-deposition process is rapid (several minutes) and can produce uni-

form, controllable and reproducible films. The GO-chitosan-GOD composite was formed by 
dispersing GO (5 mg) in chitosan solution (0.2% w/v) and 5 mg mL−1 GOD added stepwise. 

The GCE was then immersed in the GO-chitosan-GOD solution while a fixed potential of 
−1.0 V was applied for 400 s. When the electrodeposition time increased from 100 to 400 s, 
the amount of the GOD entrapped in the film and their current response increased as well. 
However, while the electrodeposition time further increased from 400 to 900 s, the current 

response was not a significantly improved. The reason is that excessively thick films have 
negative effects on the GOD activity and prolong the response time. The as-prepared biosen-

sor film indicated fast response (<3 s), a lower detection limit (0.4 M), and a linear range from 
0.4 M to 2 mM towards glucose.

The direct electron transfer between electrode surface and active center of enzyme is com-

monly hindered. This is mainly because that the active center of the enzyme is buried in the 

globular structure of the protein molecule. To overcome this drawback, enzymes can be com-

posited with conducting or redox polymers. Qiu et al. [10] designed a homogeneous chitosan-

ferrocene/graphene oxide/glucose oxidase (CS-Fc/GO/GOD) nanocomposite film as a novel 
platform for glucose biosensor. The ferrocene branched chitosan (CS-Fc) was prepared by 
the following steps (Figure 3): (1) chitosan aqueous solution and ferrocenecarboxaldehyde 
(FcCHO) methanol solution was mixed at room temperature for 2 h to form the Schiff-base; (2) 
the NaCNBH

3
 was added to the above mixture and CS-Fc. (3) the biosensor was constructed 

by covering the mixture onto the GCE and dried in air at room temperature (Figure 4). This 

CS-Fc/GO/GOD sensor exhibited a wide linear range, excellent sensitivity, good reproduc-

ibility, and long-term stability.

Figure 2. The scheme of GO-chitosan/GOD bioelectrode [8].
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Figure 5. The preparation scheme of ZnO/GO/GOD-based glucose biosensor [11].

Apart from chitosan, metal oxides were also used to facilitate the immobilization of GOD 

onto GO to form biosensors. ZnO is a nontoxic material with good conductivity. It has a high 

isoelectric point at about 9.5. Thus, the electrostatic interaction between ZnO and GOD (with 

an isoelectric point at 4.2) can occur. Chen et al. [11] prepared ZnO-microflowers on reduced 
graphene oxide (RGO) modified GCE by using simple electrodeposition (Figure 5). This 

positively charged ZnO/RGO composite self-assembled with negatively charged GOD and 

fabricated an RGO/ZnO/GOD biosensor. The linear range of the biosensor was 0.02–6.24 mM 

with a detection limit of 0.02 mM and sensitivity of 18.97 μA mM−1.

Carbon nanotubes are cylindrical nanostructural carbon allotropes with unique electronic, 
optical properties. Incorporation of carbon nanotubes into GO can enhance direct electron 

transfer in a biosensor. However, the carbon nanotubes are difficult to disperse homogeneously 

Figure 3. The preparation scheme of the ferrocene branched chitosan [10].

Figure 4. The preparation scheme of CS-Fc/GO/GOD-based glucose biosensor [10].
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in aqueous solution because of its hydrophobic surface and internal van der Waals interac-

tions [12]. Surface modification of carbon nanotubes by GO is a way of solving this problem. 
Chen et al. [13] dispersed carbon nanotubes with GO aqueous homogeneous suspension to 
obtain stable carbon nanotubes/GO composite (Figure 6). The GOD was positively charged, 

and carbon nanotubes/GO composite is negatively charged. Thus, the GOD was immobilized 

by carbon nanotubes/GO composite through the electrostatic interaction as well as physical 

adsorption. The as-prepared biosensor is reproducible with enhanced direct electron transfer. 

The linear range of the biosensor was 0.1–19.82 mM with a detection limit of 0.028 mM.

2.2. Horseradish peroxidase/GO based biosensors

HRP is extensively used in clinical diagnosis. It can oxidize chromogenic substrates to col-

ored products by using hydrogen peroxide [13]. The characteristic color change can be easily 

detected by spectrophotometric methods [14].

Combining GO sheets with chemiluminescence (CL) regents can facilitate the preparation of 
a sensitive sensor with attracting CL property. In the work of Liu et al. [15], N-aminobutyl-

N-ethylisoluminol (ABEI) functionalized GO hybrids (ABEI-GO) was first synthesized by 
adding the ABEI alkaline solution into a stable GO suspension for 24 h at room temperature 
with stirring. HRP buffer solution was then mixed with the ABEI-GO suspension to form 
an ABEI-GO@HRP hybrid (Figure 7). In this strategy, there might be two assembly ways 

between HRP and ABEI-GO: (1) strong electrostatic interaction between HRP and GO, (2) 
interactions with hydrogen bonding. The results suggested an excellent CL properties for the 
detection of H

2
O

2
, exceeding those of previous reports. The ABEI-GO@HRP sensor showed a 

detection limit of 47 fM at physiological pH condition.

GO-based biosensors constructed with multi nanomaterials have also been investigated [16]. 

For example, many researchers have validated the remarkable electrocatalytic properties and 
biocompatibility of graphene-gold nanocomposite (G-AuNP). CdTe-CdS, the core-shell quan-

tum dots, could significantly enhance the charge transfer, enabling nanosensor exploiting 
high intensity. Taken together, Gu and co-workers [16] fabricated a biosensor to detect hydro-

gen peroxide, integrating the benefits of G-AuNP, CdTe-CdS, and AuNPs (Figure 8). Such 

a biosensor was constructed by successively dropping casting G-AuNP, CdTe-CdS, AuNPs, 

Figure 6. The preparation scheme of carbon nanotube/GO/GOD-based glucose biosensor [12].
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and HRP onto the surface of the gold electrode step by step. The Au-NPs were synthesized 

by citrate reduction in the presence of glutin [17] (Figure 9). The G-AuNPs were prepared by 

in-situ reduction of the HAuCl
4
-loaded GO (Figure 10). The result exhibited that the biosensor 

displays an admirable sensitivity, low detection limit (S/N = 3) (3.2 × 10−11 M), wide calibration 

range (from 1 × 10−10 to 1.2 × 10−8 M) and good long-term stability (20 weeks).

Multiwall carbon nanotubes (MWNTs) have a poor solubility in water, which limits their 
application in biosensors. To overcome this obstacle, Zhang et al. [18] synthesized a well 

Figure 9. Scheme of the preparation process of the Au NPs by citrate reduction [17].

Figure 7. Scheme of the preparation process of the ABEI-GO@HRP composite [15].

Figure 8. Scheme of the preparation process of the HRP/AuNPs/CdTe-CdS/G-AuNP/GE [16].
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depressed GO-MWNT hybrid nanomaterial aqueous solution that carried a negative charge. 
Subsequently, the as-prepared GO-MWNT aqueous solution was dropped onto the GC elec-

trode, followed by adding HRP onto the GO-MWNT/GC (Figure 11). The result indicated that 

the direct electron transfer between immobilized enzyme and the GC electrode was enhanced 
by GO-MWNT composite. For detection of H

2
O

2
, the detection limit for the sensor was 1.17 μM 

on S/N-3, and the sensitivity of HRP/GO-MWNT/GC electrode was 563.7 mA cm−2 M−1. For 
the reduction of NaNO

2
, the sensitivity and the detection limit was 0.6 mA cm−2 M−1 and 

12 mM (S/N = 3), respectively. Furthermore, this novel electrode showed excellent stability for 
less than 5% activity of 15 days.

Nafion, a commercial tetrafluoroethylene-perfluoro-3, 6-dioxa-4-methyl-7-octenesulfonic acid 
copolymer, has also been used to modify the GO electrode. In the work of Zhang et al. [19], 

Nafion solution was mixed with GO by ultrasonication, then HRP was added into the pre-

pared mixed solution, following by casting onto the GCE. The as-prepared electrode, HRP/
GO/Nafion/GCE, was proven to have a favorable electrocatalytic response with excellent 
linear relationships from 1.0 μM to 1.0 mM and the detection limits of 4.0 × 10−7 M (S/N = 3). 

Furthermore, the HRP/GO/Nafion/GCE biosensor showed satisfactory stability for less than 
5% of reduced activity after 4 weeks of storage.

An excellent GO-based biosensor means to possess good electron-transfer property. 

Co-immobilizing Cytochrome c (Cyt c) and HRP on GO-chitosan nanocomposite were tried to 

fabricate a bi-protein electrode by Wan et al. [20]. Firstly, GO-chitosan nanocomposites were 

Figure 10. Scheme of the preparation process of the G-AuNPs were synthesized by in-situ reduction of the HAuCl
4
-

loaded GO [17].

Figure 11. The preparation scheme of carbon nanotube/GO/GOD-based glucose biosensor [18].
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synthesized by stirring GO solution and chitosan solution. Then the HRP-Cyt c/GO-chitosan/

Cyt c/MUA-MCH/Au electrode was produced by a layer-by-layer technique. It was found that 
the as-prepared biosensor can have an effective response to detecting H

2
O

2
 within 2 s, along 

with the linear range from 20 to 330 μM and detection limit of 6.68 μM (S/N = 3). Moreover, 

the electrode retained most of the activity for 2 weeks.

Owing to the good biocompatibility and large surface area of Co
3
O

4
 nanosheets (Figure 12), 

Co
3
O

4
 nanosheets can be used to enhance the electric transfer between enzyme and electrode 

in a biosensor. Herein, Liu et al. [21] firstly mixed Co
3
O

4
 suspension with HRP, following with 

addition of rGO (Figure 13). Then the mixture was dropped cast onto the GCE to form the 
Co

3
O

4
-HRP/rGO/GCE electrode successfully. This electrode held a higher HRP loading (with 

a concentration of 1.48 × 10−10 mol cm−2) than that of monolayer coverage. Furthermore, the as-
modified biosensor presented an excellent electronic response with a linear a range from 1 to 
5400 μM, a limit of detection of 0.21 μM and a limit of quantification of 0.58 μM for detection 
of NaNO

2.
 Though the study of the stability of electrode was at 4°C for 4 weeks, they validated 

that electrode can hold 94.1% of its activity.

Figure 13. The preparation scheme of Co
3
O

4
 nanosheet/RGO/HRP biosensor [21].

Figure 12. The preparation scheme of Co
3
O

4
 nanosheet [21].
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Palanisamy et al. [22] reported a novel electrode synthesis based on a screen-printed carbon 

electrode (SPCE) for the detection of H
2
O

2
. The electrode was fabricated by dropping GO-HRP 

composite onto SPCE to form ERGO sensor. The result showed that ERGO had an excellent 
enzyme loading, and the surface coverage concentration of HRP onto SPCE/ERGO-HRP was 
calculated to be 7.32 × 10−10 mol cm−2. Moreover, the linear range of detection was 9–195 μM, 

and sensitivity of the sensor is 0.09 μA μM−1 cm−2.

2.3. Laccase/graphene oxide (GO) based biosensor

Laccase is a kind of blue multi-copper oxidase and can catalyze phenols in the presence of 

oxygen. Thus, this enzyme can be used for the fabrication of phenols detection [23].

Zhou et al. [23] prepared a 1-aminopyrene-reduced graphene oxides (AP-rGOs) composite 

via the- interaction between the pyrenyl group of 1-aminopyrene and graphene (Figure 14). 

Then they covalently immobilized the laccase onto the AP-rGOs form Lac/AP-rGOs by using 

glutaraldehyde as cross-linker. After mixing chitosan with Lac/AP-rGOs, the Lac/AP-rGOs/

chitosan stock solution was dropped onto GCE. The biosensor was used for the detection of 
phenols in water samples. The result showed that the biosensor exhibited a fast response time 

(<5 s), high stability (retained >97% activity after 7 days of storage).

3. Nucleic acids/graphene oxide-based biosensor

Previous literature indicated that the GO-chitosan composite could also be used for DNA 

biosensor fabrication [24]. The GO-chitosan electrode was activated by glutaraldehyde and 

covalently cross-linked with Salmonella typhi specific 5′-amine labeled single-stranded (ss) 

Figure 14. The preparation scheme of AP-rGOs/chitosan/laccase biosensor [23].
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DNA probe (5’NH
2
-ssDNA probe) (Figure 15). This DNA biosensor exhibited good ability to 

detect both complementary and non-complementary target. The linear range of detection was 

10 fM–50 nM and the detection limit was 10 fM.

Figure 16. The scheme of DNA/AuNRs/GO biosensor [25].

Figure 15. The scheme of ssDNA/GO-chitosan/ITO bioelectrode [24].
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Zhang et al. [25] decorated gold nanorods (Au NRs) onto GO sheets and constructed a DNA 

biosensor (Figure 16). The AuNRs were prepared via a seed-mediated method and then com-

posited with GO via electrostatic self-assembly. This biosensor exhibits significant selectivity 
and can distinguish complementary DNA in the presence of the 100-fold amount of single-

base mismatched DNA.

Min et al. [26] designed a nano graphene oxide (NGO) based miRNA biosensor on evaluat-

ing target miRNA expression levels in living cells (Figure 17). The dye-labeled peptide 

nucleic acid (PNA) probes were binding onto the surface of NGO. In this biosensor, NGO 

and PNA acted as fluorescence quencher and probe, respectively. The miRNA expression 
levels can be evaluated by detecting the fluorescence quenching of the dye-labeled on 
PNA. The results showed that the biosensor exhibited a low detection limit (1 pM) and 

can detect the dynamic change in expression levers of the specific miRNA in stem cell 
differentiation [26].

4. Conclusion and outlook

Graphene oxide is one of many unique carbon materials, which displayed potential appli-
cations in the development of next-generation biosensors owing to its various physical and 

chemical properties. The functionalization of GO leads to the adsorption of various biomac-

romolecules, including enzymes such as glucose oxidase, horseradish peroxidase, laccase, 

and nucleic acids such as DNA and RNA for biosensing applications. The major prospect 

to be addressed in the future is the increasing demand for the engineering of biosensors 

Figure 17. The scheme of PNA/NGO biosensor [26].
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based on GO that allow monitoring and detecting analytes with high selectivity and sensi-

tivity at low cost. GO-based biosensors should also be fabricated as point-of-care devices 

for better in situ clinical diagnosis or as an in-situ sensing platform for environmental  
analysis.
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Acronyms and abbreviations

AP  1-aminopyrene

5’NH
2
-ssDNA probe 5′-amine labeled single-stranded (ss) DNA probe

Cyt c  cytochrome c

DNA  deoxyribonucleic acid

ERGO  electrochemically reduced graphene oxide

Fc  ferrocene

FcCHO  ferrocenecarboxaldehyde

GCE  glassy carbon electrode

Au NRs  gold nanorods

GOD  glucose oxidase

GO  graphene oxide

GP  graphene platelet

G-AuNP  graphene-gold nanocomposite
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HRP  horseradish peroxidase

Lac  laccase

MWNTs  multiwall carbon nanotubes

ABEI  N-aminobutyl-N-ethylisoluminol

NGO  nano graphene oxide

RGO  reduced graphene oxide

RNA  ribonucleic acid

S/N  signal-to-noise ratio

SPCE  screen printed carbon electrode
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