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Abstract

Guanine nucleotide-binding proteins (G-proteins) act as transducers of external stimuli 
for intracellular signaling, and control various cellular processes in cooperation with 
seven transmembrane G-protein-coupled receptors (GPCRs). Because GPCRs constitute 
the largest family of eukaryotic membrane proteins and enable the selective recognition 
of a diverse range of molecules (ligands), they are the major molecular targets in pharma-
ceutical and medicinal fields. In addition, GPCRs have been known to form heteromers 
as well as homomers, which may result in vast physiological diversity and provide 
opportunities for drug discovery. G-proteins and their signal transduction machinery 
are universally conserved in eukaryotes; thereby, the yeast Saccharomyces cerevisiae has 
been used to construct artificial in vivo GPCR biosensors. In this chapter, we focus on the 
yeast-based GPCR biosensors that can detect ligand stimulation and oligomer forma-
tion, and summarize their techniques using the G-protein signaling and protein-protein 
interaction assays.

Keywords: yeast, G-protein, G-protein-coupled receptor, signal transduction, oligomer 
formation, reporter gene assay, protein-protein interaction

1. Introduction

Guanine nucleotide-binding proteins (G-proteins) are highly conserved among various 

eukaryotes, and act as signal transduction molecules [1, 2]. In cooperation with seven 
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transmembrane G-protein-coupled receptors (GPCRs), G-proteins transduce external 

stimuli to intracellular signaling and control a wide variety of cellular processes. GPCRs, 

which represent the largest family of integral membrane proteins and present more than 

800 genes in the human genome [3], engage a wide range of ligands. GPCR ligands range 

from small molecules to large proteins, such as hormones, neurotransmitters, ions, tas-

tants, odor molecules and even light [4]. Thus, GPCRs are involved in various physiologi-

cal processes, and are the targets of several prescribed drugs [5–8].

Agonist ligand binding to a GPCR causes ligand-specific active conformational changes, and 
allows the receptor to couple to G-proteins that are composed of Gα, Gβ and Gγ subunits [9]. 

Subsequently, heterotrimeric G-proteins dissociate from the receptor, and then G-protein sig-

naling generates second messengers such as cyclic adenosine monophosphate (cAMP), inosi-

tol phosphates, and intracellular Ca2+. These second messengers trigger different cellular and 
ultimately physiological responses [10]. During these processes, G-proteins switch from an 

inactive state to an active state by exchanging a guanosine diphosphate (GDP) molecule from 

the Gα subunit for guanosine triphosphate (GTP). To resume an inactive state, G-proteins 
hydrolyze GTP to GDP [11].

Historically, GPCRs transduce signals only as single monomeric entities (homomers) [12]. 

However, in the past two decades, several studies have shown that GPCRs also transduce 

signals as heteromers [13–18]. Heteromerization is involved in both the regulation and 

modulation of GPCR signaling, consequently increasing the potentially large functional and 

physiological diversity of various GPCR-mediated processes (e.g., ligand binding, receptor 

biosynthesis, cellular trafficking, maturation, G-protein activation, and internalization) [19–

24]. Therefore, heteromerization among GPCRs may provide new opportunities for drug dis-

covery [25, 26]. For example, GPCR heteromers may be new molecular targets for therapeutic 

treatments, or for developing more potent and selective compounds, such as bispecific or 
bivalent ligands, with reduced side effects [27–29]. The mechanism of GPCR heteromerization 

has been under debate, because the identification of individual heteromer pairs is ongoing 
and the in vivo physiological importance of heteromerization has not been well explored. 

Thus, the search for functional GPCR oligomer pairs is still a challenging task, due to the 

continued need for elucidation of their physiological roles.

Saccharomyces cerevisiae is an extremely simplistic unicellular eukaryote and an excellent host 

system for investigating both GPCR signaling and GPCR oligomerization, as the simplicity of 

this fungus allows for simplified analyses of the more complicated mammalian GPCR signaling 
[30]. For instance, since haploid yeast cells harbor a monopolistic G-protein (pheromone) sig-

naling pathway, and experience a variety of heterologous GPCR expressions, yeast cells have 

often been utilized for studies of human and other mammalian GPCRs such as: identification 
of agonistic ligands, analysis of ligand-mediated signaling properties, and mutational analysis 

of critical amino acid residues [30–32]. Additionally, yeast two-hybrid (Y2H) techniques can 

be utilized to investigate exhaustive protein interaction pairs [30], in which the split-ubiquitin 

membrane Y2H (mY2H) system is suitable for screening membrane protein interaction part-

ners [33] including GPCR heteromer pairs [34]. In this chapter, we focus on yeast-based bio-

sensors that detect ligand stimulation and oligomer formation of GPCRs, and summarize their 

techniques using the G-protein signaling and protein-protein interaction assays.
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2. G-protein signaling

Heterotrimeric G-proteins, as peripheral membrane proteins, interact with the plasma mem-

brane on the cytoplasmic side. G-proteins consist of three subunits, Gα, Gβ, and Gγ, which 
are widely conserved in eukaryotic species, and there are various subfamilies within each 

subunit, especially the Gα subunit. The heterotrimeric G-proteins transduce messages from 
GPCRs, which regulate important functions such as vision, taste, smell, heart rate, blood 

pressure, neurotransmission, cell growth, and numerous other processes [10, 35]. When, in 

response to extracellular stimuli, GPCRs transduce ligand-specific intracellular signaling cas-

cades, they activate a GDP to GTP exchange on the Gα subunit, resulting in Gα dissociation 
from the Gβγ complex. Free Gα or Gβγ interacts with several downstream effectors including 
phospholipases, adenylyl cyclases, phosphodiesterases, tyrosine kinases, ion channels, and 

ion transporters in human and other mammalian cells [36, 37].

2.1. Heterotrimeric G-protein signaling in yeast

S. cerevisiae’s pheromone-based mating response provides a valuable model system for 

characterization of G-protein-mediated GPCR signaling (Figure 1) [38], because it allows for 

simplified analyses of the more complicated signaling pathways employed by higher eukary-

otic cells [30]. The yeast pheromone signaling pathway is non-competitive and monopo-

listic, unlike other higher eukaryotes, and is mediated by a sole heterotrimeric G-protein 

comprising three subunits, a Gα subunit (Gpa1p) and the Gβγ complex (Ste4p − Ste18p) 
[39]. Haploid yeast cells of mating type a (MATa) express Ste2p, which binds the peptide 

pheromone α-factor secreted by cells of the opposite mating type (MATα). Upon phero-

mone binding, Ste2p undergoes a conformational change and induces a guanine-nucleotide 

exchange on Gpa1p [40]. Replacement of GDP with GTP on Gpa1p causes a dissociation of 

the Ste4p − Ste18p complex. Ste4p facilitates binding of the dissociated Ste4p − Ste18p com-

plex to effectors, and results in activation of the mitogen-activated protein kinase (MAPK) 
cascade [41, 42]. Ste5p scaffold protein binds to the components of a MAPK cascade to bring 
them to the plasma membrane, and the concentrated kinases on the membrane may facili-

tate amplification of the signal [43, 44]. As a consequence, the activated yeast pheromone 

signaling leads to phosphorylation of the cyclin-dependent kinase inhibitor Far1p and the 

transcription factor Ste12p. These phosphorylated proteins induce G1 cell cycle arrest [45–

47] and global changes in transcription [48, 49]. For example, FUS1 gene expression experi-

ences drastic transcriptional changes in response to yeast pheromone signaling [50, 51]. The 

FIG1 gene is also a mating-specific Ste12p target gene [52, 53]. Sst2p is one of the main nega-

tive regulators of the yeast pheromone pathway [54] and acts as a GTPase-activating protein 

(GAP), enhancing the rate of Gα-catalyzed GTP hydrolysis [55–57]. GDP-bound Gα rapidly 
reassociates with the Gβγ complex, inactivating the pheromone response.

The yeast S. cerevisiae is amenable for reporter gene assays investigating agonist-stimulated 

G-protein signaling. Briefly, yeast cells become available to detect signaling through endoge-

nous or heterologously expressed GPCRs by putting reporter genes, such as HIS3 (detected by 

complementation of auxotrophy), lacZ (detected by colorimetry), luc (detected by luminometry) 
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 and gene encoding green fluorescent protein (GFP) (detected via fluorescence), under the expres-

sion control of a pheromone-responsive promoter like FUS1 or FIG1 [58–60].

2.2. Improvement of the sensitivity of the yeast G-protein signaling

To increase the sensitivity of human GPCR expressing yeast cells, several modifications 
of yeast-based biosensors have been reported. The yeast’s single GPCR (yeast pheromone 

receptor Ste2p) is often deleted to avoid competitive expression with heterologous GPCRs 

Figure 1. Overview of the yeast pheromone signaling pathway and the human GPCR-expressing yeast signaling biosensor. 

(A) Schematic illustration of the pheromone signaling pathway. The pheromone signaling pathway is activated, via the 

heterotrimeric G-protein, when α-factor binds to the Ste2p receptor. The effectors and kinases constitute that MAPK 
cascades are activated by sequestered Ste4p − Ste18p complex from Gpa1p. Sst2p stimulates hydrolysis of GTP to GDP on 
Gpa1p and helps to inactivate pheromone signaling. (B) Schematic illustration of typical genetic modifications enabling 
the pheromone signaling pathway to be used as a biosensor for GPCR activation. Chimeric Gpa1/Gα (transplant) can 
help to transduce the signal from human GPCRs expressed on the yeast plasma membrane. Transcription machineries, 

closely regulated by the phosphorylated transcription factor Ste12p, are used to detect activation of pheromone signaling 

with various reporter genes. SST2, FAR1, and STE2 genes are often disrupted to improve ligand sensitivity, prevent 

growth arrest (cell cycle arrest), and avoid competitive expression of the yeast endogenous receptor.
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[30]; therefore, expressing human GPCR on the plasma membrane of ste2Δ a-cells harboring 

reporter genes facilitates the monitoring of agonist-promoted signaling [30, 61]. The yeast 

G1-cyclin-dependent kinase inhibitor Far1p, which induces G1 cell cycle arrest in response to 

signaling, is usually disrupted in positive selection screening to avoid abnormal cell growth 

[30], because the far1Δ strain continues cell growth and improves plasmid retention rates [62]. 

Removing Sst2p facilitates experiments requiring high ligand binding sensitivity [30, 31, 63], 

as this removal results in a significant decrease in Gpa1p’s GTPase activity by inhibiting the 
conversion of GTP to GDP.

Yeast Gpa1p is equivalent to mammalian Gα. Gpa1p shares particularly high homology with 
the human Gα

i
 classes, and GPCRs from a variety of species, including human, are able to 

both interact with Gpa1p and activate yeast pheromone signaling [32, 64, 65]. Various genetic 

modifications allow many other human GPCRs to function as yeast signaling modulators. 
In one such modification, a chimeric Gpa1p system, referred to ‘as “transplants”, has’ been 

employed to substitute only five Gpa1p C-terminus amino acids for those of human Gα sub-

units, of which there are three key families: Gα
i/o

, Gα
s
, and Gα

q
 [66]. Indeed, these transplants 

have allowed functional coupling of various GPCRs (including serotonin, purinergic, mus-

carinic, and many other receptors) to the yeast pheromone pathway with greater coupling 

efficiency [32, 66–68].

The use of fluorescent reporter genes can provide the most simple and convenient proce-

dure for comparative quantification of signaling levels, as this removed the need for labo-

rious operations such as sample preparations and enzyme reactions. GFP is commonly 

chosen as the fluorescent reporter and enhanced green fluorescent protein (EGFP) is often 
utilized as the GFP. However, the EGFP gene was originally codon-optimized for mamma-

lian cells, and it was not suitable for expression in yeast cells [69]. To increase the maximum 

expression level of GFP and decrease the detection limit of signaling, Nakamura et al. used 

the tetrameric Zoanthus sp. green fluorescent protein (ZsGreen) as a reporter [70]. The use 

of the ZsGreen reporter gene exhibited extremely bright fluorescence and a high signal-to-
noise (S/N) ratio in yeast, showing a dramatic improvement in both brightness and sen-

sitivity for GPCR signaling assays compared to a fluorescence reporter system using the  
EGFP reporter gene [70].

2.3. Detection of GPCR agonists by utilizing yeast G-protein signaling

Many heterologous GPCRs (including muscarinic, neurotensin, serotonin, somatosta-

tin, adrenergic, olfactory, and many other receptors) have been functionally expressed in  

yeast, successfully demonstrating the feasibility of yeast-based GPCR biosensors [31, 32, 

63–67, 71–73].

For example, the cyclic neuropeptide somatostatin, known to inhibit growth hormone release, 

regulates the human endocrine system through somatostatin receptor (SSTR) binding. There 

are five identified SSTR subtypes (SSTR1 − SSTR5) [74, 75]. SSTR2 and SSTR5 are known 

to regulate acromegaly patient growth hormone secretion, and are also expressed in most 

growth hormone secreting tumors [76]. Several researchers demonstrated functional expres-

sion of human SSTR2 and SSTR5 in yeasts, and SSTR5 has been often used for constructing 

yeast-based somatostatin-specific biosensors. To modify the functional expression of human 
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SSTR5 and somatostatin-specific signaling functions in yeasts, addition of signal sequences 
derived from secretion or membrane proteins (e.g., prepro- and pre-regions of α-factor, 
and a N-terminal 20 amino acids of yeast Ste2p; Ste2N) to the N-terminus of the receptor, 

and implementation of the chimeric Gpa1/Gα
i3
 transplant (see Section 2.2) were tested [77]. 

Additionally, the GFP reporter gene assay (see Section 2.1) was used for evaluating the func-

tional expression of SSTR5 and the signaling response to somatostatin binding. Through 

these evaluations, yeast cells with improved capabilities as a biosensor capable of detect-

ing somatostatin-promoted signaling (such as potency and efficacy) were successfully con-

structed. Using this yeast-based biosensor, Togawa et al. performed site-directed mutagenesis 
of human SSTR5, showing the importance of two asparagine residues (Asn13 and Asn26) on 

the N-linked glycosylation motifs for signaling activation [78]. Furthermore, the artificial sig-

naling circuit formulated a positive feedback loop using Gβ (Ste4p; artificial signal activator, 
which was set downstream the pheromone-responsive promoter), and was demonstrated to 

enable highly sensitive agonist detection in SSTR5 expressing yeast [79].

Neurotensin receptor type-1 (NTSR1), a member of the GPCR family, is another example 

of site-directed mutagenesis of human SSTR5. Neurotensin is the natural ligand of NTSR1, 

as well as a central nervous system neuromodulator [80]. As neurotensin is also involved in 

many oncogenic events [81], NTSR1 is a significant therapeutic target. To monitor the acti-
vation of human NTSR1 signaling responding to its agonist, a fluorescence-based microbial 
S. cerevisiae-based biosensor was constructed [82]. Successful detection of NTSR1 signaling 

responding to agonistic ligands was achieved in the Gα-engineered yeast strains IMFD-72 
and IMFD-74, which were generated by substituting the Gpa1/Gα

i3
 and Gpa1/Gα

q
 transplants 

for the intact Gpa1p in modified yeast IMFD-70 strain (ste2Δ, sst2Δ, far1Δ, P
FIG1

-EGFP x2) [82]. 

EGFP genes on the genomes of IMFD-70 and IMFD-72 were replaced with ZsGreen genes 

to generate IMFD-70ZsD and IMFD-72ZsD strains, resulting in the drastic improvement in 
bright fluorescence and high S/N ratio in the NTSR1 signaling assay [70]. Recently, Hashi 

et al. modified the expression modes of the human NTSR1 receptor by altering the promoter, 
consensus Kozak-like sequence, and secretion signal sequences of the receptor-encoding gene 

[83]. The resulting yeast cells exhibited increased sensitivity to exogenously added neuroten-

sin [83].

Angiotensin II (Ang II) type 1 receptor (AGTR1) is also a GPCR and its natural ligand, Ang 
II, is an important effector molecule for the renin-angiotensin system. Thus, AGTR1 controls 
blood pressure and volume in the cardiovascular system [84, 85]. Interaction of Asn295 with 
Asn111 may play a role in determining the ligand peptide binding selectivity of AGTR1 

receptors [86, 87]. Therefore, a single alanine or serine mutation was introduced at Asn295 of 

human AGTR1, and the Asn295-mutated (N295A and N295S) AGTR1 was expressed in the 

IMFD-72ZsD yeast strain [88]. When exposed to Ang II and Ang II peptidic analogs, which 
differ in affinity toward AGTR1, these cells resulted in successful signal transmissions inside 
the yeast cells. Additionally, the secretory expression plasmids for angiotensin peptides 

(Ang II, Ang III, and Ang IV) were transformed into the yeasts expressing AGTR1-N295A or 
AGTR1-N295S, showing the ZsGreen fluorescence with different intensities according to the 
respective agonistic activities. In contrast, the monoamine neurotransmitter serotonin (5-HT) 
regulates a wide spectrum of human physiology through the 5-HT receptor family [89]. 
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Nakamura et al. expressed the human HTR1A in the IMFD-72ZsD strain to enable improved 
detection of HTR1A signaling in response to the 5-HT [90]. The authors further validated the 

capability of this improved yeast biosensor for antagonistic ligand characterization and site-

directed mutants of human HTR1A.

The rat M
3
 muscarinic acetylcholine receptor (M3R) has been used for rapid identification 

of functionally critical amino acids with random mutagenesis [67]. In this system, the CAN1 

gene coding for arginine-canavanine permease was used as the reporter gene under the con-

trol of a pheromone responsive FUS2 promoter, and in the endogenous CAN1-deleted yeast 

cells. Owing to the cytotoxicity of canavanine, caused by Can1p expression in response to pro-

moted signaling, recombinant strains with inactivation mutations in the M3R receptor could 

survive on agar media containing canavanine and M3R-specific agonists. In another study, 
using this yeast platform, “antagonists” atropine and pirenzepine were found to be inverse 

agonists and low efficacy agonists when coupled to Gpa1/Gα
q
 and Gpa1/Gα

12
, respectively 

[91]. In an extended study, the applicability of this yeast platform to identify allosteric ligand-
mediated functional G-protein selectivity was also tested [92].

Human formyl peptide receptor-like 1, which was originally identified as an orphan GPCR, 
has been used to isolate agonists for functionally unknown GPCRs [93]. Both a library of 

secreted random tridecapeptides and a mammalian/yeast hybrid Gα subunit were employed 
for histidine prototrophic selection via the FUS1 − HIS3 reporter gene. Subsequent peptidic 

candidate surrogate agonist screens have been successful.

In the case of olfactory receptors (ORs), Minic et al. optimized a yeast system for functional 
expression of rat I7 OR and subsequent characterization. In engineered yeasts lacking endog-

enous Gpa1p, the olfactory-specific Gα subunit (Gα
olf

) was co-expressed. When the receptor 

was activated by its ligands, MAPK signaling was switched on and luciferase (as a functional 
reporter) synthesis was induced [71]. Marrakchi et al. successfully expressed human olfactory 

receptor OR17-40 in yeast based on Minic’s biosensor system to detect the conductometric 

changes [94]. Fukutani et al. improved the firefly luciferase-based biomimetic odor-sensing 
system [60], and replaced the N-terminal region of mOR226 with the corresponding domain 

of the rat I7 receptor [95]. They further improved some ORs by the coexpression of either 

odorant accessory binding proteins or the receptor transporting protein 1 short (RTP1S) [96]. 

Tehseen et al. demonstrated that the Caenorhabditis elegans olfactory GPCR ODR-10 was func-

tionally expressed in yeast by using chimeric Gpa1/C. elegans Gα [97]. Mukherjee et al. con-

structed a medium-chain fatty acid biosensor by using the olfactory receptor OR1G1 that 
functionally expressed in yeast [98].

2.4. Yeast cell-surface display technology for single-cell signaling assay of GPCR 

peptides

Yeast cell-surface display technology is a platform to tether functional proteins and peptides 

expressed in yeast to the cell surface [99–102]. Cell-surface display of peptides can be used 

as a powerful ligand screening based on the yeast GPCR signaling assay systems [70, 103]. 

Displaying peptidic ligands by fusing them to an anchor protein in the yeast can enable a 

series of biological processes within a single cell, from peptide synthesis to agonist detection 
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against an already expressing cognate GPCR. In such a system, a library of peptides is indi-
vidually tethered to the plasma membrane on GPCR-producing yeast cells via attachment to 
a glycosyl-phosphatidylinositol (GPI) anchor. Upon phosphatidylinositol-specific phospho-

lipase C (PI-PLC) cleavage of the GPI, the peptides, which are fused to the anchor protein, 
are released from the membrane and trapped in the cell wall [103]. In principle, the host cells 
unconsciously detect the binding of peptidic ligands to relevant receptors on the membrane 

and report the peptides resulting agonistic activation. Thus, this technique facilitates concom-

itant library synthesis and identification of peptide ligands at the single-cell level [104, 105].

Ishii et al. have developed a system for cell wall trapping of autocrine peptides (CWTrAP), 
which activates human SSTR5 signaling using short anchor proteins (e.g., 42 a.a. of Flo1p; 

Flo42) [103]. The engineered yeast strain concomitantly expressing human SSTR5 and 

somatostatin peptide successfully induced GFP reporter gene expression. Hara et al. dem-

onstrated that the somatostatin displayed on the plasma membrane successfully activated 

human SSTR2 in yeast [106]. In this system, somatostatin was displayed on the yeast plasma 
membrane by linking it to the anchoring domain of the GPI-anchored plasma membrane 
protein Yps1p. Nakamura et al. drastically improved the sensitivity and output of this fluo-

rescence reporter system using the ZsGreen reporter, which is applicable to CWTrAP tech-

nology [70].

3. Oligomerization among GPCRs

Many GPCRs have the capacity to form homomers or heteromers that show unique functional 

and biochemical characteristics including receptor pharmacology, regulation, and signaling 

[14, 107, 108]. Therefore, GPCR oligomers could be potential molecular targets for the devel-

opment of new therapeutic agents. Yeast is a potential host for making cell-based biosensors 

for eukaryotic proteins and biological processes of interest [109], because varied reporting 

systems are available that can facilitate assays in yeast cells [110–112]. Notably, the “gold stan-

dard” for testing protein-protein interactions in vivo, Y2H systems, makes use of these report-

ers [113–115] and has also been used to identify membrane protein interaction partners [116].

3.1. Biophysical RET technologies to study GPCR oligomers in yeast cells

Varieties of resonance energy transfer (RET)-based techniques have promoted the visualiza-

tion of GPCR oligomers in living cells. Fluorescence resonance energy transfer (FRET) is a 
strictly distance-dependent energy transfer technique using a cyan fluorescent protein (CFP) 
as energy donor and a yellow fluorescent protein (YFP) as energy acceptor, but other pairings 
are also possible [117]. Highly sensitive, bioluminescence resonance energy transfer (BRET) is 
based on the distance-dependent transfer of energy between a bioluminescent energy donor 

and a fluorescent acceptor molecule [118, 119].

Overton and Blumer [120] used subcellular fractionation and CFP/YFP FRET to demonstrate 
that oligomerization of the endogenous mating pheromone Ste2p receptors occurs via a stable 

association between protomers in yeast. Subsequently, the authors employed FRET in live 
yeast cells for detection of Ste2p oligomerization with its transmembrane domains [121–124]. 
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Furthermore, FRET experiments with yeast cells demonstrated the oligomer formation of 
functional human complement factor 5a (C5a) receptors [125].

BRET was later used to increase the detection sensitivity for Ste2p oligomerization. Increased 
sensitivity was needed, because the C-terminal regions of full length Ste2p protomers did not 

reach a proximity sufficient for effective energy transfer [126]. With the BRET system, Gehret 
et al. [126] demonstrated that mutations previously reported as blocking Ste2p receptor oligo-

merization decreased but did not completely eliminate oligomerization. Previously, BRET 
has been employed in yeast to analyze the protein interactions involved with heterogeneous 

olfactory receptors [127, 128].

3.2. Membrane Y2H technology to study GPCR oligomers in yeast cells

In contrast to FRET and BRET technologies (see Section 3.1), mY2H method is based on tran-

scription-dependent reporter gene assays, permitting colorimetric evaluations with lacZ and 

growth selections with ADE2 and HIS3 (detected by complementation of auxotrophies) [129]. 

Therefore, the split-ubiquitin mY2H approach can be employed both for quantitative assays 

and for comprehensive screening of protein-protein interactions of membrane proteins [129].

In the split-ubiquitin mY2H system, the N- and C-terminal halves (NubG and Cub, respectively) 

of ubiquitin are fused to separate membrane proteins (Figure 2A and B). NubG represent a 

mutant version of the N-terminal half of ubiquitin that harbors an Ile-13 to Gly substitution. This 
split-ubiquitin system functions when interaction between the membrane proteins results in 

ubiquitin reassembly. Notably, Cub is fused to a membrane protein along with an artificial tran-

scription factor (LexA-VP16). NubG has a very low intrinsic affinity for Cub, and therefore can 
interact with Cub only if the membrane proteins fused to both ubiquitin fragments have affinities 
for each other [130]. The reconstituted ubiquitin is recognized by ubiquitin-specific proteases, 
and cleavage liberates LexA-VP16. The released transcription factor then enters the nucleus and 
induces the transcription of reporter genes, permitting both screening (via lacZ expression) and 

selection (via ADE2 and HIS3 expression) based on interactions between membrane proteins.

Historically, the split-ubiquitin mY2H system was employed to screen interacting membrane-

associated proteins (not GPCRs) for GPCRs, such as the μ-opioid receptor (MOR) [131, 132] 

and the M
3
 muscarinic acetylcholine receptor (M3R) [133]. Jin et al. identified GPR177, the 

mammalian ortholog of Drosophila melanogaster Wntless, as a novel MOR-interacting protein 

using the split-ubiquitin mY2H system [131]. Further work showed both enhanced MOR/

GPR177 complex formation at the cell periphery and inhibited Wnt secretion in response to 

morphine treatment, possibly causing decreased neurogenesis. Rosemond et al. investigated 

the predicted integral membrane protein Tmem147 and discovered that it functions as a novel 

M3R-associated protein [133]. Additional work also indicated that Tmem147 is as a potent 

M3R negative regulator, which may interfere with M3R trafficking to the cell surface.

The split-ubiquitin mY2H system has also been applied to identify GPCR heteromers [34]. 

Nakamura et al. developed a specialized method to screen candidate heteromer partners for 

target human GPCRs based on the split-ubiquitin mY2H method [34]. The authors noted 

that mating-associated induction of cell-cycle arrest, which causes robust growth inhibi-

tion in yeast, might impair the assessment of reporter gene activity. Therefore, the authors 
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Figure 2. Schematic illustration of the yeast split-ubiquitin mY2H system to study GPCR oligomers. (A and C) 

No-oligomerization pairs. (B and D) Oligomerization pairs. The candidate GPCR oligomer pairs are fused to respective 

split-ubiquitin segments (NubG and Cub), and Cub is further fused to an artificial transcription factor (LexA-VP16). 
NubG and Cub become close in proximity only when the GPCRs form a dimer, leading to the reconstitution of the split-

ubiquitin. Ubiquitin-specific proteases (UBPs) can recognize the reconstituted split-ubiquitin, resulting in LexA-VP16 
transcription factor cleavage from the Cub-fused GPCRs. LexA-VP16 diffuses into the nucleus where it binds to lexA-

binding sites on the lexA operator (lexAop). (A and B) Principal GPCR oligomer pair detection system: the reporter 

genes such as HIS3, ADE2, and lacZ are placed downstream of lexAop, and their expressions are induced when GPCR 

oligomer pairs interact with each other. (C and D) The reporter switching system for detecting GPCR oligomer pairs: the 

expressions of two reporter genes (E2Crimson and ZsGreen) are switched in response to the Y2H readout; one (E2Crimson) 

from ON to OFF and the other (ZsGreen) from OFF to ON. Briefly, after the release of the LexA-VP16 transcription factor, 
the lexA operator induces the expression of Cre recombinase, which causes a gene recombination that pops-out the 

E2Crimson gene and alternatively exposes the ZsGreen gene. Thus, the formation of GPCR oligomers can be discerned by 

monitoring the changes from far-red fluorescence to green fluorescence.
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constructed a MAPK signal-defective yeast strain. This modified host permitted the rapid 
and facile detection, not only of target human GPCR heteromerization, but also of ligand-

mediated conformational changes in living yeast cells [34]. Thus, the modified mY2H would 
be available to identify GPCR heteromer components and potential therapeutic targets for 

regulating physiological activities.

Furthermore, the authors subsequently designed a reporter switching system that can switch the 

expressions between two reporter genes (one from ON to OFF and the other from OFF to ON) in 

response to the Y2H readout (Figure 2C and D) [134]. Cre/loxP site-specific recombination was 
employed to induce reporter switching. The authors were able to utilize the split-ubiquitin mY2H 

system to optimize Cre-mediated reporter gene recombination and build a dual-color reporter 

switching system, which could discern GPCR dimer formation. To demonstrate reporter switch-

ing, the authors used a far-red derivative of the tetrameric fluorescent protein DsRed-Express2 
(E2Crimson) and a tetrameric ZsGreen as the two reporter genes. Reporter gene expression was 

successfully switched in the engineered yeast cells and permitted the detection of the dimerized 
yeast endogenous pheromone receptor (Ste2p). The authors also validated the applicability of 

this system for monitoring the formation of human GPCRs homodimers and heterodimers, spe-

cifically human serotonin 1A receptor or β2-adrenergic receptor, and confirmed that this system 
had improved sensitivity when compared with the previous system [134].

Using a modified split-ubiquitin mY2H approach, Sokolina et al. reported the systematic 
interactome analysis of 48 clinically important human GPCRs in their ligand-unoccupied 

state [135]. The authors also carried out additional in-depth functional validation on selected 

GPCR protein-protein interactions using biochemical and cell-based assays as well as knock-

out and knock-in animals. The authors found that a G-protein-regulated inducer of neurite 

outgrowth 2 (GPRIN2) and the GPR37 receptor, both physically and functionally, interact 
with the serotonin 5-HT4d receptor, a promising target for Alzheimer’s disease [135].

3.3. GPCR oligomerization and G-protein signaling

GPCR oligomerization can increase the potential for diversity in the regulation and modula-

tion of GPCR signaling, and thus the specific evaluation of signaling properties among various 
receptor oligomer pairs. This work has important implications, not only for the development of 

new drugs, but also for the understanding of signaling networks [22]. This unique system was 

developed for simultaneous detection of oligomer formation and GPCR signaling activation. 

This new methodology uses a combination of the split-ubiquitin mY2H assay and a G-protein 

signaling assay, and is expected to facilitate the identification of physiologically relevant GPCR 
oligomers [136]. Using this system, Nakamura et al. monitored the physiological relevance of 
yeast pheromone receptor Ste2p, in both native and mutated forms. In addition, the authors 
demonstrated the simultaneous detection of homo- and heteromerization, and somatostatin-

induced signaling of the human SSTR5 somatostatin receptor [136]. In the future, this system 
will be useful for identifying agonists that bind to the heteromer, promising to serve as a pow-

erful platform for uncovering the novel functions, modes of action, and potential molecular 

targets of GPCR heteromerization for the development of new therapeutic agents.
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4. Conclusion

In summary, we focused on yeast-based biosensors employed for the detection of GPCR 
ligand stimulation and oligomer formation, and described yeast-based techniques using the 

G-protein signaling and protein-protein interaction assays. Due to their involvement in signal 

transduction machinery, GPCRs are excellent therapeutic targets for various diseases and 

clinical indications [137]. The identification of new physiologically relevant GPCR oligomers 
provides a promising opportunity for drug discovery, based on the effect of allosteric com-

munication between GPCR protomers (each subunit within the oligomer complex) on known 

pharmacological properties. Thus, approaches for investigating the relationship between 

oligomerization and GPCR signaling are necessary for creating oligomer-specific bivalent 
ligands. Additionally, there is great potential for identifying previously undiscovered physio-

logical diversities and therapeutic targets through the generation of comprehensive and inter-

active GPCR oligomer maps. It is also important to expand our knowledge of the molecular 
details of GPCR-mediated signal transduction, including the identification of all proteins that 
interact with clinically relevant GPCRs. Further development of various methods, including 

yeast-based approaches and the investigation of GPCR oligomers, are expected to facilitate 

these outcomes in the near future.
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